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ABSTRACT 

Carbonic anhydrase (CA) enzymes are critical to numerous physiological processes, making them 

valuable therapeutic targets. Aromatic and heterocyclic sulfonamides have demonstrated 

exceptional inhibitory activity, with significant applications in managing glaucoma, a complex and 

progressive neurodegenerative condition. This study employs an integrative approach combining 

machine learning, specifically Multiple Linear Regression (MLR) modeling, with molecular 

dynamics simulations to investigate a series of γ-aminobutyric acid (GABA)-conjugated 

sulfonamides. The MLR model effectively identified key structural and physicochemical features 

governing inhibitory activity against carbonic anhydrase isoforms II and IV, enabling precise 

predictions of biological efficacy. Molecular dynamics simulations were conducted exclusively on 

the most active GABA conjugate identified, in complex with CA II and CA IV enzymes. These 

simulations revealed atomistic details of enzyme-ligand interactions, highlighting critical binding 

interactions, dynamic stability, and conformational behavior driving potent inhibitory effects. By 

integrating machine learning techniques and targeted molecular dynamics simulations, this study 

not only deepens our understanding of sulfonamide activity but also provides a robust foundation 

for the rational design of next-generation inhibitors with enhanced therapeutic potential against 

glaucoma. 
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Introduction 

Carbonic anhydrases (CAs) are a family of metalloenzymes that catalyse the reversible hydration 

of carbon dioxide to bicarbonate and protons, a reaction fundamental to various physiological 

processes, including respiration, acid-base balance, and electrolyte secretion (Supuran & 

Scozzafava, 2007). In humans, 15 CA isoforms have been identified, each exhibiting distinct tissue 

distributions and physiological roles (Supuran & Scozzafava, 2007; Jaitak et al., 2024). Notably, 

aberrant CA activity is implicated in several pathological conditions, such as glaucoma, epilepsy, 

and certain cancers, rendering CAs significant therapeutic targets (Supuran, 2021; Naeem et al., 

2024). Glaucoma, a neurodegenerative disorder and leading cause of irreversible blindness, is 

managed by lowering intraocular pressure, with CA inhibitors playing a key role in reducing 

aqueous humor production (Nocentini & Supuran, 2019). The inhibition of CA II and CA IV 

isoforms is critical for glaucoma treatment, as supported by the development of novel dual-tail 

sulfonamide inhibitors that exhibit effective and sustained intraocular pressure reduction (Angeli 

et al., 2024). 

Sulfonamides, particularly aromatic and heterocyclic variants, have been extensively studied as 

CA inhibitors (Angeli et al., 2023). Inhibition of CAs by sulfonamides occurs through multiple 

mechanisms, with primary action involving direct binding to the active site zinc ion (Supuran, 

2016a; Supuran, 2016b). Furthermore, modifications to their scaffolds with functional groups 

enable interactions with residues near the active site entrance, facilitating enhanced isoform 

selectivity and diverse inhibition profiles (Nocentini & Supuran, 2019). The incorporation of γ-

aminobutyric acid (GABA) moieties into sulfonamide structures represents a significant 

advancement in CA inhibitor design (Mincione et al., 1999). This study has shown that GABA-

sulfonamide conjugates exhibit different inhibition constants (Ki) for CA II and CA IV, 

underscoring their potential for isoform-specific inhibition. 

Advancements in computational methodologies have revolutionised drug discovery processes (Xu, 

2024). Machine learning (ML) techniques, including Multiple Linear Regression (MLR) 

modeling, are extensively utilised to predict biological activity from chemical structures, thereby 

facilitating the identification of potential drug candidates (Rodríguez-Pérez & Bajorath, 2021). For 

example, ML models have demonstrated considerable efficacy in accurately predicting the activity 

and selectivity profiles of human CA inhibitors, significantly enhancing the efficiency and 

precision of the drug development pipeline (Tinivella et al., 2021). Complementary to ML 

approaches, molecular dynamics (MD) simulations provide atomistic insights into the dynamic 

behaviour of enzyme-inhibitor complexes (Wei & McCammon, 2024). These simulations 

elucidate the conformational flexibility and stability of such complexes, offering a deeper 

understanding of binding interactions and inhibition mechanisms (Ilić, 2020; Ilić et al., 2021). 

Furthermore, a recent study elegantly highlights the pivotal role of molecular dynamics in 

providing deeper insights into the interactions between CA and sulfonamide inhibitor (Pagnozzi 

et al., 2022). Integrating ML and MD techniques enables a comprehensive analysis of potential 
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inhibitors by combining predictive modeling with detailed mechanistic insights (Frasnetti et al., 

2024). 

This study aims to investigate the inhibitory activity of a series of GABA-sulfonamide conjugates 

against CA II and CA IV isoforms, leveraging an integrative approach that combines ML-based 

MLR modeling and MD simulations. By identifying key structural and physicochemical 

parameters governing inhibitory activity, the research seeks to elucidate the molecular 

determinants underlying isoform selectivity and binding affinity. These findings are expected to 

provide a robust foundation for the rational design of next-generation CA inhibitors with enhanced 

therapeutic efficacy, particularly for the treatment of glaucoma. 

Experimental 

Machine learning 

A dataset comprising 52 sulfonamides featuring the GABA moiety (Figure 1), along with their 

inhibitory activity values against the CA II and CA IV isoforms, was obtained from the study by 

Mincione et al. (1999). The dataset was processed using the DTC Lab Tools software, developed 

by the Drug Theoretics and Cheminformatics Laboratory at Jadavpur University, Kolkata, 

following the methodology described by Banerjee & Roy (2023). For modeling purposes, the 

compounds were divided into a training set (41 compounds) and a test set (11 compounds), 

ensuring a robust dataset partitioning for ML-based MLR modeling. The inhibitory activity values 

for the CA II and CA IV isoforms, originally reported as Ki values (nM), were converted to pKi 

values to ensure methodological compatibility with the MLR modeling process. The partitioning 

of the dataset, along with the pKi values for the training and test sets, is summarized in Table 1. 

To develop the MLR model, 484 two-dimensional (2D) molecular descriptors were computed 

using E-Dragon, the remote version of Dragon, developed by the Milano Chemometrics and QSAR 

Research Group (Tetko et al., 2005). These descriptors encompassed a wide range of chemical and 

structural properties, including topological indices, walk and path counts, connectivity indices, 

functional group counts, and atom-type E-state indices (Todeschini & Consonni, 2009). 

Subsequently, a rigorous data pretreatment procedure was applied to refine the descriptor dataset. 

Specifically, descriptors with a standard deviation below 0.0001 were excluded as they lack 

significant variation across the dataset, rendering them uninformative and unnecessarily increasing 

computational complexity. Additionally, descriptors with pairwise correlation coefficients 

exceeding 0.95 were removed to eliminate multicollinearity, as such redundancy can lead to 

overfitting and compromise the interpretability and reliability of the MLR model. This 

preprocessing step reduced the initial descriptor pool to 87 variables deemed suitable for inclusion 

in the MLR modeling process.  
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Figure 1. Aromatic and heterocyclic sulfonamides and their GABA conjugates as CA inhibitors  
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Table 1. Experimental and predicted inhibition constants for CA inhibitors 

Inhibitor 
CA II isoform inhibition CA IV isoform inhibition 

Ki (nM) pKi (nM) pKi* (nM) Ki (nM) pKi (nM) pKi* (nM) 

1# 295 6.53 6.24 1310 5.88 5.68 

2 240 6.62 6.48 2200 5.66 5.74 

3 300 6.52 6.65 3000 5.52 5.77 

4 320 6.49 6.66 3215 5.49 5.94 

5 170 6.77 6.66 2800 5.55 5.74 

6 160 6.80 6.67 2450 5.61 5.75 

7# 60 7.22 7.25 180 6.74 6.43 

8 110 6.96 7.25 320 6.49 6.31 

9# 40 7.40 7.25 66 7.18 6.75 

10# 70 7.15 7.25 125 6.90 6.78 

11 28 7.55 7.72 175 6.76 6.97 

12 75 7.12 7.18 160 6.80 6.60 

13 60 7.22 7.46 540 6.27 6.34 

14 19 7.72 7.62 355 6.45 6.48 

15 3 8.52 7.99 125 6.90 7.21 

16 2 8.70 8.60 5 8.30 8.06 

17# 6 8.22 8.58 8 8.10 8.28 

18# 6 8.22 8.01 50 7.30 7.61 

19 9 8.05 7.99 53 7.28 7.52 

20# 12 7.92 8.06 154 6.81 7.68 

21 9 8.05 8.15 19 7.72 7.57 

22 8 8.10 8.15 17 7.77 7.71 

23# 7 8.15 8.29 15 7.82 7.92 

24# 125 6.90 6.66 560 6.25 5.99 

25 110 6.96 6.67 450 6.35 6.03 

26 9 8.05 8.28 45 7.35 7.34 

27 197 6.71 6.90 243 6.61 6.47 

28 182 6.74 7.04 215 6.67 6.54 

29# 112 6.95 7.09 164 6.79 6.58 

30 212 6.67 7.21 305 6.52 6.70 

31 32 7.49 7.21 69 7.16 6.58 

32 30 7.52 7.22 62 7.21 6.56 

33 10 8.00 7.60 38 7.42 7.20 

34 31 7.51 7.60 63 7.20 7.06 

35 30 7.52 7.60 60 7.22 7.52 

36 27 7.57 7.60 56 7.25 7.56 

37 10 8.00 8.01 50 7.30 7.44 

38 9 8.05 7.54 50 7.30 7.12 

39 8 8.10 8.10 43 7.37 7.20 

40 10 8.00 8.00 42 7.38 7.52 

41 5 8.30 8.36 15 7.82 7.96 

42 3 8.52 8.54 9 8.05 7.83 

43 4 8.40 8.46 14 7.85 7.94 
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44 14 7.85 7.86 75 7.12 7.23 

45 13 7.89 7.85 67 7.17 7.13 

46 11 7.96 8.07 50 7.30 7.55 

47 5 8.30 8.40 12 7.92 7.79 

48# 54 7.27 8.40 12 7.92 8.02 

49 4 8.40 8.31 11 7.96 7.88 

50 73 7.14 7.21 180 6.74 6.83 

51 66 7.18 7.22 155 6.81 6.81 

52 6 8.22 8.17 32 7.49 7.63 

pKi*- pKi value predicted by the MLR model 
#- inhibitors of the test set analyzed using the MLR model 

Using the DTC Lab Tools software and following the methodology described by Banerjee & Roy 

(2023), an extensive modeling process was conducted, resulting in the development of over 225 

million MLR models for the CA II isoform and more than 274 million MLR models for the CA 

IV isoform. The selection of optimal models for both isoforms was based on rigorous validation 

using multiple statistical metrics. The validation process involved assessments performed on the 

training set, test set, and through the Y-randomization test. Key statistical metrics used for model 

evaluation included the coefficient of determination (R2), adjusted coefficient of determination 

(Ra
2), cross-validated coefficient of determination (Q2), scaled rm(training)

2 and ∆rm(training)
2 for 

training set validation. For test set validation, predictive R2 (Rpred
2), QF1

2, QF2
2, concordance 

correlation coefficient (CCC), rm(test)
2, and ∆rm(test)

2 were calculated. Furthermore, average R2, 

average Q2, and CRp2 were derived from the results of the Y-randomization test. The developed 

MLR models were assessed for acceptability based on the criteria recommended by Golbraikh & 

Tropsha (2002), ensuring their robustness and reliability. Additionally, the predictive quality of 

the models was evaluated using mean absolute error (MAE)-based criteria and categorized as 

'Good', 'Moderate', or 'Bad', as recommended by Roy et al. (2016). 

Molecular dynamics simulation 

The molecular dynamics simulation of the most potent GABA-sulfonamide conjugate, compound 

42, bound to the CA II (PDB: 4M2U) and CA IV (PDB: 3FW3) isoforms was performed using 

Desmond molecular dynamics software (version 2018.4). Developed by D. E. Shaw Research in 

New York, Desmond relied on PDB files obtained from the Protein Data Bank. The simulation 

protocol, with minor modifications, followed the methodology described by Ilić (2020) and Ilić et 

al. (2021). The water molecules in the system were modeled using the simple point charge (SPC) 

solvent model. Chloride ions (Cl⁻) were introduced to neutralize the system, ensuring a net zero 

charge in the simulation box. The final system consisted of approximately 30,000 atoms. Before 

initiating the MD simulation, the system underwent a six-step relaxation protocol to ensure 

stability. The relaxed system was then subjected to a 100 ns simulation using a normal pressure-

temperature (NPT) ensemble. A Nosé–Hoover thermostat maintained the temperature at 300 K, 

while a Martyna–Tobias–Klein barostat controlled the pressure at 1.01325 bar. Atomic coordinate 

data and system energies were recorded at intervals of 1 ps. To evaluate the dynamic behavior and 
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stability of the inhibitor-isoform complexes, root mean square deviation (RMSD) and root mean 

square fluctuation (RMSF) analyses were conducted over the entire simulation period. These 

metrics provided insights into the structural fluctuations and conformational stability of the 

complexes during the simulation. 

Results and Discussion 

Machine learning 

The most effective MLR model for GABA-sulfonamide conjugates targeting CA II isoform is 

illustrated in Figure 2. The model demonstrates high predictive accuracy, as evidenced by the 

corresponding correlation parameters in Figure 2, and predicted pKi* values in Table 1. The 

statistical robustness and reliability of the model are substantiated by its compliance with the 

criteria recommended by Golbraikh & Tropsha (2002). 

pKi*= 3.00709(+/-0.79181) - 0.00018(+/-0.00005) × Wap - 12.81387(+/-4.49435) × PW4 + 

0.30171(+/-0.0486) × SRW05 + 0.95161(+/-0.14585) × piID - 0.31387(+/-0.07068) × nCb- + 

0.81704(+/-0.11941) × nArX 

Training set validation parameters: 

R2 = 0.89052, Ra
2 = 0.8712, Q2 = 0.85603, rm(training)

2 = 0.79956, ∆rm(training)
2 = 0.08739 

Test set validation parameters: 

Rpred
2 = 0.73695, QF1

2 = 0.55258, QF2
2 = 0.51286, CCC = 0.82018, rm(test)

2 = 0.64512, ∆rm(test)
2 = 

0.18128 

Y-randomization test results: 

average R2 = 0.233384, average Q2 =  -0.14606, CRp2 = 0.804388 

Figure 2. The MLR model, correlation parameters, and plots of experimental versus predicted pKi 

values for (A) the training set and (B) the test set of CA II inhibitors  
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Table 2. Calculated molecular descriptors of CA inhibitors 

Inhibitor Wap PW4 SRW05 piID nCb- nArX ZM1V Qindex SaasC SddssS SsCl 

1# 383 0.15 0 6.18 2 0 194 8 0.15 -3.66 0 

2 383 0.13 0 6.16 2 0 194 8 0.43 -3.61 0 

3 383 0.12 0 6.15 2 0 194 8 0.59 -3.58 0 

4 490 0.13 0 6.31 2 0 210 8 0.70 -3.60 0 

5 490 0.13 0 6.31 2 0 190 8 1.13 -3.55 0 

6 618 0.14 0 6.45 2 0 194 8 1.22 -3.55 0 

7# 480 0.12 0 6.33 3 1 250 9 -1.18 -3.84 0 

8 480 0.12 0 6.33 3 1 250 9 0.47 -3.68 5.57 

9# 480 0.12 0 6.33 3 1 250 9 1.04 -3.63 0 

10# 480 0.12 0 6.33 3 1 250 9 1.31 -3.60 0 

11 1139 0.16 0 7.20 5 2 430 14 -2.66 -8.49 11.20 

12 986 0.15 0 7.08 4 1 374 13 -1.61 -8.28 5.56 

13 273 0.13 2.40 5.69 0 0 244 8 -0.17 -3.72 0 

14 353 0.13 2.40 5.89 0 0 236 9 0.13 -3.70 0 

15 864 0.14 2.40 6.52 0 0 312 9 -0.22 -3.85 0 

16 2965 0.14 2.40 8.27 2 0 436 16 0.33 -7.99 0 

17# 3327 0.15 2.40 8.36 2 0 446 17 0.34 -8.02 0 

18# 3469 0.14 0 9.13 4 0 408 16 0.41 -7.71 0 

19 3469 0.15 0 9.17 4 0 408 16 0.14 -7.88 0 

20# 2665 0.15 0 8.43 2 0 310 13 1.39 -3.67 0 

21 1550 0.15 2.40 8.00 3 0 278 13 0.49 -3.71 0 

22 1550 0.15 2.40 8.00 3 0 294 13 -0.07 -3.75 0 

23# 2658 0.15 2.40 8.36 3 0 338 13 0.43 -3.77 0 

24# 490 0.13 0 6.31 2 0 214 8 0.71 -3.61 0 

25 618 0.14 0 6.45 2 0 218 8 0.98 -3.60 0 

26 3300 0.17 2.40 7.67 0 0 350 17 0.66 -7.30 0 

27 1280 0.15 0 7.07 2 0 266 9 0.13 -3.83 0 

28 1280 0.14 0 7.00 2 0 266 9 0.40 -3.74 0 

29# 1280 0.13 0 6.97 2 0 266 9 0.57 -3.68 0 

30 1524 0.13 0 7.05 2 0 282 9 0.60 -3.68 0 

31 1524 0.13 0 7.05 2 0 270 9 0.89 -3.66 0 

32 1795 0.13 0 7.13 2 0 274 9 1.04 -3.64 0 

33 1471 0.14 0 7.11 3 1 322 10 -1.25 -3.95 0 

34 1471 0.14 0 7.11 3 1 322 10 0.39 -3.79 5.87 

35 1471 0.14 0 7.11 3 1 322 10 0.97 -3.74 0 

36 1471 0.14 0 7.11 3 1 322 10 1.24 -3.71 0 

37 2636 0.16 0 7.80 5 2 502 15 -2.84 -8.77 11.70 

38 2389 0.15 0 7.71 4 1 446 14 -1.74 -8.55 5.77 

39 1040 0.14 2.40 6.61 0 0 316 9 -0.20 -3.85 0 

40 1208 0.14 2.40 6.61 0 0 326 10 0 -3.85 0 

41 2208 0.13 2.40 7.06 0 0 392 10 -0.34 -3.92 0 

42 6516 0.15 2.40 8.91 2 0 508 17 0.31 -8.15 0 

43 7198 0.15 2.40 9.00 2 0 518 18 0.33 -8.17 0 

44 7424 0.14 0 9.77 4 0 480 17 0.33 -7.86 0 
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45 7424 0.15 0 9.81 4 0 480 17 0.06 -8.04 0 

46 6074 0.15 0 9.11 2 0 382 14 1.29 -3.73 0 

47 4018 0.15 2.40 8.70 3 0 350 14 0.48 -3.80 0 

48# 4018 0.15 2.40 8.70 3 0 370 14 0.20 -3.82 0 

49 6005 0.15 2.40 8.90 3 0 414 14 0.40 -3.81 0 

50 1524 0.13 0 7.05 2 0 290 9 0.75 -3.68 0 

51 1795 0.13 0 7.13 2 0 294 9 0.96 -3.66 0 

52 6291 0.17 2.40 8.15 0 0 436 19 0.17 -7.64 0 
#- inhibitors of the test set analyzed using the MLR model 

Furthermore, the quality of the model was evaluated using the MAE-based criteria proposed by 

Roy et al. (2016), and an MAE value of 0.18025 confirms that the model satisfies the requirements 

for classification as a 'Good' model. This categorization underscores its applicability in reliably 

predicting the pKi values of novel GABA-sulfonamide conjugates, paving the way for rational 

design of potent CA II inhibitors. To provide deeper insights into the molecular determinants of 

the observed inhibitory activity, the calculated values of the descriptors used in the MLR model 

(Wap, PW4, SRW05, piID, nCb-, nArX) are presented in Table 2 for each GABA-sulfonamide 

conjugate. The descriptors in the MLR model and their directional contributions reveal key design 

principles for optimizing inhibitory potency against the CA II isoform (Figure 2). 

The negative contribution of Wap (All-Path Wiener Index) to the inhibitory activity suggests that 

highly connected or compact molecular structures diminish the effectiveness of GABA-

sulfonamide conjugates as CA II inhibitors. This likely occurs because overly condensed or less 

branched molecules may hinder proper alignment within the enzyme's active site or reduce binding 

flexibility. To enhance spatial compatibility and binding efficiency, introducing moderate 

branching or elongation into the molecular structure is recommended, allowing for improved 

interaction with the enzyme's active site. 

The negative contribution of PW4 (Path/Walk 4 - Randić Shape Index) indicates that more 

complex molecular shapes over short paths of four bonds adversely affect inhibitory activity. This 

suggests that excessive local branching or structural irregularities may disrupt proper docking or 

cause steric clashes within the enzyme's active site. To address this, simplifying local molecular 

shapes by minimizing unnecessary branching or bulky substituents near the core structure is 

recommended to enhance binding efficiency and inhibition. 

The positive contribution of SRW05 (Self-Returning Walk Count of Order 5) underscores the 

significance of local symmetry and structural stability in enhancing inhibitory activity. Molecules 

capable of maintaining symmetry over 5-bond paths are likely to stabilize interactions with the 

zinc ion and surrounding residues within the enzyme's catalytic center. To optimize this effect, it 

is advisable to preserve or enhance molecular symmetry, particularly in regions directly involved 

in enzyme binding. 
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The positive contribution of piID (Conventional Bond Order ID Number) indicates that stronger 

or more polarizable bonds, such as sulfonamide bonds, play a crucial role in enhancing inhibitory 

activity. This enhancement likely arises from improved coordination with the zinc ion or other 

critical interactions within the enzyme's active site. To optimize binding affinity, the design should 

prioritize molecules featuring strong, polar bonds, particularly high-quality sulfonamide groups. 

The negative contribution of nCb- (Number of Substituted Benzene C(sp²)) suggests that an 

increased number of substituents on the benzene ring can introduce steric hindrance or disrupt the 

electronic balance required for effective binding. To mitigate these issues and improve docking 

efficiency, it is advisable to limit the number of substituents on the benzene ring, ensuring the 

molecule remains compact and well-suited for interaction with the active site. 

The positive contribution of nArX (Number of X on Aromatic Ring) highlights the beneficial 

impact of functionalizing the aromatic ring with suitable groups, such as -OH, -Cl, or -CH3, on 

inhibitory activity. These modifications likely enhance interactions with the enzyme through 

improved hydrogen bonding, dipole interactions, or hydrophobic effects. To optimize these 

benefits, it is recommended to introduce functional groups that strengthen specific interactions 

while avoiding excessive bulk or disruptions to the molecule's electronic balance. 

The MLR model developed for GABA-sulfonamide conjugates targeting the CA IV isoform is 

both robust and highly predictive. Its accuracy is demonstrated through the correlation parameters 

shown in Figure 3 and the predicted pKi* values detailed in Table 1. Statistical validation confirms 

the model’s reliability, meeting the criteria established by Golbraikh & Tropsha (2002), while an 

MAE value of 0.22307, categorizes it as a 'Good' model. The descriptor values (ZM1V, Qindex, 

Wap, SaasC, SddssS, SsCl), which serve as the foundation of the MLR model, are presented in 

Table 2 to provide a detailed analysis of molecular factors influencing inhibitory activity against 

the CA IV isoform. 

The positive contribution of ZM1V (Zero-Order Molecular Connectivity Index) indicates that 

greater connectivity in the molecular graph plays a critical role in enhancing binding affinity. 

Molecules with well-connected atomic structures are likely to align their functional groups more 

effectively, facilitating optimal interactions with the CA IV active site. To maximize inhibitory 

activity, the design should focus on creating conjugates with dense and well-connected molecular 

scaffolds. 

The positive contribution of the Q-index (Quadratic Index) highlights the role of molecular 

complexity and quadratic contributions in enhancing inhibitory activity. Higher Q-index values 

suggest that conjugates with carefully distributed atomic connections are structurally well-suited 

to fit the CA IV binding pocket. To optimize activity, it is important to maintain molecular 

complexity while avoiding excessive branching, ensuring an effective balance between structure 

and functionality. 

https://doi.org/10.46793/ChemN7.1.40I


Chemia Naissensis, Vol 7, Issue 1, RESEARCH ARTICLE, 40-58, https://doi.org/10.46793/ChemN7.1.40I  

50 
 

The negative contribution of Wap suggests that fewer or less accessible molecular paths enhance 

inhibitory activity, indicating that excessive molecular flexibility or extended networks can reduce 

binding efficiency by introducing conformational instability. To optimize binding to CA IV, 

designing compact and rigid molecules is recommended, as these structures promote stability and 

improve interaction with the active site. 

pKi*= 2.83126(+/-0.34758) + 0.01346(+/-0.00133) × ZM1V + 0.23813(+/-0.03506) × Qindex - 

0.00038(+/-0.00005) × Wap + 0.10417(+/-0.08338) × SaasC + 0.41842(+/-0.04781) × SddssS - 

0.06358(+/-0.02217) × SsCl 

Training set validation parameters: 

R2 = 0.89695, Ra
2 = 0.87876, Q2 = 0.86014, rm(training)

2 = 0.80295, ∆rm(training)
2 = 0.08654 

Test set validation parameters: 

Rpred
2 = 0.83926, QF1

2 = 0.71703, QF2
2 = 0.71468, CCC = 0.8907, rm(test)

2 = 0.67378, ∆rm(test)
2 = 

0.14716 

Y-randomization test results: 

average R2 = 0.224263, average Q2 =  -0.13319, CRp2 = 0.822077 

 

Figure 3. The MLR model, correlation parameters, and plots of experimental versus predicted pKi 

values for (A) the training set and (B) the test set of CA IV inhibitors 

The positive contribution of SaasC (Sum of Atomic Electronegativity for Carbon Atoms) 

underscores the importance of the carbon framework, particularly in the GABA backbone and 

sulfonamide group, in stabilizing interactions with CA IV through hydrogen bonding or 

hydrophobic effects. A strong carbon-based backbone is essential for enhancing inhibitory activity. 

The positive contribution of SddssS (Sum of Electronic Contributions for Sulfur Atoms with 

Specific Bonding Patterns) highlights the crucial role of sulfur atoms in the sulfonamide group. 

This descriptor emphasizes that these atoms contribute significantly to coordinating the zinc ion 

in the CA IV active site. To optimize inhibitory activity, the design should prioritize the inclusion 
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of sulfur atoms within the sulfonamide moiety, as they are essential structural components for 

effective binding. 

The negative contribution of SsCl (Sum of Electronic Contributions for Chlorine Atoms) indicates 

that minimal electronic influence from chlorine atoms enhances inhibitory activity. This suggests 

that excessive electron-withdrawing effects or steric hindrance caused by chlorine substitution can 

disrupt optimal interactions with the CA IV active site. To maximize activity, chlorine should be 

used sparingly to modulate properties without introducing excessive halogen substitution. 

Molecular dynamics simulation 

Understanding 2D and 3D molecular properties is critical in drug development to achieve a 

detailed characterization of molecular behavior and interactions. While 2D descriptors capture 

essential topological and electronic features, 3D properties such as spatial orientation and 

conformational flexibility are indispensable for accurate modeling of binding affinities, steric 

effects, and molecular dynamics (Cho & Choi, 2019). By leveraging 3D molecular characteristics, 

molecular dynamics reveals dynamic conformational changes, binding mechanisms, and 

interaction networks, offering a powerful framework for optimizing drug candidates (De Vivo et 

al., 2016; Do et al., 2018). 

The molecular dynamics simulation of the most potent GABA-sulfonamide conjugate, compound 

42, in complex with the CA II isoform over a 100 ns trajectory unveiled significant details 

regarding the stability and interaction dynamics of the complex (Figure 4). The RMSD and RMSF 

values for Cα atoms, side chains, and heavy atoms consistently remained below the 2 Å threshold, 

in agreement with Liu & Kokubo (2017). These findings highlight minimal structural 

rearrangements and conformational changes, confirming the stability of the compound 42/CA II 

complex. The interactions observed throughout the 100 ns molecular dynamics simulation 

underscored the critical roles of Glu69, His94, His119, Phe131, Thr199, Thr200, and Pro201 in 

the formation and stabilization of the compound 42/CA II complex (Figure 4). The involvement 

of these residues in CA enzyme inhibition is thoroughly documented (Supuran & Scozzafava, 

2007; Supuran, 2016a; Jaitak et al., 2024; Naeem et al., 2024). Hydrogen bonding is a central 

feature of ligand stabilization, as demonstrated in Figure 4A. Thr199 and His119 are critical 

contributors to these interactions, underscoring their importance in maintaining stability. Glu69 

further supports the ligand through a combination of hydrogen bonding and ionic interactions, 

highlighting the role of charge complementarity. Additional stabilization arises from hydrophobic 

contacts with His94 and Phe131, as well as water-mediated bridges involving Thr200 and Pro201. 

As observed in Figure 4C, compound 42 stabilizes the complex through strong hydrogen bonds 

formed by the sulfonamide group via its oxygen atom with Thr199 and its nitrogen atom with 

His119. The amino group of the GABA tail interacts with Glu69 through hydrogen bonding and 

ionic interactions, playing a critical role in electrostatic stabilization. Hydrophobic interactions 

occur between the benzene ring and Phe131, as well as the thiadiazole ring and His94, 

strengthening the molecular interface through van der Waals forces. Additionally, the nitrogen 

https://doi.org/10.46793/ChemN7.1.40I


Chemia Naissensis, Vol 7, Issue 1, RESEARCH ARTICLE, 40-58, https://doi.org/10.46793/ChemN7.1.40I  

52 
 

atoms of the thiadiazole ring form water-mediated bridges with Thr200 and Pro201, providing 

further stability to the complex. 

 

Figure 4. Interaction analysis of the GABA-sulfonamide conjugate 42 with CA II isoform: 

frequency distribution (A), interaction timeline (B), and spatial contact map (C) from a 100 ns 

molecular dynamics simulation 

Based on the results, the design of novel GABA-sulfonamide conjugates targeting the CA II 

isoform can focus on replacing the thiadiazole ring with a heterocyclic scaffold capable of forming 

direct hydrogen bonds with Thr200 and Pro201. This substitution could eliminate reliance on 

water-mediated interactions, thereby enhancing binding affinity and the activity of the compounds 

(Fischer & Riedl, 2013). Additionally, the incorporation of hydrophobic substituents, such as 
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methyl or ethyl groups, on the benzene ring could strengthen van der Waals interactions with 

Phe131, further contributing to increased activity. 

 

Figure 5. Interaction analysis of the GABA-sulfonamide conjugate 42 with CA IV isoform: 

frequency distribution (A), interaction timeline (B), and spatial contact map (C) from a 100 ns 

molecular dynamics simulation 

The molecular dynamics simulation of compound 42 with the CA IV isoform revealed stability, 

with RMSD and RMSF values consistently below 2 Å (Figure 5). Key interactions were observed 

with residues Trp5, Gln60, Asn62, His64, Ser65, Gln92, His94, His96, Glu106, His119, Glu171, 

Thr199, and Thr200, emphasizing their roles in CA IV enzyme inhibition, as previously reported 

(Supuran & Scozzafava, 2007; Supuran, 2016a; Jaitak et al., 2024; Naeem et al., 2024). 
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The contributions of distinct interaction types are quantified in Figure 5, highlighting their roles in 

stabilizing compound 42. The sulfonamide group in compound 42 forms strong hydrogen bonds 

with Thr199 via its oxygen atoms and with His119 and Thr200 through its nitrogen atom, while 

also coordinating to the zinc ion via an oxygen atom. A water-mediated bridge connects the 

sulfonamide group oxygen to His94, contributing to the stabilization of the complex. In contrast, 

the sulfonamide moiety, located between the benzene and thiadiazole rings, exhibits significant 

hydrogen bonding interactions with Asn62, Ser65, and Gln92 through its sulfonyl group, 

highlighting its distinct role in binding. The amino group of the GABA tail engages in strong 

hydrogen bonds with Glu171 and also demonstrates a degree of ionic interactions. Furthermore, 

the carbamoyl group of the GABA fragment interacts through hydrogen bonds with Gln60. The 

thiadiazole ring, as part of the structure, participates in persistent hydrophobic interactions with 

His94, while additional hydrophobic interactions are observed with Trp5, emphasizing the overall 

stabilizing contributions of compound 42 within the binding site. From the perspective of rational 

design, one potential approach for developing more potent inhibitors containing the GABA 

fragment toward the CA IV isoform is the replacement of the sulfonamide group with a 

hydroxamate, which would enhance coordination with the zinc ion and optimize hydrogen bonding 

(Di Fiore et al., 2012; Hou et al., 2021). 

Conclusion 

This study provides a comprehensive analysis of GABA-sulfonamide conjugates as effective CA 

inhibitors, specifically targeting the CA II and CA IV isoforms. By integrating ML-based MLR 

modeling with MD simulations, key structural and physicochemical determinants of inhibitory 

activity were identified. The developed MLR models demonstrated exceptional predictive 

accuracy and statistical robustness, enabling the identification of critical molecular descriptors that 

influence CA inhibition. Simultaneously, MD simulations offered atomistic insights into the 

dynamic stability and specific binding interactions of the most potent GABA-sulfonamide 

conjugate within enzyme-ligand complexes. The findings highlight the importance of molecular 

connectivity, symmetry, and functional group modifications in optimizing inhibitor design. 

Structural modifications, such as substituting the thiadiazole ring or sulfonamide group, could 

further enhance binding affinity and isoform selectivity. This integrative approach enhances our 

mechanistic understanding of sulfonamide-based CA inhibitors while providing a robust 

framework for the rational design of next-generation inhibitors with improved therapeutic efficacy, 

particularly for the treatment of glaucoma, a progressive neurodegenerative disorder. Future 

research focusing on scaffold optimization and novel functional groups will likely yield inhibitors 

with enhanced isoform selectivity and potency. 
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