Dr Jelena V. Manojlović

Full Professor
Department of Mathematics

  • P. Đorđević, J. Manojlović, Impact of Allee effect in Leslie-Gower model with increasing functional response, Filomat Vol.  38 (2024), No. 4 , pp. 1221-1254 https://doi.org/10.2298/FIL2404221D
  • P.Ćirković, J. ManojlovićImpact of Michaelis–Menten type harvesting of predators in a predator-prey model with Holling type II functional response and Allee effect on prey, Filomat Vol. 38 (2024), No.5 , pp. 1623-1661. https://doi.org/10.2298/FIL2405623C
  • Manojlović, J., Milošević, J. (2022), Asymptotic equivalence relations for rapidly varying solutions of sublinear differential equations of Emden–Fowler type, Adv. Cont. Discr. Mod., No. 19 (2022).  https://doi.org/10.1186/s13662-022-03693-w
  • Djordjević, K. S., & Manojlović, J. V. (2021). q-regular variation and the existence of solutions of half-linear q-difference equation. Mathematical Methods in the Applied Sciences, 44(17), 12673–12687. https://doi.org/10.1002/MMA.7570
  • Jovanović, B., Ðorđević, J., Manojlović, J., & Šuvak, N. (2021). Analysis of Stability and Sensitivity of Deterministic and Stochastic Models for the Spread of the New Corona Virus SARS-CoV-2. Filomat, 35(3), 1045-1063. https://doi.org/10.2298/FIL2103045J
  • Kusano T., Manojlović J.V. (2021), Asymptotic behavior of solutions of half-linear differential equations and generalized Karamata functions, Georgian Math. Jour. 28 (4), pp. 611-636 https://doi.org/10.1515/gmj-2020-2070 
  • Kostadinov, K. S., & Manojlović, J. V. (2020). Existence of positive strongly decaying solutions of second-order nonlinear q-difference equations. Journal of Difference Equations and Applications, 26(6), 729-752.  https://doi.org/10.1080/10236198.2020.1761346
  • Kapešić, A. B., & Manojlović, J. V. (2019). Positive Strongly Decreasing Solutions of Emden-Fowler Type Second-Order Difference Equations with Regularly Varying Coefficients. Filomat, 33(9), 2751–2770. https://doi.org/10.2298/FIL1909751K
  • Djordjević, K., & Manojlović, J. V. (2019). Existence and asymptotic behavior of intermediate type of positive solutions of fourth-order nonlinear differential equations. Filomat, 33(13), 4185–4211. https://doi.org/10.2298/FIL1913185D
  • Kusano, T., Manojlović, J. V., & Marić, V. (2018). An Asymptotic Analysis of Solutions of a Second Order Nonlinear Differential Equation. Funkcialaj Ekvacioj-Serio Internacia, 61(1), 15–36. http://dx.doi.org/10.1619/fesi.61.15
  • Kapešić, A. B., & Manojlović, J. V. (2017). Regularly varying sequences and Emden–Fowler type second-order difference equations. Journal of Difference Equations and Applications, 24(2), 245–266. https://doi.org/10.1080/10236198.2017.1404588
  • Trajković, A. B., & Manojlović, J. V. (2016). Asymptotic Behavior of Intermediate Solutions of Fourth-Order Nonlinear Differential Equations with Regularly Varying Coefficients. Electronic Journal of Differential Equations, 2016.
  • Kusano, T., & Manojlović, J. V. (2016). Precise asymptotic behavior of regularly varying solutions of second order half-linear differential equations. Electronic Journal of Qualitative Theory of Differential Equations, 62, 1–24. https://doi.org/10.14232/ejqtde.2016.1.62
  • Milošević, J. S. ., & Manojlović, J. V. . (2015). Asymptotic Analysis of Fourth Order Quasilinear Differential Equations in the Framework of Regular Variation. Taiwanese Journal of Mathematics, 19(5), 1415–1456. https://doi.org/10.11650/tjm.19.2015.5048
  • Milošević, J., & Manojlović, J. V. (2015). Positive Decreasing Solutions of Second Order Quasilinear Ordinary Differential Equations in the Framework of Regular Variation. Filomat, 29(9), 1995–2010. https://doi.org/10.2298/FIL1509995M
  • Manojlović, J., & Tanigawa, T. (2015). Regularly Varying Solutions of Half-Linear Diffferential Equations with Retarded and Advanced Arguments. Mathematica Slovaca, 65(6), 1361–1402. https://doi.org/10.1515/ms-2015-0095
  • Kusano T. , Manojlović J.V. , Marić V., (2014), Increasing solutions of Thomas–Fermi type differential equations—The superlinear case, Nonlinear Analysis, 108, pp. 114-127. https://doi.org/10.1016/j.na.2014.05.011
  • Kusano, T., Manojlović, J. V., & Milošević, J. (2014). Intermediate solutions of fourth order quasilinear differential equations in the framework of regular variation. Applied Mathematics and Computation, 248, 246–272. https://doi.org/10.1016/J.AMC.2014.09.109
  • Kusano, T., & Manojlović, J. V. (2013). Complete asymptotic analysis of positive solutions of odd-order nonlinear differential equation. Lithuanian Mathematical Journal, 53(1), 40–62. http://dx.doi.org/10.1007/s10986-013-9192-x
  • Kusano, T., Manojlović, J. V., & Milošević, J. (2013). Intermediate solutions of second order quasilinear ordinary differential equations in the framework of regular variation. Applied Mathematics and Computation, 219 (15), 8178–8191. https://doi.org/10.1016/J.AMC.2013.02.007
  • Agarwal, R. P., & Manojlović, J. V. (2013). On the Existence and the Asymptotic Behavior of Nonoscillatory Solutions of Second Order Quasi linear Difference Equations. Funkcialaj Ekvacioj-Serio Internacia, 56(1), 81–109. http://dx.doi.org/10.1619/fesi.56.81
  • Kusano, T., Manojlović, J. V., & Tanigawa, T. (2013). Existence and Asymptotic Behavior of Positive Solutions of Fourth Order Quasilinear Differential Equations. Taiwanese Journal of Mathematics, 17(3), 999–1030. https://doi.org/10.11650/tjm.17.2013.2496
  • Jaroš, J., Kusano, T., & Manojlović, J. (2013). Asymptotic analysis of positive solutions of generalized Emden-Fowler differential equations in the framework of regular variation. Central European Journal of Mathematics, 11(12), 2215–2233. http://dx.doi.org/10.2478/s11533-013-0306-9
  • Kusano, T., & Manojlović, J. V. (2013). Precise Asymptotic Behavior of Intermediate Solutions of Even Order Nonlinear Differential Equation in the Framework of Regular Variation. Moscow Mathematical Journal, 13(4), 649–666. http://dx.doi.org/10.17323/1609-4514-2013-13-4-649-666
  • Kusano, T., & Manojlović, J. V. (2012). Positive solutions of fourth order Emden-Fowler type differential equations in the framework of regular variation. Applied Mathematics and Computation, 218(12), 6684–6701. https://doi.org/10.1016/J.AMC.2011.12.029
  • Kusano, T., & Manojlović, J. V. (2012). Asymptotic behavior of positive solutions of odd order Emden-Fowler type differential equations in the framework of regular variation. Electronic Journal of Qualitative Theory of Differential Equations, 45, 1-23. http://dx.doi.org/10.14232/ejqtde.2012.1.45
  • Kusano, T., & Manojlović, J. (2012). Positive Solutions of Fourth Order Thomas-Fermi Type Differential Equations in the Framework of Regular Variation. Acta Applicandae Mathematicae, 121(1), 81–103. https://doi.org/10.1007/s10440-012-9691-5
  • Kusano, T., & Manojlović, J. (2011). Precise asymptotic behavior of solutions of the sublinear Emden-Fowler differential equation. Applied Mathematics and Computation, 217(9), 4382–4396. https://doi.org/10.1016/J.AMC.2010.09.061
  • Kusano, T., Manojlović, J., & Tanigawa, T. (2011). Sharp oscillation criteria for a class of fourth order nonlinear differential equations. Rocky Mountain Journal of Mathematics, 41(1), 249–274. https://doi.org/10.1216/RMJ-2011-41-1-249
  • Kusano, T., & Manojlović, J. (2011). Asymptotic behavior of positive solutions of sublinear differential equations of Emden-Fowler type. Computers and Mathematics with Applications, 62(2), 551–565. https://doi.org/10.1016/J.CAMWA.2011.05.019
  • Kusano, T., & Manojlović, J. V. (2011). Asymptotic analysis of Emden-Fowler differential equations in the framework of regular variation. Annali Di Matematica, 190(4), 619–644. https://doi.org/10.1007/s10231-010-0166-x
  • Kusano, T., Manojlović, J., & Tanigawa, T. (2010). Existence of regularly varying solutions with nonzero indices of half-linear differential equations with retarded arguments. Computers and Mathematics with Applications, 59(1), 411–425. https://doi.org/10.1016/J.CAMWA.2009.06.039
  • Manojlović, J. V. (2009). Classification and Existence of Positive Solutions of Fourth-Order Nonlinear Difference Equations. Lithuanian Mathematical Journal, 49(1), 71–92. http://dx.doi.org/10.1007/s10986-009-9029-9
  • Karpuz, B., Manojlović, J. V., Öcalan, Ö., & Shoukaku, Y. (2009). Oscillation criteria for a class of second-order neutral delay differential equations. Applied Mathematics and Computation, 210(2), 303–312. https://doi.org/10.1016/J.AMC.2008.12.075
  • Agarwal, R. P., & Manojlović, J. V. (2008). Asymptotic Behavior of Positive Solutions of Fourth-Order Nonlinear Difference Equations. Ukrainian Mathematical Journal, 60(1), 6–28. http://dx.doi.org/10.1007/s11253-008-0039-2
  • Manojlović, J. V., & Milošević, J. S. (2008). Sharp Oscillation Criteria for Fourth Order Sub-half-linear and Super-half-linear Differential Equations. Electronic Journal of Qualitative Theory of Differential Equations, 32, 1–13. http://dx.doi.org/10.14232/ejqtde.2008.1.32
  • Agarwal, R. P., Grace, S. R., & Manojlović, J. V. (2006). Oscillation criteria for certain fourth order nonlinear functional differential equations. Mathematical and Computer Modelling, 44(1–2), 163–187. https://doi.org/10.1016/J.MCM.2005.11.015
  • Manojlović, J., & Tanigawa, T. (2006). Oscillation and nonoscillation theorems for a class of even-order quasilinear functional differential equations. Journal of Inequalities and Applications, 2006. https://doi.org/10.1155/JIA/2006/42120
  • Agarwal, R. P., Grace, S. R., & Manojlović, J. V. (2006). On the oscillatory properties of certain fourth order nonlinear difference equations. Journal of Mathematical Analysis and Applications, 322(2), 930–956. https://doi.org/10.1016/J.JMAA.2005.09.059
  • Manojlović, J., Shoukaku, Y., Tanigawa, T., & Yoshida, N. (2006). Oscillation criteria for second order differential equations with positive and negative coefficients. Applied Mathematics and Computation, 181(2), 853–863. https://doi.org/10.1016/J.AMC.2006.02.015
  • Manojlović, J. V. (2005). Integral averages and oscillation of second order sublinear differential equations. Czechoslovak Mathematical Journal, 55(1), 41-60.  http://dx.doi.org/10.1007/s10587-005-0003-3
  • S.H. Saker, J. V. Manojlovic (2004), Oscillation Criteria for Second Order Superlinear Neutral Delay Differential Equations, Electronic Journal of Qualitative Theory of Differential Equations, Vol. 2004, No. 10., pp 1-22.  https://doi.org/10.14232/ejqtde.2004.1.10
  • Manojlović, J. V. (2004). Oscillation criteria for sublinear differential equations with damping. Acta Math. Hungar, 104(1–2), 153-169. http://dx.doi.org/10.1023/B:AMHU.0000034369.84782.0a
  • Manojlović, J. V. (2001). Integral averages and oscillation of second-order nonlinear differential equations. Computers and Mathematics with Applications, 41(12), 1521–1534. https://doi.org/10.1016/S0898-1221(01)00117-1
  • Manojlovic J. V. (2000), Oscillation theorems for nonlinear differential equations of second order, Electronic Journal of Qualitative Theory of Differential Equations, Vol. 2000, No. 1., 1-21. https://doi.org/10.14232/ejqtde.2000.1.1
  • Manojlović, J. V. (2000). Oscillation criteria for second-order sublinear differential equation. Computers & Mathematics with Applications, 39 (9–10), 161–172. https://doi.org/10.1016/S0898-1221(00)00094-8