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Abstract. In this paper, we characterize L-classical d-orthogonal polynomial sets of Sheffer type where L
being a lowering operator commutating with the derivative operator D and belonging to {D, eD

−1, sin(D)}.
For the first case we state a (d + 1)-order differential equation satisfied by the corresponding polynomials.
We, also, show that, with these three lowering operators, all the orthogonal polynomial sets are classified
as L-classical orthogonal polynomial sets.

1. Introduction

Let P be the linear space of polynomials with complex coefficients and let P′ be its algebraic dual.
A polynomial sequence {Pn}n≥0 is called a polynomial set (PS for short) if and only if deg Pn = n for all
non-negative integer n. We denote by < u, f > the effect of the linear functional u ∈ P′ on the polynomial
f ∈ P. Denote by S(P) the set of polynomial sets P = {Pn}n≥0, where Pn ∈ P.

Definition 1.1. [20, 24] Let {Pn}n≥0 be in S(P) and let d be an arbitrary positive integer. The polynomial sequence
{Pn}n≥0 is called a d-orthogonal polynomial set (d-OPS, for short) with respect to a d-dimensional functional U =
t(u0, · · · ,ud−1) if it satisfies the following conditions:{

〈uk,PmPn〉 = 0, m > dn + k
〈uk,PnPdn+k〉 , 0, n ≥ 0

for each integer k belonging to {0, 1, . . . , d − 1}.

For d = 1, we recover the well-known notion of orthogonality.

One of the important classes of PSs is the class of Sheffer A-type zero (which we shall hereafter call
Sheffer type and note SH).[25]

Definition 1.2. A PS P = {Pn}n≥0 is called of Sheffer type if it is generated by a function of the form

G(x, t) = A(t) exp (xH(t)) =

∞∑
n=0

Pn(x)
n!

tn, (1)
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where
A(t) =

∑
n≥0

antn and H(t) =
∑
n≥1

hntn

with
A(0) , 0, H(0) = 0 and H′(0) , 0,

we will denote a such polynomial set by P(A,H).

Put LH(A) =
A′

AH′
the formal power series defined in terms of the logarithm derivation of A and the deriva-

tion of H.

An orthogonal polynomial set (OPS, for short) {Pn}n≥0 in P is called Lq,w-classical if {Lq,wPn}n≥1 is also
orthogonal, where Lq,w denotes the Hahn operator given by [19]

Lq,w( f )(x) :=
f (qx + w) − f (x)

(q − 1)x + w
, (q , 0).

Particular interest is devoted to the derivative operator D (w = 0 and q→ 1), the finite difference operator
∆ (w = 1 and q = 1), q-difference operator Lq (w = 0) and Dunkl operator Tµ = D + 2µL−1, µ > −1/2. The
literature on these topics is extremely vast. For a survey see for instance [1, 5].
This notion has been extended to the d-orthogonality by Douak and Maroni [16], who introduced the notion
of classical d-OPSs which means that both {Pn}n≥0 and its derivative {P′n+1}n≥0 are d-orthogonal. It is then
significant to look for characteristic properties for Lq,w-classical d-OPSs as was done for the case d = 1. In
this context, for the derivative operator D, Douak and Maroni [17] generalized the Pearson’s equation for
classical d-OPSs. The Sturm-Liouville equation is generalized for particular families of classical d-OPSs,
some examples may be found in [2–4, 14, 15, 18, 21, 26]. Ben Cheikh and Ben Romdhane [2] gave some
characteristic properties of the d-symmetric classical d-OPSs. Douak and Maroni [16], and later Boukhemis
and Zerouki [14] quote some families of classical d-OPSs in the particular case d = 2. For the operator ∆,
some examples of classical discrete d-OPSs of Sheffer type may be found in [8, 10, 11]. Some examples of
Lq−classical d-OPSs are stated in [9, 22, 27]. Finally for the operator Tµ, Ben Cheikh and Gaied [6] studied
the Dunkl-classical d-OPSs in the d-symmetric case.

Our contribution in this direction is to determine all classical d−OPSs of Sheffer type (Theorem 3.1),
as well as (d + 1)−order differential equations satisfied by these polynomials. We also state two new
characterizations of classical discrete d-OPSs of Sheffer type. We consider the operator sin(D), to complete
the classification of the OPSs of Sheffer type as L-classical polynomials, and we characterize all sin(D)-
classical d-OPSs of Sheffer type. The cases d = 2 and d = 3 are specially carried out.

2. Main result

In this section, we state a general result that will have as applications the results of the next sections. To
this end, we need to recall the following lemmas.

Lemma 2.1. [7] Let P(A,H) = {Pn}n≥0 be a Sheffer-type polynomial set.
{Pn}n≥0 is a d-OPS if and only if 

1
H′(t)

is a polynomial of degree ≤ (d + 1)

LH(A) is a polynomial of degree d.

Lemma 2.2. [7] Let P(A,H) be a d-OPS of Sheffer type. The polynomial set KP = P(KA,H) is a d′-OPS (d′ > d)
iff LH(K) is a polynomial of degree d′.
KP remains a d-OPS iff LH(K) is a polynomial of degree d having a leading coefficient different from that of −LH(A),
or a polynomial of degree < d.
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Lemma 2.3. [7] Let P = P(A,H) be a d-OPS of Sheffer type, KP = P(KA,H) be a d′-OPS, d′ > d, of Sheffer type
and L be a lowering operator which commutates with the derivation operator D. If P is L-classical d-OPS thenKP is
L-classical d′-OPS.

Theorem 2.1. Let ψ be a formal power series satisfying
(
ψ′

ψ

)′
= −F

(
ψ′

ψ

)
,

ψ(0) = 0, ψ′(0) = 1,

where F is a monic polynomial of degree 2. Let P(A,H) be a d-OPS of Sheffer type. P(A,H) is ψ(D)−classical iff

H(t) =

(
ψ′

ψ

)−1

◦
π(t)

t
,

where π is a polynomial of degree ≤ d + 1 satisfying π(0) , 0 and π − tπ′ divides t2F(
π(t)

t
).

Proof. Let P(A,H) = {Pn}n≥0 be a d-OPS of Sheffer type.
{
ψ(D)Pn+1

n + 1

}
n≥0

is generated by

∞∑
n=0

ψ(D)Pn+1(x)
n + 1

tn

n!
=

1
t
ψ(D)

 ∞∑
n=0

Pn+1(x)
tn+1

(n + 1)!

 =
1
t
ψ(D)(A(t)exH(t)) =

ψ(H(t))
t

A(t)exH(t),

which is the polynomial set of Sheffer type P(KA,H), where K(t) =
ψ(H(t))

t
.

By Lemma 2.2, P(KA,H) is a d-OPS iff
K′(t)

K(t)H′(t)
=
ψ′ ◦H
ψ ◦H

(t) −
1

tH′(t)
is a polynomial of degree d having a

leading coefficient different from that of−
A′

AH′
, or a polynomial of degree< d. Since R =

1
H′

is a polynomial

of degree ≤ (d + 1) satisfying R(0) , 0, so P(A,H) is ψ(D)−classical iff
ψ′ ◦H
ψ ◦H

(t) =
π(t)

t
, where π is a

polynomial of degree ≤ (d + 1) satisfying π(0) , 0. That is to say

H(t) =

(
ψ′

ψ

)−1

◦
π(t)

t
.

P(A,H) is a d-OPS so by Lemma 2.1,
1

H′(t)
=

t2F(π/t)
π − tπ′

is a polynomial, that is π − tπ′ divides t2F(π/t).

Conversely, if H(t) =

(
ψ′

ψ

)−1

◦
π(t)

t
, where π is a polynomial of degree ≤ d + 1 satisfying π(0) , 0

and π − tπ′ divides t2F(
π(t)

t
). Hence

1
H′(t)

=
t2F(π/t)
π − tπ′

is a polynomial of leading coefficient π(0). So,

ψ′ ◦H
ψ ◦H

(t) −
1

tH′(t)
=
π(t) − 1/H′(t)

t
is a polynomial of degree ≤ d. �

This theorem provides three cases :
(1) F(t) = (t − α)2, α ∈ R
(2) F(t) = (t − α)(t − β), α, β ∈ R
(3) F(t) = (t − α)(t − α), α ∈ C
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Case (1) The resolution of the system 
(
ψ′

ψ

)′
= −

(
ψ′

ψ
− α

)2

,

ψ(0) = 0, ψ′(0) = 1,

leads to ψ(t) = teαt. For α = 0, we have ψ(D) = D.

Case (2) The resolution of the system 
(
ψ′

ψ

)′
= −

(
ψ′

ψ
− α

) (
ψ′

ψ
− β

)
,

ψ(0) = 0, ψ′(0) = 1,

leads to ψ(t) =
eαt
− eβt

α − β
. For α = 1 and β = 0, we have ψ(D) = ∆.

Case (3) The resolution of the system 
(
ψ′

ψ

)′
= −

(
ψ′

ψ
− α

) (
ψ′

ψ
− α

)
,

ψ(0) = 0, ψ′(0) = 1,

where α = a + ib (b , 0), leads to ψ(t) = eat sin(bt)
b

. For a = 0 and b = 1 we have ψ(D) = sin(D) which

my be viewed as a central difference quotient operator since sin(D) =
1
2i

(eiD
− e−iD).

For these three cases,ψ(D) is a lowering operator belonging to {D, ∆, sin(D)}. composed with a shift operator
eαD. Since a shift operator preserves the d-orthogonality, we limit ourselves in the sequel to characterize
L-classical d-OPS of Sheffer type where L ∈ {D, ∆, sin(D)}.

3. Characterization of classical d-OPSs of Sheffer type

In this section, we consider the first case whereψ(D) = D and we determine D-classical d-OPSs of Sheffer
type. The particular case d = 2 was considered by Boukhemis [13]. He showed that the 2−OPSs of Hermite
type and of Laguerre type are D-classical.

Theorem 3.1. The only D−classical d-OPSs of Sheffer type are

P(eπd+1(t), at) and P
(
(1 − bt)αe

β
1−bt +πd−1(t),

at
1 − bt

)
,

where πi is a polynomial of degree i; a, b are nonzero real constants and α, β are real numbers.

Proof. Let P(A,H) be a d-OPS of Sheffer type. By Theorem 2.1, P(A,H) is D−classical iff

H(t) =
t
π(t)

,

where π is a polynomial of degree ≤ d + 1 satisfying π(0) , 0 and π − tπ′ divides π2.
It is clear that constant polynomials do the job, so suppose that π is not constant.
Taking the factorization of π over C

π(t) = c
r∏

k=1

(t − αk)mk ,
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where αk, k = 1, . . . , r are nonzero complex numbers, mk, k = 1, . . . , r are positive integers and c is a nonzero
real number. So the factorization of π′ is of the form

π′(t) =

r∏
k=1

(t − αk)mk−1Q(t),

where Q is a polynomial of degree r − 1, coprime with π. This gives

π(t) − tπ′(t) =

r∏
k=1

(t − αk)mk−1S(t),

where S(t) = c
r∏

k=1

(t − αk) − tQ(t). We have deg(S) =

{
r if deg(π) > 1,
0 if deg(π) = 1.

If deg(π) > 1, S is not constant, so let α be a root of S. Since S divides π − tπ′ which divides π2, there exists
i ∈ {1, . . . , r} such that α = αi. So, αi is a root of Q, which is impossible because Q and π are coprime. It
follows that deg(π) = 1.

We conclude that H(t) = at or H(t) =
at

1 − bt
, where a and b are nonzero real constants.

• If H(t) = at,
A′

AH′
=

A′

aA
is a polynomial of degree d iff A(t) = eπd−1(t), where πd+1a polynomial of degree

d + 1.

• If H(t) =
at

1 − bt
,

A′

AH′
must be a polynomial of degree d, that is

A′(t)
A(t)

=
T(t)

(1 − bt)2 , where T is a polynomial

of degree d. Taking the partial decomposition of this fraction, then its primitive, we obtain

A(t) = (1 − bt)αe

β

1 − bt
+ πd−1(t)

,

where α, β are real constants and πd−1 is a polynomial of degree d − 1. �

Lemma 3.1. Let ϕ(t) =

∞∑
n=0

antn, a0 , 0, be a formal power series. We have

ϕ(D)x =

[
x +

ϕ′(D)
ϕ(D)

]
ϕ(D).

Theorem 3.2. The classical d-OPSs of Sheffer type satisfy a (d + 1)-order differential equation of one of the forms

(1) [Dπ1(D) − 2xD + 2n] y = 0,

where π1 is a polynomial of degree d.

(2)
[
−xD(1 −D)d + Dπ2(D) + n(1 −D)d−1

]
y = 0,

where π2 is a polynomial of degree ≤ d satisfying π2(1) , 0.

Proof. The classical d-OPSs of Sheffer type given by Theorem 3.1 are related to Hermite and Laguerre
polynomials by [[7], p.12]

P(eπd+1(t), 2t) = ϕ1(D)(Hn(x)), P
(
(1 − t)−α−1e

β
1−t +πd−1(t),

−t
1 − t

)
= ϕ2(D)(L(α)

n (x)),
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where ϕ1(t) = eπd+1( t
2 )+( t

2 )2
, ϕ2(t) = eβ(1−t)+πd−1( −t

1−t ), πi is a polynomial of degree i.
Since Hermite polynomials Hn(x) satisfy the Sturm-Liouville equation [12]

(D2
− 2xD + 2n)y = 0.

Applying ϕ1(D) and using Lemma 3.1, we get[
−Dπ′d+1(

D
2

) − 2xD + 2n
]
ϕ1(D)(Hn) = 0.

So we obtain the first equation where π1(t) = −π′d+1( t
2 ).

On the other hand, Laguerre polynomials L(α)
n (x) satisfy the equation [12]

(xD2 + (α + 1 − x)D + n)y = 0.

Now, applying ϕ2(D) and using Lemma 3.1, we get[
−xD(1 −D) + (α + 1)D + n −D(1 −D)

ϕ′2(D)
ϕ2(D)

]
ϕ2(D)y = 0.

Hence
[
(β − x)D(1 −D) + (α + 1)D +

D
1 −D

π′d−1(
−D

1 −D
) + n

]
ϕ2(D)y = 0.

Taking the Taylor development of π′d−1 at the point 1, we obtain(β − x)D(1 −D) + (α + 1)D + D
d−2∑
k=0

ak

(1 −D)k+1
+ n

ϕ2(D)y = 0,

where ad−2 , 0. Applying (1 −D)d−1, and using Lemma 3.1, we get(β − x)D(1 −D)d + (α + d)D(1 −D)d−1 + D
d−2∑
k=0

ak(1 −D)d−2−k + n(1 −D)d−1

 y = 0,

where ad−2 , 0. We obtain the second equation, where

π2(t) = β(1 − t)d + α(1 − t)d−1 +

d−2∑
k=0

ad−2−k(1 − t)k, π2(1) = ad−2 , 0. �

Since equations (1) and (2) are linear and homogeneous, multiplication of a solution by a constant again
yields a solution. But such multiplication may destroy the property of being a Sheffer type set. We cannot
therefore obtain a complete converse to Theorem 3.2. But we do have

Corollary 3.1. If a set {Pn} satisfies an equation of the forms (1) or (2), then there exist nonzero constants cn, so that
{cnPn} is a classical d-OPSs of Sheffer type.

Proof. P(eπd+1(t), 2t) (resp. P
(
(1 − t)−α−1e

β
1−t +πd−1(t),

−t
1 − t

)
) satisfies equation (1) (resp. equation (2)). Since

equation (1) (resp. (2)) has a polynomial solution, and this polynomial is unique to within an arbitrary

multiplicative constant. Hence, cn exists so that P(eπd+1(t), 2t) = {cnPn} (resp. P
(
(1 − t)−α−1e

β
1−t +πd−1(t),

−t
1 − t

)
=

{cnPn}).
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4. Characterization of classical discrete d-OPSs of Sheffer type

In this section, we consider the second case where ψ(D) = eD
−1 and we Characterize ∆-classical d-OPSs

of Sheffer type. The particular case d = 2 was considered by Boukhemis [13]. He showed that the 2−OPSs
of Charlier type and of Meixner type are ∆-classical.

Theorem 4.1. Let P(A,H) be a d-OPS of Sheffer type. Then the following statements are equivalent :

(i) P(A,H) is ∆−classical.

(ii) H(t) = log
(
π(t)

π(t) − t

)
, where π is a real polynomial of degree 0 ≤ n ≤ d + 1, satisfying π(0) , 0 and if n ≥ 2 the

number of real and complex roots of π(π − t) is equal to n.

(iii)
1

H′(t)
is equal to one of these polynomials :

•
1

H′(t)
= ±(t − α), α is a nonzero real number,

•
1

H′(t)
=

1
α1 − α2

(t − α1)(t − α2), α1, α2 are nonzero real distinct numbers.

•
1

H′(t)
=

1
4α

(t − α)(t + α), α is a nonzero real number,

•
1

H′(t)
= c

p∏
k=1

(t− αk), (3 ≤ p ≤ d + 1) such that α1, · · · , αp are nonzero distinct complex numbers satisfying



α1 α2 · · · · · · αp

α2
1 α2

2 · · · · · · α2
p

...
...

...
...

...
...

αp
1 αp

2 · · · · · · αp
p





m1
...

mr

−mr+1
...
−mp


=

1
c



0
...
0
1

p
(p−1)

r∑
i=1

miαi


, (1)

where the mi’s are positive integers such that
r∑

i=1

mi =

p∑
i=r+1

mi = p

Proof. (i)⇔(ii) Let P(A,H) be a d-OPS of Sheffer type. By Theorem 2.1, P(A,H) is ∆−classical iff

H(t) = log
(
π(t)

π(t) − t

)
.

where π is a polynomial of degree ≤ d + 1 satisfying π(0) , 0 and π − tπ′ divides π(π − t).
It is clear that polynomials of degree ≤ 1 do the job, so suppose that degπ is an integer n ≥ 2.
Taking the factorization of π and π − t over C

π(t) = c
r∏

k=1

(t − αk)mk , π(t) − t = c
r′∏

k=1

(t − βk)m′k ,

where the αk, βk are nonzero numbers, the mk,m′k are positive integers and c is a nonzero real number. So

π(t) − tπ′(t) =

r∏
k=1

(t − αk)mk−1S1(t),
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and π(t) − tπ′(t) = (π(t) − t) − t(π′(t) − 1) =

r′∏
k=1

(t − βk)m′k−1S2(t),

where S1 and π are coprime, S2 and π − t are coprime.
Since π and π − t are coprime, so the αks are different from the βks, we get

π(t) − tπ′(t) =

r∏
k=1

(t − αk)mk−1
r′∏

k=1

(t − βk)m′k−1S(t),

where S is coprime with π and π − t.
It follows that π − tπ′ divides π(π − t) iff S is a constant. That is

π − tπ′ = c(1 − n)
r∏

k=1

(t − αk)mk−1
r′∏

k=1

(t − βk)m′k−1, (2)

which is equivalent to n = r + r′.

(ii)⇒(iii) Suppose that H(t) = log
(
π(t)

π(t) − t

)
, where π is a polynomial of degree 0 ≤ n ≤ d + 1 such that

π(0) , 0 and the number of real and complex roots of π(π − t) is equal to n if n ≥ 2.

- If n = 0, so
1

H′(t)
= −(t − α), α is a nonzero real number.

- If n = 1,
1

H′(t)
= (t − α) or

1
H′(t)

=
1

α1 − α2
(t − α1)(t − α2), α, α1, α2 are nonzero real numbers.

- If n ≥ 2, define Sk, k = 1, . . . ,n by the relations Sk =

r∑
i=1

miα
k
i , where the α′i s are the real and complex roots

of multiplicity mi of the polynomial π(t) that will be noted by

π(t) = a0tn + a1tn−1 + · · · + an−1t + an. (3)

Taking π(t) of the form π(t) = a0

r∏
k=1

(t − αk)mk , we deduce that π′(t) = π(t)
r∑

k=1

mk

t − αk
.

Replacing
1

t − αk
by its series expansion

1
t − αk

=
1
t

+
αk

t2 +
α2

k

t3 + · · · , we get

π′(t) = π(t)
[n

t
+

S1

t2 +
S2

t3 + · · ·
]
. (4)

Substituting (3) in (4) gives

na0tn−1 + (n − 1)a1tn−2 + · · · + 2an−2t + an−1 = (a0tn + a1tn−1 + · · · + an−1t + an)
[n

t
+

S1

t2 +
S2

t3 + · · ·
]
.

Comparing coefficients of tk on both sides, we obtain the Newton’s identities [23]

a0S1 + a1 = 0
a0S2 + a1S1 + 2a2 = 0
a0S3 + a1S2 + a2S1 + 3a3 = 0
...
a0Sn−1 + a1Sn−2 + · · · + an−2S1 + (n − 1)an−1 = 0
a0Sn + a1Sn−1 + · · · + an−1S1 + nan = 0

(5)
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On the other hand, by hypothesis, the number of real and complex roots of π − t is equal to n − r. So π − t
can be written in the forms

π(t) − t = a0tn + a1tn−1 + · · · + (an−1 − 1)t + an = a0

n∏
k=r+1

(t − αk)mk .

We now apply the same reasoning, with Sk replaced by Tk =

n∑
i=r+1

miα
k
i , to obtain the Newton’s identities



a0T1 + a1 = 0
a0T2 + a1T1 + 2a2 = 0
a0T3 + a1T2 + a2T1 + 3a3 = 0
...
a0Tn−1 + a1Tn−2 + · · · + an−2T1 + (n − 1)(an−1 − 1) = 0
a0Tn + a1Tn−1 + · · · + (an−1 − 1)T1 + nan = 0

(6)

The resolution of the systems (5) and (6) leads to two cases

- If n = 2 : Sk = 2αk
1 and Tk = 2αk

2 satisfy

 S1 = T1 −
1
a0

S2 = T2 + a1

a2
0
−

T1
a0

.

Replacing a1 by 1 − a0T1, we get
{
α1 = − 1

4a0

α2 = 1
4a0

. So
1

H′(t)
=

1
4α

(t − α)(t + α).

- If n ≥ 3 :


Sk = Tk, ∀1 ≤ k ≤ n − 2
Sn−1 = Tn−1 −

n−1
a0

Sn = Tn +
(n−1)a1

a2
0
−

T1
a0

. Replacing a1 by −a0T1, we get


Sk = Tk, ∀1 ≤ k ≤ n − 2
Sn−1 = Tn−1 −

n−1
a0

Sn = Tn −
n
a0

T1

.

On the other hand, we have H(t) = log( π(t)
π(t)−t ), hence

1
H′

=
π(π − t)
π − tπ′

. Analysis similar to that in the proof of

(i)⇔ (ii) shows that π(t) − tπ′(t) = a0(1 − n)
n∏

k=1

(t − αk)mk−1. It follows that

1
H′(t)

=
a0

1 − n

n∏
k=1

(t − αk) = c
n∏

k=1

(t − αk),

where α1, . . . , αn satisfy the equations
Sk = Tk, ∀1 ≤ k ≤ n − 2
Sn−1 = Tn−1 + 1

c
Sn = Tn + n

(n−1)c S1.
(7)

which is equivalent to (1).
(iii)⇒(ii)

- If
1

H′(t)
= −(t − α), since H(0) = 0, it follows that H(t) = log( α

α−t ) = log( π
π−t ), π = α.

- If
1

H′(t)
= (t − α), so H(t) = log(

t − α
−α

) = log(
π

π − t
), π = t − α.

- If
1

H′(t)
=

1
α1 − α2

(t − α1)(t − α2), so H(t) = log(
α2(t − α1)
α1(t − α2)

) = log(
π

π − t
), π = α2

α2−α1
(t − α1).

- If
1

H′(t)
=

1
4α

(t − α)(t + α), so H(t) = log(
t − α
t + α

)2 = log(
π

π − t
), π = − 1

4α (t − α)2.

- If
1

H′(t)
= c

n∏
k=1

(t−αk), (3 ≤ n ≤ d + 1) such that α1, · · · , αn are nonzero distinct complex numbers satisfying
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(1). Let π(t) = c(1− n)
r∏

k=1

(t− αk)mk . If we take the notation (3), we get (5), and hence we deduce (6) from (7).

Newton’s identities given by (6), implies thatπ(t)−t = c(1−n)
p∏

k=r+1

(t−αk)mk . So the number of roots ofπ(π−t)

is equal to p, it follows by the same method as in (2), that π − tπ′ = c(1 − p)2
r∏

k=1

(t − αk)mk−1
p∏

k=r+1

(t − βk)mk−1.

Hence,
π(π − t)
π − tπ′

= c
p∏

k=1

(t− αk) =
1

H′
. It follows, that H(t) = log(

π(t)
π(t) − t

), where π is a polynomial of degree

2 ≤ p ≤ d + 1, such that the number of roots of π(π − t) is equal to p. �
Examples.

1. d = 1 :
•

1
H′(t)

= ±(t − α), α is a nonzero real number : Charlier polynomials.

•
1

H′(t)
=

1
α1 − α2

(t − α1)(t − α2), α1, α2 are nonzero distinct real numbers : Meixner polynomials.

•
1

H′(t)
=

1
4α

(t − α)(t + α), α is a nonzero real number : Meixner polynomials.

2. d = 2 :
•

1
H′(t)

= ±(t − α), α is a nonzero real number : 2-OPS of Charlier type.

•
1

H′(t)
=

1
α1 − α2

(t − α1)(t − α2), α1, α2 are nonzero distinct real numbers : 2-OPS of Meixner type.

•
1

H′(t)
=

1
4α

(t − α)(t + α), α is a nonzero real number : 2-OPS of Meixner type.

•
1

H′(t)
= c(t − α1)(t − α2)(t − α3), α1, α2, α3 are nonzero distinct complex numbers satisfying one of

these two equations α1 α2 α3
α2

1 α2
2 α2

3
α3

1 α3
2 α3

3


 3
−1
−2

 =

 0
1/c

9α1/2c

 ;

 α1 α2 α3
α2

1 α2
2 α2

3
α3

1 α3
2 α3

3


 1

2
−3

 =

 0
1/c

9α3/2c


which we can solve using Maple for example to get

1
H′(t)

= ±
1

54α2 (t − α)(t + 2α)(t + 8α).

3. d = 3 :
•

1
H′(t)

= ±(t − α) : 3-OPS of Charlier type.

•
1

H′(t)
=

1
α1 − α2

(t − α1)(t − α2), α1, α2 are nonzero distinct real numbers : 3-OPS of Meixner type.

•
1

H′(t)
=

1
4α

(t − α)(t + α), α is a nonzero real number : 3-OPS of Meixner type.

•
1

H′(t)
= ±

1
54α2 (t − α)(t + 2α)(t + 8α).

•
1

H′(t)
= c(t − α1)(t − α2)(t − α3)(t − α4), α1, . . . , α4 are nonzero distinct complex numbers satisfying

one of these equations α1 α2 α3 α4
α2

1 α2
2 α2

3 α2
4

α3
1 α3

2 α3
3 α3

4
α4

1 α4
2 α4

3 α4
4


 4
−2
−1
−1

 = ±


0
0

1/c
16α1

3c

 ;

 α1 α2 α3 α4
α2

1 α2
2 α2

3 α2
4

α3
1 α3

2 α3
3 α3

4
α4

1 α4
2 α4

3 α4
4


 3

1
−2
−2

 = ±


0
0

1/c
4(3α1+α2)

3c

 ;
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α2

1 α2
2 α2

3 α2
4

α3
1 α3

2 α3
3 α3

4
α4

1 α4
2 α4

3 α4
4


 3

1
−3
−1

 =


0
0

1/c
4(3α1+α2)

3c

 ;

 α1 α2 α3 α4
α2

1 α2
2 α2

3 α2
4

α3
1 α3

2 α3
3 α3

4
α4

1 α4
2 α4

3 α4
4


 2

2
−2
−2

 =


0
0

1/c
8(α1+α2)

3c

 ;

which gives the solutions

1
H′(t)

= ±
1

283α3 (t − α)(t + 3α)[t + (7 + 4
√

2i)α][t + (7 − 4
√

2i)α];

1
H′(t)

= ±
1

263α3 (t − α)(t − 9α)[t − (3 − 2
√

3)α][t − (3 + 2
√

3)α];

1
H′(t)

=
1

243α3 (t − α)(t + α)(t − 3α)(t + 3α).

5. Characterization of sinD−classical d-OPSs of Sheffer type

In this section, we consider the third case where ψ(D) = sinD and we Characterize sinD-classical d-OPSs
of Sheffer type.

Theorem 5.1. Let P(A,H) be a d-OPS of Sheffer type. Then the following statements are equivalent :

(i) P(A,H) is sinD−classical.

(ii) H(t) = tan−1

(
t
π(t)

)
, where π is a real polynomial of degree 0 ≤ n ≤ d + 1, satisfying π(0) , 0 and if n ≥ 2, the

number of roots of π − it is equal to
n
2

.

(iii)
1

H′(t)
is equal to one of these polynomials :

•
1

H′(t)
=

1
α

(t2 + α2), α is a nonzero real number.

•
1

H′(t)
=

1
Im(α)

(t − α)(t − α), α ∈ C \R.

•
1

H′(t)
=

1
2α

(t2 + α2), α is a nonzero real number.

•
1

H′(t)
= c

r∏
k=1

(t − αk)(t − αk), (2 ≤ r ≤ (d + 1)/2), α1, · · · , αr ∈ C\R satisfying



α1 · · · αr α1 · · · αr

α2
1 · · · α2

r α2
1 · · · α2

r
...

...
...

...
...

...
...

...
...

...
...

...
α2r

1 · · · α2r
r α2r

1 · · · α2r
r





m1
...

mr

−m1
...
−mr


= −

2i
c



0
...
0
1

2r
2r − 1

r∑
i=1

miαi


, (8)

where the mi’s are positive integers such that
r∑

i=1

mi = 2r
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Proof. (i)⇔ (ii) Let P(A,H) be a d-OPS of Sheffer type. By Theorem 2.1, P(A,H) is sinD−classical iff

H(t) = tan−1

(
t
π(t)

)
.

where π is a polynomial of degree ≤ d + 1 satisfying π(0) , 0 and π − tπ′ divides π2 + t2. It is clear that
polynomials of degree ≤ 1 do the job, so suppose that degπ is an integer n ≥ 2.
Taking the factorization of π − it and π + it over C

π(t) − it = c
r∏

k=1

(t − αk)mk , π(t) + it = c
r∏

k=1

(t − αk)mk ,

where α1, . . . , αr ∈ C \R, m1, . . . ,mr are positive integers and c is a nonzero real number. So

π(t) − tπ′(t) = (π(t) − it) − t(π(t) − it)′ =

r∏
k=1

(t − αk)mk−1S1(t),

and π(t) − tπ′(t) = (π(t) + it) − t(π(t) + it)′ =

r∏
k=1

(t − αk)mk−1S1(t),

where S1 and π − it are coprime, S1 and π + it are coprime. So,

π(t) − tπ′(t) =

r∏
k=1

(t − αk)mk−1(t − αk)mk−1S(t),

where S is coprime with π − it and π + it.
It follows that π − tπ′ divides π2 + t2 iff S is a constant. That is

π − tπ′ = c(1 − p)
r∏

k=1

(t − αk)mk−1(t − αk)mk−1, (9)

which is equivalent to n = 2r.

(ii)⇒ (iii) H(t) = tan−1

(
t
π(t)

)
, where π is a polynomial of degree 0 ≤ n ≤ d + 1, satisfying π(0) , 0 and if

n ≥ 2, the number r of roots of π − it is equal to
n
2

.

- If n = 0, so
1

H′(t)
=

1
α

(t2 + α2), α is a nonzero real number.

- If n = 1, so
1

H′(t)
=

1
Im(α)

(t − α)(t − α), α ∈ C \R.

- If n = 2r ≥ 2, denote by π(t) − it = a0tn + a1tn−1 + · · · + an−1t + an = a0

r∏
k=1

(t − αk)mk .

So, π(t) + it = a0tn + a1tn−1 + · · · + (an−1 + 2i)t + an = a0

r∏
k=1

(t − αk)mk .

Define Sk, k = 1, . . . ,n by the relations Sk =

r∑
i=1

miα
k
i . Analysis similar to that in the proof of Theorem 4.1
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gives the Newton’s identities

a0S1 + a1 = 0
a0S2 + a1S1 + 2a2 = 0
a0S3 + a1S2 + a2S1 + 3a3 = 0
...
a0Sn−1 + · · · + an−2S1 + (n − 1)an−1 = 0
a0Sn + a1Sn−1 + · · · + an−1S1 + nan = 0

;



a0S1 + a1 = 0
a0S2 + a1S1 + 2a2 = 0
a0S3 + a1S2 + a2S1 + 3a3 = 0
...

a0Sn−1 + · · · + an−2S1 + (n − 1)(an−1 + 2i) = 0
a0Sn + a1Sn−1 + · · · + (an−1 + 2i)S1 + nan = 0

The resolution of these systems leads to two cases

- If n = 2 : Sk = 2αk
1, k = 1, 2 satisfy

 S1 = S1 + 2i
a0

S2 = S2 −
2ia1

a2
0

+ 2i
a0

S1
.

Replacing a1 by −2i − a0S1, we get α1 =
i

2a0
. So

1
H′(t)

=
1

2α
(t − iα)(t + iα).

- If n ≥ 3 :


Sk = Sk, ∀1 ≤ k ≤ n − 2
Sn−1 = Sn−1 +

2i(n−1)
a0

Sn = Sn −
2i(n−1)a1

a2
0

+ 2i
a0

S1

. Replacing a1 by −a0S1, we get


Sk = Sk, ∀1 ≤ k ≤ n − 2
Sn−1 = Sn−1 +

2i(n−1)
a0

Sn = Sn + 2in
a0

S1.

On the other hand, we have H(t) = tan−1( t
π(t) ), hence

1
H′

=
π2 + t2

π − tπ′
. Analysis similar to that in the proof of

(i)⇔ (ii) shows that π(t) − tπ′(t) = a0(1 − n)
r∏

k=1

(t − αk)mk−1(t − αk)mk−1.

It follows that
1

H′(t)
=

a0

1 − n

r∏
k=1

(t − αk)(t − αk) = c
r∏

k=1

(t − αk)(t − αk),

where α1, . . . , αn satisfy the equations 
Sk = Sk, ∀1 ≤ k ≤ n − 2
Sn−1 = Sn−1 −

2i
c

Sn = Sn −
2in

(n−1)c S1.

which is equivalent to (8).

(iii)⇒ (ii) - If
1

H′(t)
=

1
α

(t2 + α2), since H(0) = 0, it follows that H(t) = tan−1( t
π ), π = α.

- If
1

H′(t)
=

1
Im(α)

(t − α)(t − α), α = x + iy ∈ C \R. So H(t) = tan−1(
t
π

), π = − x
y t +

x2+y2

y .

- If
1

H′(t)
=

1
2α

(t2 + α2), so H(t) = tan−1( t
π ), π = −1

2α (t2
− α2).

- If
1

H′(t)
= c

r∏
k=1

(t − αk)(t − αk), (2 ≤ r ≤ (d + 1)/2), α1, · · · , αr ∈ C\R satisfying (9). Let π be the polynomial

defined by π(t) − it = c(1 − p)
r∏

k=1

(t − αk)mk . So the degree of π is equal to
r∑

i=1

mi = 2r. It follows by the same

method as in (9), thatπ(t)−tπ′(t) = c(1−p)2
r∏

k=1

(t−αk)mk−1(t−αk)mk−1.Hence,
π2 + t2

π − tπ′
= c

r∏
k=1

(t−αk)(t−αk) =
1

H′
.

It follows that H(t) = tan−1

(
t
π(t)

)
, where π is a polynomial of degree n = 2r satisfying π(0) , 0 and the

number of roots of π − it is equal to n/2. �
Examples.
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1. d = 1 :
•

1
H′(t)

=
1
α

(t2 + α2), α is a nonzero real number : Meixner-Pollaczek polynomials.

•
1

H′(t)
=

1
Im(α)

(t − α)(t − α), α ∈ C \R : Meixner-Pollaczek polynomials.

•
1

H′(t)
=

1
2α

(t2 + α2), α is a nonzero real number : Meixner-Pollaczek polynomials.

2. d = 2 :
•

1
H′(t)

=
1
α

(t2 + α2), α is a nonzero real number : 2-OPS of Meixner-Pollaczek type.

•
1

H′(t)
=

1
Im(α)

(t − α)(t − α), α ∈ C \R : 2-OPS of Meixner-Pollaczek type.

•
1

H′(t)
=

1
2α

(t2 + α2), α is a nonzero real number : 2-OPS of Meixner-Pollaczek type.

3. d = 3 :
•

1
H′(t)

=
1
α

(t2 + α2), α is a nonzero real number : 3-OPS of Meixner-Pollaczek type.

•
1

H′(t)
=

1
Im(α)

(t − α)(t − α), α ∈ C \R : 3-OPS of Meixner-Pollaczek type.

•
1

H′(t)
=

1
2α

(t2 + α2), α is a nonzero real number : 3-OPS of Meixner-Pollaczek type.

•
1

H′(t)
= c(t − α1)(t − α1)(t − α2)(t − α2), α1, α2 are distinct numbers in C \ R satisfying one of these

equations 
α1 α2 α1 α2

α2
1 α2

2 α2
1 α2

2

α3
1 α3

2 α3
1 α3

2

α4
1 α4

2 α4
1 α4

2


 2

2
−2
−2

 =


0
0
−2i/c

−
16i(α1+α2)

3c

 ;


α1 α2 α1 α2

α2
1 α2

2 α2
1 α2

2

α3
1 α3

2 α3
1 α3

2

α4
1 α4

2 α4
1 α4

2


 3

1
−3
−1

 =


0
0
−2i/c

−
8i(3α1+α2)

3c

 ;

which yields
1

H′(t)
=

1
24α3 (t2 + 9α2)(t2 + α2).

6. Concluding remarks

Remark 6.1. It’s well known that all classical OPS satisfy a second order differential equation. A natural question
arises:
Do all classical d-OPSs satisfy a (d + 1)-order differential equation ?
The answer is affirmative for all known classical d-OPS (See for instance [2–4, 8, 14, 15, 18, 21]). In this paper, we
provide a further case for which the answer of this question is also affirmative.

Remark 6.2. In this paper, we obtain all the lowering operator L used to classify the OPSs of Sheffer type as L-classical.
It’s of interest to generalize this result to d-OPSs of Sheffer type.
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[19] V.W. Hahn, Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Math. Z. 39 (1935) 634–638.
[20] J. Van Iseghem, Vector orthogonal relations. Vector QD-algorithm, J. Comput. Appl. Math. 19 (1987) 141–150.
[21] I. Lamiri, A. Ouni, d-Orthogonality of Humbert and Jacobi type polynomials, J. Math. Anal. Appl. 341 (2008) 24–51.
[22] I. Lamiri, A. Ouni, d-orthogonality of some basic hypergeometric polynomials, Georgian Math. J. 20 (2013) no. 4 729-751.
[23] D. G. Mead, Newton’s Identities, Amer. Math. Monthly 99 (1992) no. 8 749-751.
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