Filomat 33:3 (2019), 881–895 https://doi.org/10.2298/FIL1903881C

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

L-Classical d-Orthogonal Polynomial Sets of Sheffer Type

Youssèf Ben Cheikh^a, Inès Gam^b

^aFaculté des Sciences de Monastir, Département de Mathématiques, 5019 Monastir, Tunisia ^bInstitut préparatoire aux études d'ingénieur de Monastir, 5019 Monastir, Tunisia

Abstract. In this paper, we characterize *L*-classical *d*-orthogonal polynomial sets of Sheffer type where *L* being a lowering operator commutating with the derivative operator D and belonging to $\{D, e^D - 1, sin(D)\}$. For the first case we state a (d + 1)-order differential equation satisfied by the corresponding polynomials. We, also, show that, with these three lowering operators, all the orthogonal polynomial sets are classified as *L*-classical orthogonal polynomial sets.

1. Introduction

Let \mathcal{P} be the linear space of polynomials with complex coefficients and let \mathcal{P}' be its algebraic dual. A polynomial sequence $\{P_n\}_{n\geq 0}$ is called a polynomial set (PS for short) if and only if deg $P_n = n$ for all non-negative integer n. We denote by $\langle u, f \rangle$ the effect of the linear functional $u \in \mathcal{P}'$ on the polynomial $f \in \mathcal{P}$. Denote by $S(\mathcal{P})$ the set of polynomial sets $P = \{P_n\}_{n\geq 0}$, where $P_n \in \mathcal{P}$.

Definition 1.1. [20, 24] Let $\{P_n\}_{n\geq 0}$ be in $S(\mathcal{P})$ and let d be an arbitrary positive integer. The polynomial sequence $\{P_n\}_{n\geq 0}$ is called a d-orthogonal polynomial set (d-OPS, for short) with respect to a d-dimensional functional $\mathcal{U} = {}^t(u_0, \cdots, u_{d-1})$ if it satisfies the following conditions:

$$\begin{cases} \langle u_k, P_m P_n \rangle = 0, & m > dn + k \\ \langle u_k, P_n P_{dn+k} \rangle \neq 0, & n \ge 0 \end{cases}$$

for each integer k belonging to $\{0, 1, \ldots, d-1\}$.

For d = 1, we recover the well-known notion of orthogonality.

One of the important classes of PSs is the class of Sheffer A-type zero (which we shall hereafter call Sheffer type and note SH).[25]

Definition 1.2. A PS $P = \{P_n\}_{n \ge 0}$ is called of Sheffer type if it is generated by a function of the form

$$G(x,t) = A(t) \exp(xH(t)) = \sum_{n=0}^{\infty} \frac{P_n(x)}{n!} t^n,$$
 (1)

²⁰¹⁰ Mathematics Subject Classification. 33C45, 42C05

Keywords. Sheffer polynomials, d-orthogonality, Hahn property

Received: 18 February 2017; Accepted: 13 November 2018

Communicated by Dragan S. Djordjević

Email addresses: youssef.bencheikh@planet.tn (Youssèf Ben Cheikh), gam_ines@yahoo.fr (Inès Gam)

where

$$A(t) = \sum_{n \ge 0} a_n t^n \quad and \quad H(t) = \sum_{n \ge 1} h_n t^n$$

with

$$A(0) \neq 0, \ H(0) = 0 \ and \ H'(0) \neq 0$$

we will denote a such polynomial set by P(A, H).

Put $L_H(A) = \frac{A'}{AH'}$ the formal power series defined in terms of the logarithm derivation of *A* and the derivation of *H*.

An orthogonal polynomial set (OPS, for short) $\{P_n\}_{n\geq 0}$ in \mathcal{P} is called $L_{q,w}$ -classical if $\{L_{q,w}P_n\}_{n\geq 1}$ is also orthogonal, where $L_{q,w}$ denotes the Hahn operator given by [19]

$$L_{q,w}(f)(x) := \frac{f(qx+w) - f(x)}{(q-1)x + w}, \ (q \neq 0).$$

Particular interest is devoted to the derivative operator D (w = 0 and $q \rightarrow 1$), the finite difference operator Δ (w = 1 and q = 1), *q*-difference operator L_q (w = 0) and Dunkl operator $T_{\mu} = D + 2\mu L_{-1}$, $\mu > -1/2$. The literature on these topics is extremely vast. For a survey see for instance [1, 5].

This notion has been extended to the *d*-orthogonality by Douak and Maroni [16], who introduced the notion of classical *d*-OPSs which means that both $\{P_n\}_{n\geq 0}$ and its derivative $\{P'_{n+1}\}_{n\geq 0}$ are *d*-orthogonal. It is then significant to look for characteristic properties for $L_{q,w}$ -classical *d*-OPSs as was done for the case d = 1. In this context, for the derivative operator *D*, Douak and Maroni [17] generalized the Pearson's equation for classical *d*-OPSs. The Sturm-Liouville equation is generalized for particular families of classical *d*-OPSs, some examples may be found in [2–4, 14, 15, 18, 21, 26]. Ben Cheikh and Ben Romdhane [2] gave some characteristic properties of the *d*-symmetric classical *d*-OPSs. Douak and Maroni [16], and later Boukhemis and Zerouki [14] quote some families of classical *d*-OPSs in the particular case d = 2. For the operator Δ , some examples of classical discrete *d*-OPSs of Sheffer type may be found in [8, 10, 11]. Some examples of L_q -classical *d*-OPSs in the *d*-symmetric case.

Our contribution in this direction is to determine all classical *d*–OPSs of Sheffer type (Theorem 3.1), as well as (d + 1)–order differential equations satisfied by these polynomials. We also state two new characterizations of classical discrete *d*-OPSs of Sheffer type. We consider the operator sin(D), to complete the classification of the OPSs of Sheffer type as *L*-classical polynomials, and we characterize all sin(D)-classical *d*-OPSs of Sheffer type. The cases d = 2 and d = 3 are specially carried out.

2. Main result

In this section, we state a general result that will have as applications the results of the next sections. To this end, we need to recall the following lemmas.

Lemma 2.1. [7] Let $P(A, H) = \{P_n\}_{n \ge 0}$ be a Sheffer-type polynomial set. $\{P_n\}_{n \ge 0}$ is a d-OPS if and only if

$$\frac{1}{H'(t)}$$
 is a polynomial of degree $\leq (d + 1)$
 $L_H(A)$ is a polynomial of degree d.

Lemma 2.2. [7] Let P(A, H) be a d-OPS of Sheffer type. The polynomial set $\mathcal{K}P = P(KA, H)$ is a d'-OPS (d' > d) iff $L_H(K)$ is a polynomial of degree d'.

 $\mathcal{K}P$ remains a d-OPS iff $L_H(K)$ is a polynomial of degree d having a leading coefficient different from that of $-L_H(A)$, or a polynomial of degree < d.

882

Lemma 2.3. [7] Let P = P(A, H) be a d-OPS of Sheffer type, $\mathcal{K}P = P(KA, H)$ be a d'-OPS, d' > d, of Sheffer type and L be a lowering operator which commutates with the derivation operator D. If P is L-classical d-OPS then $\mathcal{K}P$ is L-classical d'-OPS.

Theorem 2.1. Let ψ be a formal power series satisfying

$$\begin{cases} \left(\frac{\psi'}{\psi}\right)' = -F\left(\frac{\psi'}{\psi}\right),\\ \psi(0) = 0, \psi'(0) = 1 \end{cases}$$

where F is a monic polynomial of degree 2. Let P(A, H) be a d-OPS of Sheffer type. P(A, H) is $\psi(D)$ -classical iff

$$H(t) = \left(\frac{\psi'}{\psi}\right)^{-1} \circ \frac{\pi(t)}{t}$$

where π is a polynomial of degree $\leq d + 1$ satisfying $\pi(0) \neq 0$ and $\pi - t\pi'$ divides $t^2 F(\frac{\pi(t)}{t})$.

Proof. Let $P(A, H) = \{P_n\}_{n \ge 0}$ be a *d*-OPS of Sheffer type. $\left\{\frac{\psi(D)P_{n+1}}{n+1}\right\}_{n \ge 0}$ is generated by

$$\sum_{n=0}^{\infty} \frac{\psi(D)P_{n+1}(x)}{n+1} \frac{t^n}{n!} = \frac{1}{t} \psi(D) \left(\sum_{n=0}^{\infty} P_{n+1}(x) \frac{t^{n+1}}{(n+1)!} \right) = \frac{1}{t} \psi(D) (A(t)e^{xH(t)}) = \frac{\psi(H(t))}{t} A(t)e^{xH(t)},$$

which is the polynomial set of Sheffer type P(KA, H), where $K(t) = \frac{\psi(H(t))}{t}$. By Lemma 2.2, P(KA, H) is a *d*-OPS iff $\frac{K'(t)}{K(t)H'(t)} = \frac{\psi' \circ H}{\psi \circ H}(t) - \frac{1}{tH'(t)}$ is a polynomial of degree *d* having a leading coefficient different from that of $-\frac{A'}{AH'}$, or a polynomial of degree *< d*. Since $R = \frac{1}{H'}$ is a polynomial of degree $\leq (d + 1)$ satisfying $R(0) \neq 0$, so P(A, H) is $\psi(D)$ -classical iff $\frac{\psi' \circ H}{\psi \circ H}(t) = \frac{\pi(t)}{t}$, where π is a polynomial of degree $\leq (d + 1)$ satisfying $\pi(0) \neq 0$. That is to say

$$H(t) = \left(\frac{\psi'}{\psi}\right)^{-1} \circ \frac{\pi(t)}{t}.$$

 $P(A, H) \text{ is a } d\text{-OPS so by Lemma 2.1, } \frac{1}{H'(t)} = \frac{t^2 F(\pi/t)}{\pi - t\pi'} \text{ is a polynomial, that is } \pi - t\pi' \text{ divides } t^2 F(\pi/t).$ Conversely, if $H(t) = \left(\frac{\psi'}{\psi}\right)^{-1} \circ \frac{\pi(t)}{t}$, where π is a polynomial of degree $\leq d + 1$ satisfying $\pi(0) \neq 0$ and $\pi - t\pi'$ divides $t^2 F(\frac{\pi(t)}{t})$. Hence $\frac{1}{H'(t)} = \frac{t^2 F(\pi/t)}{\pi - t\pi'}$ is a polynomial of leading coefficient $\pi(0)$. So, $\frac{\psi' \circ H}{\psi \circ H}(t) - \frac{1}{tH'(t)} = \frac{\pi(t) - 1/H'(t)}{t}$ is a polynomial of degree $\leq d$. \Box

This theorem provides three cases :

$$\begin{cases} (1) \ F(t) = (t - \alpha)^2, \ \alpha \in \mathbb{R} \\ (2) \ F(t) = (t - \alpha)(t - \beta), \ \alpha, \beta \in \mathbb{R} \\ (3) \ F(t) = (t - \alpha)(t - \overline{\alpha}), \ \alpha \in \mathbb{C} \end{cases}$$

Case (1) The resolution of the system

$$\begin{cases} \left(\frac{\psi'}{\psi}\right)' = -\left(\frac{\psi'}{\psi} - \alpha\right)^2,\\ \psi(0) = 0, \psi'(0) = 1, \end{cases}$$

leads to $\psi(t) = te^{\alpha t}$. For $\alpha = 0$, we have $\psi(D) = D$.

Case (2) The resolution of the system

$$\begin{cases} \left(\frac{\psi'}{\psi}\right)' = -\left(\frac{\psi'}{\psi} - \alpha\right) \left(\frac{\psi'}{\psi} - \beta\right),\\ \psi(0) = 0, \psi'(0) = 1, \end{cases}$$

leads to $\psi(t) = \frac{e^{\alpha t} - e^{\beta t}}{\alpha - \beta}$. For $\alpha = 1$ and $\beta = 0$, we have $\psi(D) = \Delta$.

Case (3) The resolution of the system

$$\begin{cases} \left(\frac{\psi'}{\psi}\right)' = -\left(\frac{\psi'}{\psi} - \alpha\right) \left(\frac{\psi'}{\psi} - \overline{\alpha}\right),\\ \psi(0) = 0, \psi'(0) = 1, \end{cases}$$

where $\alpha = a + ib$ ($b \neq 0$), leads to $\psi(t) = e^{at} \frac{sin(bt)}{b}$. For a = 0 and b = 1 we have $\psi(D) = sin(D)$ which my be viewed as a central difference quotient operator since $sin(D) = \frac{1}{2i}(e^{iD} - e^{-iD})$.

For these three cases, $\psi(D)$ is a lowering operator belonging to $\{D, \Delta, sin(D)\}$. composed with a shift operator $e^{\alpha D}$. Since a shift operator preserves the *d*-orthogonality, we limit ourselves in the sequel to characterize *L*-classical *d*-OPS of Sheffer type where $L \in \{D, \Delta, sin(D)\}$.

3. Characterization of classical *d*-OPSs of Sheffer type

In this section, we consider the first case where $\psi(D) = D$ and we determine *D*-classical *d*-OPSs of Sheffer type. The particular case d = 2 was considered by Boukhemis [13]. He showed that the 2–OPSs of Hermite type and of Laguerre type are *D*-classical.

Theorem 3.1. The only D-classical d-OPSs of Sheffer type are

$$P(e^{\pi_{d+1}(t)}, at) \text{ and } P\Big((1-bt)^{\alpha}e^{\frac{\beta}{1-bt}+\pi_{d-1}(t)}, \frac{at}{1-bt}\Big),$$

where π_i is a polynomial of degree *i*; *a*, *b* are nonzero real constants and α , β are real numbers.

Proof. Let P(A, H) be a *d*-OPS of Sheffer type. By Theorem 2.1, P(A, H) is *D*-classical iff

$$H(t) = \frac{t}{\pi(t)},$$

where π is a polynomial of degree $\leq d + 1$ satisfying $\pi(0) \neq 0$ and $\pi - t\pi'$ divides π^2 . It is clear that constant polynomials do the job, so suppose that π is not constant. Taking the factorization of π over \mathbb{C}

$$\pi(t)=c\prod_{k=1}^r(t-\alpha_k)^{m_k},$$

884

where α_k , k = 1, ..., r are nonzero complex numbers, m_k , k = 1, ..., r are positive integers and c is a nonzero real number. So the factorization of π' is of the form

$$\pi'(t) = \prod_{k=1}^{r} (t - \alpha_k)^{m_k - 1} Q(t),$$

where *Q* is a polynomial of degree r - 1, coprime with π . This gives

$$\pi(t) - t\pi'(t) = \prod_{k=1}^{r} (t - \alpha_k)^{m_k - 1} S(t),$$

where $S(t) = c \prod_{k=1}^{r} (t - \alpha_k) - tQ(t)$. We have deg $(S) = \begin{cases} r & \text{if deg}(\pi) > 1, \\ 0 & \text{if deg}(\pi) = 1. \end{cases}$

If deg(π) > 1, *S* is not constant, so let α be a root of *S*. Since *S* divides $\pi - t\pi'$ which divides π^2 , there exists $i \in \{1, ..., r\}$ such that $\alpha = \alpha_i$. So, α_i is a root of *Q*, which is impossible because *Q* and π are coprime. It follows that deg(π) = 1.

We conclude that H(t) = at or $H(t) = \frac{at}{1 - bt}$, where *a* and *b* are nonzero real constants.

- If H(t) = at, $\frac{A'}{AH'} = \frac{A'}{aA}$ is a polynomial of degree d iff $A(t) = e^{\pi_{d-1}(t)}$, where π_{d+1} a polynomial of degree d + 1.
- If $H(t) = \frac{at}{1-bt}$, $\frac{A'}{AH'}$ must be a polynomial of degree *d*, that is $\frac{A'(t)}{A(t)} = \frac{T(t)}{(1-bt)^2}$, where *T* is a polynomial of degree *d*. Taking the partial decomposition of this fraction, then its primitive, we obtain

$$A(t) = (1 - bt)^{\alpha} e^{\frac{\beta}{1 - bt}} + \pi_{d-1}(t),$$

where α , β are real constants and π_{d-1} is a polynomial of degree d - 1.

Lemma 3.1. Let $\varphi(t) = \sum_{n=0}^{\infty} a_n t^n$, $a_0 \neq 0$, be a formal power series. We have

$$\varphi(D)x = \left[x + \frac{\varphi'(D)}{\varphi(D)}\right]\varphi(D).$$

Theorem 3.2. The classical d-OPSs of Sheffer type satisfy a (d + 1)-order differential equation of one of the forms

(1)
$$[D\pi_1(D) - 2xD + 2n]y = 0,$$

where π_1 is a polynomial of degree d.

(2)
$$\left[-xD(1-D)^d + D\pi_2(D) + n(1-D)^{d-1}\right]y = 0,$$

where π_2 is a polynomial of degree $\leq d$ satisfying $\pi_2(1) \neq 0$.

Proof. The classical *d*-OPSs of Sheffer type given by Theorem 3.1 are related to Hermite and Laguerre polynomials by [[7], p.12]

$$P(e^{\pi_{d+1}(t)}, 2t) = \varphi_1(D)(H_n(x)), \quad P\left((1-t)^{-\alpha-1}e^{\frac{\beta}{1-t}+\pi_{d-1}(t)}, \frac{-t}{1-t}\right) = \varphi_2(D)(L_n^{(\alpha)}(x)),$$

where $\varphi_1(t) = e^{\pi_{d+1}(\frac{t}{2}) + (\frac{t}{2})^2}$, $\varphi_2(t) = e^{\beta(1-t) + \pi_{d-1}(\frac{-t}{1-t})}$, π_i is a polynomial of degree *i*. Since Hermite polynomials $H_n(x)$ satisfy the Sturm-Liouville equation [12]

$$(D^2 - 2xD + 2n)y = 0.$$

Applying $\varphi_1(D)$ and using Lemma 3.1, we get

$$\left[-D\pi'_{d+1}(\frac{D}{2}) - 2xD + 2n\right]\varphi_1(D)(H_n) = 0.$$

So we obtain the first equation where $\pi_1(t) = -\pi'_{d+1}(\frac{t}{2})$. On the other hand, Laguerre polynomials $L_n^{(\alpha)}(x)$ satisfy the equation [12]

$$(xD^{2} + (\alpha + 1 - x)D + n)y = 0$$

Now, applying $\varphi_2(D)$ and using Lemma 3.1, we get

$$\left[-xD(1-D) + (\alpha+1)D + n - D(1-D)\frac{\varphi_2'(D)}{\varphi_2(D)}\right]\varphi_2(D)y = 0.$$

Hence $\left[(\beta - x)D(1-D) + (\alpha+1)D + \frac{D}{1-D}\pi_{d-1}'(\frac{-D}{1-D}) + n\right]\varphi_2(D)y = 0.$

Taking the Taylor development of π'_{d-1} at the point 1, we obtain

$$\left[(\beta-x)D(1-D)+(\alpha+1)D+D\sum_{k=0}^{d-2}\frac{a_k}{(1-D)^{k+1}}+n\right]\varphi_2(D)y=0,$$

where $a_{d-2} \neq 0$. Applying $(1 - D)^{d-1}$, and using Lemma 3.1, we get

$$\left[(\beta - x)D(1 - D)^d + (\alpha + d)D(1 - D)^{d-1} + D\sum_{k=0}^{d-2} a_k(1 - D)^{d-2-k} + n(1 - D)^{d-1} \right] y = 0,$$

where $a_{d-2} \neq 0$. We obtain the second equation, where

$$\pi_2(t) = \beta(1-t)^d + \alpha(1-t)^{d-1} + \sum_{k=0}^{d-2} a_{d-2-k}(1-t)^k, \ \pi_2(1) = a_{d-2} \neq 0. \ \Box$$

Since equations (1) and (2) are linear and homogeneous, multiplication of a solution by a constant again yields a solution. But such multiplication may destroy the property of being a Sheffer type set. We cannot therefore obtain a complete converse to Theorem 3.2. But we do have

Corollary 3.1. If a set $\{P_n\}$ satisfies an equation of the forms (1) or (2), then there exist nonzero constants c_n , so that $\{c_nP_n\}$ is a classical d-OPSs of Sheffer type.

Proof. $P(e^{\pi_{d+1}(t)}, 2t)$ (resp. $P\left((1-t)^{-\alpha-1}e^{\frac{\beta}{1-t}+\pi_{d-1}(t)}, \frac{-t}{1-t}\right)$) satisfies equation (1) (resp. equation (2)). Since equation (1) (resp. (2)) has a polynomial solution, and this polynomial is unique to within an arbitrary multiplicative constant. Hence, c_n exists so that $P(e^{\pi_{d+1}(t)}, 2t) = \{c_n P_n\}$ (resp. $P\left((1-t)^{-\alpha-1}e^{\frac{\beta}{1-t}+\pi_{d-1}(t)}, \frac{-t}{1-t}\right) = \{c_n P_n\}$).

4. Characterization of classical discrete *d*-OPSs of Sheffer type

In this section, we consider the second case where $\psi(D) = e^D - 1$ and we Characterize Δ -classical *d*-OPSs of Sheffer type. The particular case d = 2 was considered by Boukhemis [13]. He showed that the 2–OPSs of Charlier type and of Meixner type are Δ -classical.

Theorem 4.1. Let P(A, H) be a d-OPS of Sheffer type. Then the following statements are equivalent :

- (i) P(A, H) is Δ -classical.
- (ii) $H(t) = \log\left(\frac{\pi(t)}{\pi(t) t}\right)$, where π is a real polynomial of degree $0 \le n \le d + 1$, satisfying $\pi(0) \ne 0$ and if $n \ge 2$ the number of real and complex roots of $\pi(\pi t)$ is equal to n.
- (iii) $\frac{1}{H'(t)}$ is equal to one of these polynomials :
 - $\frac{1}{H'(t)} = \pm (t \alpha)$, α is a nonzero real number,
 - $\frac{1}{H'(t)} = \frac{1}{\alpha_1 \alpha_2}(t \alpha_1)(t \alpha_2), \alpha_1, \alpha_2$ are nonzero real distinct numbers.
 - $\frac{1}{H'(t)} = \frac{1}{4\alpha}(t-\alpha)(t+\alpha)$, α is a nonzero real number,
 - $\frac{1}{H'(t)} = c \prod_{k=1}^{p} (t \alpha_k), (3 \le p \le d + 1)$ such that $\alpha_1, \dots, \alpha_p$ are nonzero distinct complex numbers satisfying

$$\begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \cdots & \alpha_p \\ \alpha_1^2 & \alpha_2^2 & \cdots & \cdots & \alpha_p^2 \\ \vdots & \vdots & & & \vdots \\ \vdots & \vdots & & & \vdots \\ \alpha_1^p & \alpha_2^p & \cdots & \cdots & \alpha_p^p \end{pmatrix} \begin{pmatrix} m_1 \\ \vdots \\ m_r \\ -m_{r+1} \\ \vdots \\ -m_p \end{pmatrix} = \frac{1}{c} \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ \frac{p}{(p-1)} \sum_{i=1}^r m_i \alpha_i \end{pmatrix},$$
(1)

where the m_i 's are positive integers such that $\sum_{i=1}^r m_i = \sum_{i=r+1}^p m_i = p$

Proof. (i) \Leftrightarrow (ii) Let *P*(*A*, *H*) be a *d*-OPS of Sheffer type. By Theorem 2.1, *P*(*A*, *H*) is Δ -classical iff

$$H(t) = \log\left(\frac{\pi(t)}{\pi(t) - t}\right).$$

where π is a polynomial of degree $\leq d + 1$ satisfying $\pi(0) \neq 0$ and $\pi - t\pi'$ divides $\pi(\pi - t)$. It is clear that polynomials of degree ≤ 1 do the job, so suppose that deg π is an integer $n \geq 2$. Taking the factorization of π and $\pi - t$ over \mathbb{C}

$$\pi(t) = c \prod_{k=1}^{r} (t - \alpha_k)^{m_k}, \ \pi(t) - t = c \prod_{k=1}^{r'} (t - \beta_k)^{m'_k},$$

where the α_k , β_k are nonzero numbers, the m_k , m'_k are positive integers and c is a nonzero real number. So

$$\pi(t) - t\pi'(t) = \prod_{k=1}^{r} (t - \alpha_k)^{m_k - 1} S_1(t),$$

and
$$\pi(t) - t\pi'(t) = (\pi(t) - t) - t(\pi'(t) - 1) = \prod_{k=1}^{r'} (t - \beta_k)^{m'_k - 1} S_2(t),$$

where S_1 and π are coprime, S_2 and $\pi - t$ are coprime.

Since π and π – *t* are coprime, so the $\alpha_k s$ are different from the $\beta_k s$, we get

$$\pi(t) - t\pi'(t) = \prod_{k=1}^{r} (t - \alpha_k)^{m_k - 1} \prod_{k=1}^{r'} (t - \beta_k)^{m'_k - 1} S(t),$$

where *S* is coprime with π and $\pi - t$.

It follows that $\pi - t\pi'$ divides $\pi(\pi - t)$ iff *S* is a constant. That is

$$\pi - t\pi' = c(1-n) \prod_{k=1}^{r} (t-\alpha_k)^{m_k-1} \prod_{k=1}^{r'} (t-\beta_k)^{m'_k-1},$$
(2)

which is equivalent to n = r + r'.

(ii) \Rightarrow (iii) Suppose that $H(t) = \log\left(\frac{\pi(t)}{\pi(t) - t}\right)$, where π is a polynomial of degree $0 \le n \le d + 1$ such that $\pi(0) \ne 0$ and the number of real and complex roots of $\pi(\pi - t)$ is equal to n if $n \ge 2$. - If n = 0, so $\frac{1}{LU(4)} = -(t - \alpha)$, α is a nonzero real number.

- If
$$n = 1$$
, $\frac{1}{H'(t)} = (t - \alpha)$ or $\frac{1}{H'(t)} = \frac{1}{\alpha_1 - \alpha_2}(t - \alpha_1)(t - \alpha_2)$, $\alpha, \alpha_1, \alpha_2$ are nonzero real numbers.

- If $n \ge 2$, define S_k , k = 1, ..., n by the relations $S_k = \sum_{i=1}^{k} m_i \alpha_i^k$, where the $\alpha_i's$ are the real and complex roots of multiplicity m_i of the polynomial $\pi(t)$ that will be noted by

$$\pi(t) = a_0 t^n + a_1 t^{n-1} + \dots + a_{n-1} t + a_n.$$
(3)

Taking $\pi(t)$ of the form $\pi(t) = a_0 \prod_{k=1}^{r} (t - \alpha_k)^{m_k}$, we deduce that $\pi'(t) = \pi(t) \sum_{k=1}^{r} \frac{m_k}{t - \alpha_k}$. Replacing $\frac{1}{t - \alpha_k}$ by its series expansion $\frac{1}{t - \alpha_k} = \frac{1}{t} + \frac{\alpha_k}{t^2} + \frac{\alpha_k^2}{t^3} + \cdots$, we get $\pi'(t) = \pi(t) \left[\frac{n}{t} + \frac{S_1}{t^2} + \frac{S_2}{t^3} + \cdots \right].$ (4)

Substituting (3) in (4) gives

$$na_0t^{n-1} + (n-1)a_1t^{n-2} + \dots + 2a_{n-2}t + a_{n-1} = (a_0t^n + a_1t^{n-1} + \dots + a_{n-1}t + a_n)\left[\frac{n}{t} + \frac{S_1}{t^2} + \frac{S_2}{t^3} + \dots\right]$$

Comparing coefficients of t^k on both sides, we obtain the Newton's identities [23]

$$\begin{cases} a_0 S_1 + a_1 = 0 \\ a_0 S_2 + a_1 S_1 + 2a_2 = 0 \\ a_0 S_3 + a_1 S_2 + a_2 S_1 + 3a_3 = 0 \\ \vdots \\ a_0 S_{n-1} + a_1 S_{n-2} + \dots + a_{n-2} S_1 + (n-1)a_{n-1} = 0 \\ a_0 S_n + a_1 S_{n-1} + \dots + a_{n-1} S_1 + na_n = 0 \end{cases}$$
(5)

888

On the other hand, by hypothesis, the number of real and complex roots of $\pi - t$ is equal to n - r. So $\pi - t$ can be written in the forms

$$\pi(t) - t = a_0 t^n + a_1 t^{n-1} + \dots + (a_{n-1} - 1)t + a_n = a_0 \prod_{k=r+1}^n (t - \alpha_k)^{m_k}.$$

We now apply the same reasoning, with S_k replaced by $T_k = \sum_{i=r+1}^n m_i \alpha_i^k$, to obtain the Newton's identities

$$\begin{cases} a_0T_1 + a_1 = 0\\ a_0T_2 + a_1T_1 + 2a_2 = 0\\ a_0T_3 + a_1T_2 + a_2T_1 + 3a_3 = 0\\ \vdots\\ a_0T_{n-1} + a_1T_{n-2} + \dots + a_{n-2}T_1 + (n-1)(a_{n-1} - 1) = 0\\ a_0T_n + a_1T_{n-1} + \dots + (a_{n-1} - 1)T_1 + na_n = 0 \end{cases}$$
(6)

The resolution of the systems (5) and (6) leads to two cases

$$\begin{aligned} - & \text{If } n = 2: S_k = 2\alpha_1^k \text{ and } T_k = 2\alpha_2^k \text{ satisfy} \begin{cases} S_1 = T_1 - \frac{1}{a_0} \\ S_2 = T_2 + \frac{a_1}{a_0^2} - \frac{T_1}{a_0} \end{cases} \\ \text{Replacing } a_1 \text{ by } 1 - a_0 T_1, \text{ we get} \begin{cases} \alpha_1 = -\frac{1}{4a_0} \\ \alpha_2 = \frac{1}{4a_0} \end{cases} \\ \text{So } \frac{1}{H'(t)} = \frac{1}{4\alpha}(t-\alpha)(t+\alpha). \end{cases} \\ \text{- If } n \ge 3: \begin{cases} S_k = T_k, \ \forall 1 \le k \le n-2 \\ S_{n-1} = T_{n-1} - \frac{n-1}{a_0} \\ S_n = T_n + \frac{(n-1)a_1}{a_0^2} - \frac{T_1}{a_0} \end{cases} \\ \text{. Replacing } a_1 \text{ by } -a_0 T_1, \text{ we get} \begin{cases} S_k = T_k, \ \forall 1 \le k \le n-2 \\ S_{n-1} = T_{n-1} - \frac{n-1}{a_0} \\ S_n = T_n - \frac{n-1}{a_0} \end{cases} \\ \text{. Replacing } a_1 \text{ by } -a_0 T_1, \text{ we get} \begin{cases} S_k = T_k, \ \forall 1 \le k \le n-2 \\ S_{n-1} = T_{n-1} - \frac{n-1}{a_0} \\ S_n = T_n - \frac{n-1}{a_0} \end{cases} \\ \text{. Replacing } a_1 \text{ by } -a_0 T_1, \text{ we get} \end{cases} \end{cases}$$

On the other hand, we have $H(t) = \log(\frac{\pi(t)}{\pi(t)-t})$, hence $\frac{1}{H'} = \frac{\pi(\pi - t)}{\pi - t\pi'}$. Analysis similar to that in the proof of $(i) \Leftrightarrow (ii)$ shows that $\pi(t) - t\pi'(t) = a_0(1-n) \prod_{k=1}^n (t-\alpha_k)^{m_k-1}$. It follows that

$$\frac{1}{H'(t)} = \frac{a_0}{1-n} \prod_{k=1}^n (t-\alpha_k) = c \prod_{k=1}^n (t-\alpha_k),$$

where $\alpha_1, \ldots, \alpha_n$ satisfy the equations

$$\begin{cases} S_k = T_k, \ \forall 1 \le k \le n-2\\ S_{n-1} = T_{n-1} + \frac{1}{c}\\ S_n = T_n + \frac{n}{(n-1)c} S_1. \end{cases}$$
(7)

which is equivalent to (1). (iii)⇒(iii)

$$- \text{If } \frac{1}{H'(t)} = -(t - \alpha), \text{ since } H(0) = 0, \text{ it follows that } H(t) = \log(\frac{\alpha}{\alpha - t}) = \log(\frac{\pi}{\pi - t}), \pi = \alpha.$$

$$- \text{If } \frac{1}{H'(t)} = (t - \alpha), \text{ so } H(t) = \log(\frac{t - \alpha}{-\alpha}) = \log(\frac{\pi}{\pi - t}), \pi = t - \alpha.$$

$$- \text{If } \frac{1}{H'(t)} = \frac{1}{\alpha_1 - \alpha_2}(t - \alpha_1)(t - \alpha_2), \text{ so } H(t) = \log(\frac{\alpha_2(t - \alpha_1)}{\alpha_1(t - \alpha_2)}) = \log(\frac{\pi}{\pi - t}), \pi = \frac{\alpha_2}{\alpha_2 - \alpha_1}(t - \alpha_1).$$

$$- \text{If } \frac{1}{H'(t)} = \frac{1}{4\alpha}(t - \alpha)(t + \alpha), \text{ so } H(t) = \log(\frac{t - \alpha}{t + \alpha})^2 = \log(\frac{\pi}{\pi - t}), \pi = -\frac{1}{4\alpha}(t - \alpha)^2.$$

$$- \text{If } \frac{1}{H'(t)} = c \prod_{k=1}^{n} (t - \alpha_k), (3 \le n \le d + 1) \text{ such that } \alpha_1, \cdots, \alpha_n \text{ are nonzero distinct complex numbers satisfying }$$

(1). Let $\pi(t) = c(1-n) \prod_{k=1}^{r} (t-\alpha_k)^{m_k}$. If we take the notation (3), we get (5), and hence we deduce (6) from (7).

Newton's identities given by (6), implies that $\pi(t) - t = c(1-n) \prod_{k=r+1}^{p} (t-\alpha_k)^{m_k}$. So the number of roots of $\pi(\pi-t)$ is equal to *n* it follows by the same method as in (2) that $\pi - t\pi' = c(1-n)^2 \prod_{k=r+1}^{r} (t-\alpha_k)^{m_k-1} \prod_{k=r+1}^{p} (t-\alpha_k)^{m_k-1}$

is equal to p, it follows by the same method as in (2), that $\pi - t\pi' = c(1-p)^2 \prod_{k=1}^r (t-\alpha_k)^{m_k-1} \prod_{k=r+1}^p (t-\beta_k)^{m_k-1}$. Hence, $\frac{\pi(\pi-t)}{\pi - t\pi'} = c \prod^p (t-\alpha_k) = \frac{1}{H'}$. It follows, that $H(t) = \log(\frac{\pi(t)}{\pi(t)-t})$, where π is a polynomial of degree

Hence, $\frac{H(t-\alpha)}{\pi - t\pi'} = c \prod_{k=1}^{\infty} (t - \alpha_k) = \frac{1}{H'}$. It follows, that $H(t) = \log(\frac{H(t)}{\pi(t) - t})$, where π is a polynomial of degree $2 \le p \le d + 1$, such that the number of roots of $\pi(\pi - t)$ is equal to p. \Box **Examples.**

- 1. d = 1: • $\frac{1}{H'(t)} = \pm (t - \alpha), \alpha$ is a nonzero real number : Charlier polynomials. • $\frac{1}{H'(t)} = \frac{1}{H'(t)} (t - \alpha_1)(t - \alpha_2), \alpha_1, \alpha_2$ are nonzero distinct real numbers : Meixner polynomials.
 - $\frac{1}{H'(t)} = \frac{1}{\alpha_1 \alpha_2}(t \alpha_1)(t \alpha_2), \alpha_1, \alpha_2$ are nonzero distinct real numbers : Meixner polynomials. • $\frac{1}{H'(t)} = \frac{1}{\Lambda_{\alpha}}(t - \alpha)(t + \alpha), \alpha$ is a nonzero real number : Meixner polynomials.

2.
$$d = 2$$
:

- $\frac{1}{H'(t)} = \pm (t \alpha)$, α is a nonzero real number : 2-OPS of Charlier type.
- $\frac{1}{H'(t)} = \frac{1}{\alpha_1 \alpha_2}(t \alpha_1)(t \alpha_2), \alpha_1, \alpha_2$ are nonzero distinct real numbers : 2-OPS of Meixner type.
- $\frac{1}{H'(t)} = \frac{1}{4\alpha}(t-\alpha)(t+\alpha)$, α is a nonzero real number : 2-OPS of Meixner type.

• $\frac{1}{H'(t)} = c(t - \alpha_1)(t - \alpha_2)(t - \alpha_3)$, $\alpha_1, \alpha_2, \alpha_3$ are nonzero distinct complex numbers satisfying one of these two equations

$$\begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \alpha_1^2 & \alpha_2^2 & \alpha_3^2 \\ \alpha_1^3 & \alpha_2^3 & \alpha_3^3 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1/c \\ 9\alpha_1/2c \end{pmatrix}; \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 \\ \alpha_1^2 & \alpha_2^2 & \alpha_3^2 \\ \alpha_1^3 & \alpha_2^3 & \alpha_3^3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1/c \\ 9\alpha_3/2c \end{pmatrix}$$

which we can solve using Maple for example to get

$$\frac{1}{H'(t)} = \pm \frac{1}{54\alpha^2}(t-\alpha)(t+2\alpha)(t+8\alpha).$$

3. d = 3: • $\frac{1}{H'(t)} = \pm (t - \alpha)$: 3-OPS of Charlier type. • $\frac{1}{H'(t)} = \frac{1}{\alpha_1 - \alpha_2} (t - \alpha_1)(t - \alpha_2), \alpha_1, \alpha_2$ are nonzero distinct real numbers : 3-OPS of Meixner type. • $\frac{1}{H'(t)} = \frac{1}{4\alpha} (t - \alpha)(t + \alpha), \alpha$ is a nonzero real number : 3-OPS of Meixner type. • $\frac{1}{H'(t)} = \pm \frac{1}{4\alpha} (t - \alpha)(t + 2\alpha)(t + 8\alpha)$

• $\frac{1}{H'(t)} = \pm \frac{1}{54\alpha^2} (t-\alpha)(t+2\alpha)(t+8\alpha).$

• $\frac{1}{H'(t)} = c(t - \alpha_1)(t - \alpha_2)(t - \alpha_3)(t - \alpha_4), \alpha_1, \dots, \alpha_4$ are nonzero distinct complex numbers satisfying one of these equations

$$\begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ a_1^2 & a_2^2 & a_3^2 & a_4^2 \\ a_1^3 & a_2^3 & a_3^3 & a_4^3 \\ a_1^4 & a_2^4 & a_3^4 & a_4^4 \end{pmatrix} \begin{pmatrix} 4 \\ -2 \\ -1 \\ -1 \end{pmatrix} = \pm \begin{pmatrix} 0 \\ 0 \\ 1/c \\ \frac{16a_1}{3c} \end{pmatrix}; \begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ a_1^2 & a_2^2 & a_2^2 & a_4^2 \\ a_1^3 & a_2^3 & a_3^3 & a_4^3 \\ a_1^4 & a_2^4 & a_3^4 & a_4^4 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ -2 \\ -2 \end{pmatrix} = \pm \begin{pmatrix} 0 \\ 0 \\ 1/c \\ \frac{4(3a_1+a_2)}{3c} \end{pmatrix};$$

$$\begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \\ \alpha_1^2 & \alpha_2^2 & \alpha_3^2 & \alpha_4^2 \\ \alpha_1^3 & \alpha_2^3 & \alpha_3^3 & \alpha_4^3 \\ \alpha_1^4 & \alpha_2^2 & \alpha_3^3 & \alpha_4^4 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1/c \\ \frac{4(3a_1+a_2)}{3c} \end{pmatrix}; \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \\ \alpha_1^2 & \alpha_2^2 & \alpha_3^2 & \alpha_4^2 \\ \alpha_1^3 & \alpha_2^3 & \alpha_3^3 & \alpha_4^3 \\ \alpha_1^4 & \alpha_2^2 & \alpha_3^3 & \alpha_4^4 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1/c \\ \frac{8(a_1+a_2)}{3c} \end{pmatrix};$$

which gives the solutions

$$\begin{aligned} \frac{1}{H'(t)} &= \pm \frac{1}{2^8 3 \alpha^3} (t - \alpha) (t + 3\alpha) [t + (7 + 4\sqrt{2}i)\alpha] [t + (7 - 4\sqrt{2}i)\alpha];\\ \frac{1}{H'(t)} &= \pm \frac{1}{2^6 3 \alpha^3} (t - \alpha) (t - 9\alpha) [t - (3 - 2\sqrt{3})\alpha] [t - (3 + 2\sqrt{3})\alpha];\\ \frac{1}{H'(t)} &= \frac{1}{2^4 3 \alpha^3} (t - \alpha) (t + \alpha) (t - 3\alpha) (t + 3\alpha). \end{aligned}$$

5. Characterization of *sinD*-classical *d*-OPSs of Sheffer type

In this section, we consider the third case where $\psi(D) = sinD$ and we Characterize sinD-classical *d*-OPSs of Sheffer type.

Theorem 5.1. Let *P*(*A*, *H*) be a *d*-OPS of Sheffer type. Then the following statements are equivalent :

- (i) P(A, H) is sinD-classical.
- (ii) $H(t) = tan^{-1}\left(\frac{t}{\pi(t)}\right)$, where π is a real polynomial of degree $0 \le n \le d+1$, satisfying $\pi(0) \ne 0$ and if $n \ge 2$, the number of roots of π it is equal to $\frac{n}{2}$.
- (iii) $\frac{1}{H'(t)}$ is equal to one of these polynomials :
 - $\frac{1}{H'(t)} = \frac{1}{\alpha}(t^2 + \alpha^2)$, α is a nonzero real number.
 - $\frac{1}{H'(t)} = \frac{1}{Im(\alpha)}(t-\alpha)(t-\overline{\alpha}), \alpha \in \mathbb{C} \setminus \mathbb{R}.$
 - $\frac{1}{H'(t)} = \frac{1}{2\alpha}(t^2 + \alpha^2)$, α is a nonzero real number.
 - $\frac{1}{H'(t)} = c \prod_{k=1}^{r} (t \alpha_k)(t \overline{\alpha}_k), (2 \le r \le (d+1)/2), \alpha_1, \cdots, \alpha_r \in \mathbb{C} \setminus \mathbb{R}$ satisfying

where the m_i 's are positive integers such that $\sum_{i=1}^r m_i = 2r$

Proof. (*i*) \Leftrightarrow (*ii*) Let P(A, H) be a *d*-OPS of Sheffer type. By Theorem 2.1, P(A, H) is *sinD*-classical iff

$$H(t) = tan^{-1}\left(\frac{t}{\pi(t)}\right).$$

where π is a polynomial of degree $\leq d + 1$ satisfying $\pi(0) \neq 0$ and $\pi - t\pi'$ divides $\pi^2 + t^2$. It is clear that polynomials of degree ≤ 1 do the job, so suppose that deg π is an integer $n \geq 2$. Taking the factorization of $\pi - it$ and $\pi + it$ over \mathbb{C}

$$\pi(t) - it = c \prod_{k=1}^{r} (t - \alpha_k)^{m_k}, \ \pi(t) + it = c \prod_{k=1}^{r} (t - \overline{\alpha}_k)^{m_k},$$

where $\alpha_1, \ldots, \alpha_r \in \mathbb{C} \setminus \mathbb{R}$, m_1, \ldots, m_r are positive integers and *c* is a nonzero real number. So

$$\pi(t) - t\pi'(t) = (\pi(t) - it) - t(\pi(t) - it)' = \prod_{k=1}^{r} (t - \alpha_k)^{m_k - 1} S_1(t),$$

and $\pi(t) - t\pi'(t) = (\pi(t) + it) - t(\pi(t) + it)' = \prod_{k=1}^{r} (t - \overline{\alpha_k})^{m_k - 1} \overline{S_1}(t),$

where S_1 and $\pi - it$ are coprime, $\overline{S_1}$ and $\pi + it$ are coprime. So,

$$\pi(t) - t\pi'(t) = \prod_{k=1}^{r} (t - \alpha_k)^{m_k - 1} (t - \overline{\alpha}_k)^{m_k - 1} S(t),$$

where *S* is coprime with $\pi - it$ and $\pi + it$. It follows that $\pi - t\pi'$ divides $\pi^2 + t^2$ iff *S* is a constant. That is

$$\pi - t\pi' = c(1-p) \prod_{k=1}^{r} (t - \alpha_k)^{m_k - 1} (t - \overline{\alpha}_k)^{m_k - 1},$$
(9)

which is equivalent to n = 2r.

(*ii*)
$$\Rightarrow$$
 (*iii*) $H(t) = tan^{-1}\left(\frac{t}{\pi(t)}\right)$, where π is a polynomial of degree $0 \le n \le d+1$, satisfying $\pi(0) \ne 0$ and if $n \ge 2$, the number *r* of roots of $\pi - it$ is equal to $\frac{n}{2}$.

- If
$$n = 0$$
, so $\frac{1}{H'(t)} = \frac{-(t^{-} + \alpha^{-})}{\alpha}$, α is a nonzero real number.
- If $n = 1$, so $\frac{1}{H'(t)} = \frac{1}{Im(\alpha)}(t - \alpha)(t - \overline{\alpha}), \alpha \in \mathbb{C} \setminus \mathbb{R}$.
- If $n = 2r \ge 2$, denote by $\pi(t) - it = a_0t^n + a_1t^{n-1} + \dots + a_{n-1}t + a_n = a_0\prod_{k=1}^r (t - \alpha_k)^{m_k}$.
So, $\pi(t) + it = a_0t^n + a_1t^{n-1} + \dots + (a_{n-1} + 2i)t + a_n = a_0\prod_{k=1}^r (t - \overline{\alpha}_k)^{m_k}$.

Define S_k , k = 1, ..., n by the relations $S_k = \sum_{i=1}^{k} m_i \alpha_i^k$. Analysis similar to that in the proof of Theorem 4.1

gives the Newton's identities

$$\begin{pmatrix} a_0S_1 + a_1 = 0 \\ a_0S_2 + a_1S_1 + 2a_2 = 0 \\ a_0S_3 + a_1S_2 + a_2S_1 + 3a_3 = 0 \\ \vdots \\ a_0S_{n-1} + \dots + a_{n-2}S_1 + (n-1)a_{n-1} = 0 \\ a_0S_n + a_1S_{n-1} + \dots + a_{n-1}S_1 + na_n = 0 \end{pmatrix}$$

The resolution of these systems leads to two cases - If n = 2: $S_k = 2\alpha_1^k$, k = 1, 2 satisfy $\begin{cases} S_1 = \overline{S}_1 + \frac{2i}{a_0} \\ S_2 = \overline{S}_2 - \frac{2ia_1}{a_0^2} + \frac{2i}{a_0}\overline{S}_1 \\ S_2 = \overline{S}_2 - \frac{2ia_1}{a_0^2} + \frac{2i}{a_0}\overline{S}_1 \\ S_2 = \overline{S}_2 - \frac{2ia_1}{a_0^2} + \frac{2i}{a_0}\overline{S}_1 \\ \end{cases}$ Replacing a_1 by $-2i - a_0\overline{S}_1$, we get $\alpha_1 = \frac{i}{2a_0}$. So $\frac{1}{H'(t)} = \frac{1}{2\alpha}(t - i\alpha)(t + i\alpha)$. - If $n \ge 3$: $\begin{cases} S_k = \overline{S}_k, \forall 1 \le k \le n - 2 \\ S_{n-1} = \overline{S}_{n-1} + \frac{2i(n-1)}{a_0} \\ S_n = \overline{S}_n - \frac{2i(n-1)a_1}{a_0^2} + \frac{2i}{a_0}S_1 \end{cases}$. Replacing a_1 by $-a_0S_1$, we get $\begin{cases} S_k = \overline{S}_k, \forall 1 \le k \le n - 2 \\ S_{n-1} = \overline{S}_{n-1} + \frac{2i(n-1)}{a_0} \\ S_n = \overline{S}_n - \frac{2i(n-1)a_1}{a_0^2} + \frac{2i}{a_0}S_1 \end{cases}$. Replacing a_1 by $-a_0S_1$, we get $\begin{cases} S_k = \overline{S}_k, \forall 1 \le k \le n - 2 \\ S_{n-1} = \overline{S}_{n-1} + \frac{2i(n-1)}{a_0} \\ S_n = \overline{S}_n - \frac{2i(n-1)a_1}{a_0^2} + \frac{2i}{a_0}S_1 \end{cases}$. The provide a_1 by $-a_0S_1$ and a_1 by $-a_0S_1$. The provide a_1 by $-a_0S_1$ is the provided of the provide

On the other hand, we have $H(t) = \tan^{-1}(\frac{t}{\pi(t)})$, hence $\frac{1}{H'} = \frac{\pi^2 + t^2}{\pi - t\pi'}$. Analysis similar to that in the proof of (*i*) \Leftrightarrow (*ii*) shows that $\pi(t) - t\pi'(t) = a_0(1-n) \prod_{k=1}^{\prime} (t-\alpha_k)^{m_k-1} (t-\overline{\alpha}_k)^{m_k-1}$.

It follows that

$$\frac{1}{H'(t)} = \frac{a_0}{1-n} \prod_{k=1}^r (t-\alpha_k)(t-\overline{\alpha}_k) = c \prod_{k=1}^r (t-\alpha_k)(t-\overline{\alpha}_k),$$

where $\alpha_1, \ldots, \alpha_n$ satisfy the equations

$$\begin{cases} S_k = \overline{S}_k, \ \forall 1 \le k \le n-2\\ S_{n-1} = \overline{S}_{n-1} - \frac{2i}{c}\\ S_n = \overline{S}_n - \frac{2in}{(n-1)c}S_1. \end{cases}$$

which is equivalent to (8).

$$(iii) \Rightarrow (ii) - \text{If } \frac{1}{H'(t)} = \frac{1}{\alpha}(t^2 + \alpha^2), \text{ since } H(0) = 0, \text{ it follows that } H(t) = \tan^{-1}(\frac{t}{\pi}), \pi = \alpha.$$

$$- \text{If } \frac{1}{H'(t)} = \frac{1}{Im(\alpha)}(t - \alpha)(t - \overline{\alpha}), \alpha = x + iy \in \mathbb{C} \setminus \mathbb{R}. \text{ So } H(t) = \tan^{-1}(\frac{t}{\pi}), \pi = -\frac{x}{y}t + \frac{x^2 + y^2}{y}.$$

$$- \text{ If } \frac{1}{H'(t)} = \frac{1}{2\alpha}(t^2 + \alpha^2), \text{ so } H(t) = \tan^{-1}(\frac{t}{\pi}), \pi = \frac{-1}{2\alpha}(t^2 - \alpha^2).$$

$$- \text{ If } \frac{1}{H'(t)} = c \prod_{k=1}^{r} (t - \alpha_k)(t - \overline{\alpha}_k), (2 \le r \le (d + 1)/2), \alpha_1, \cdots, \alpha_r \in \mathbb{C} \setminus \mathbb{R} \text{ satisfying (9). Let } \pi \text{ be the polynomial defined by } \pi(t) - it = c(1 - p) \prod_{k=1}^{r} (t - \alpha_k)^{m_k}. \text{ So the degree of } \pi \text{ is equal to } \sum_{i=1}^{r} m_i = 2r. \text{ It follows by the same method as in (9), that } \pi(t) - t\pi'(t) = c(1 - p)^2 \prod_{k=1}^{r} (t - \alpha_k)^{m_k - 1} (t - \overline{\alpha}_k)^{m_k - 1}. \text{ Hence, } \frac{\pi^2 + t^2}{\pi - t\pi'} = c \prod_{k=1}^{r} (t - \alpha_k)(t - \overline{\alpha}_k) = \frac{1}{H'}.$$
It follows that $H(t) = tan^{-1}\left(\frac{t}{\pi(t)}\right), \text{ where } \pi \text{ is a polynomial of degree } n = 2r \text{ satisfying } \pi(0) \neq 0 \text{ and the number of roots of } \pi - it \text{ is equal to } n/2. \square$

1.
$$d = 1$$
:
• $\frac{1}{H'(t)} = \frac{1}{\alpha}(t^2 + \alpha^2), \alpha$ is a nonzero real number : Meixner-Pollaczek polynomials.
• $\frac{1}{H'(t)} = \frac{1}{lm(\alpha)}(t - \alpha)(t - \overline{\alpha}), \alpha \in \mathbb{C} \setminus \mathbb{R}$: Meixner-Pollaczek polynomials.
• $\frac{1}{H'(t)} = \frac{1}{2\alpha}(t^2 + \alpha^2), \alpha$ is a nonzero real number : Meixner-Pollaczek polynomials.
2. $d = 2$:
• $\frac{1}{H'(t)} = \frac{1}{\alpha}(t^2 + \alpha^2), \alpha$ is a nonzero real number : 2-OPS of Meixner-Pollaczek type.
• $\frac{1}{H'(t)} = \frac{1}{lm(\alpha)}(t - \alpha)(t - \overline{\alpha}), \alpha \in \mathbb{C} \setminus \mathbb{R}$: 2-OPS of Meixner-Pollaczek type.
• $\frac{1}{H'(t)} = \frac{1}{2\alpha}(t^2 + \alpha^2), \alpha$ is a nonzero real number : 2-OPS of Meixner-Pollaczek type.
3. $d = 3$:
• $\frac{1}{H'(t)} = \frac{1}{\alpha}(t^2 + \alpha^2), \alpha$ is a nonzero real number : 3-OPS of Meixner-Pollaczek type.
• $\frac{1}{H'(t)} = \frac{1}{lm(\alpha)}(t - \alpha)(t - \overline{\alpha}), \alpha \in \mathbb{C} \setminus \mathbb{R}$: 3-OPS of Meixner-Pollaczek type.
• $\frac{1}{H'(t)} = \frac{1}{2\alpha}(t^2 + \alpha^2), \alpha$ is a nonzero real number : 3-OPS of Meixner-Pollaczek type.
• $\frac{1}{H'(t)} = \frac{1}{2\alpha}(t^2 + \alpha^2), \alpha$ is a nonzero real number : 3-OPS of Meixner-Pollaczek type.
• $\frac{1}{H'(t)} = \frac{1}{2\alpha}(t^2 + \alpha^2), \alpha$ is a nonzero real number : 3-OPS of Meixner-Pollaczek type.
• $\frac{1}{H'(t)} = \frac{1}{2\alpha}(t^2 + \alpha^2), \alpha$ is a nonzero real number : 3-OPS of Meixner-Pollaczek type.
• $\frac{1}{H'(t)} = \frac{1}{2\alpha}(t^2 + \alpha^2), \alpha$ is a nonzero real number : 3-OPS of Meixner-Pollaczek type.

$$\begin{pmatrix} \alpha_1 & \alpha_2 & \overline{\alpha}_1 & \overline{\alpha}_2 \\ \alpha_1^2 & \alpha_2^2 & \overline{\alpha}_1^2 & \overline{\alpha}_2^2 \\ \alpha_1^3 & \alpha_2^3 & \overline{\alpha}_1^3 & \overline{\alpha}_2^3 \\ \alpha_1^4 & \alpha_2^4 & \overline{\alpha}_1^4 & \overline{\alpha}_2^4 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -2i/c \\ -\frac{16i(\alpha_1 + \alpha_2)}{3c} \end{pmatrix}; \begin{pmatrix} \alpha_1 & \alpha_2 & \overline{\alpha}_1 & \overline{\alpha}_2 \\ \alpha_1^2 & \alpha_2^2 & \overline{\alpha}_1^2 & \overline{\alpha}_2^2 \\ \alpha_1^3 & \alpha_2^3 & \overline{\alpha}_1^3 & \overline{\alpha}_2^3 \\ \alpha_1^4 & \alpha_2^4 & \overline{\alpha}_1^4 & \overline{\alpha}_2^4 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ -3 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -2i/c \\ -\frac{8i(3\alpha_1 + \alpha_2)}{3c} \end{pmatrix};$$

which yields

$$\frac{1}{H'(t)} = \frac{1}{24\alpha^3}(t^2 + 9\alpha^2)(t^2 + \alpha^2).$$

6. Concluding remarks

Remark 6.1. It's well known that all classical OPS satisfy a second order differential equation. A natural question arises:

Do all classical d-OPSs satisfy a (d + 1)-order differential equation ?

The answer is affirmative for all known classical d-OPS (See for instance [2–4, 8, 14, 15, 18, 21]). *In this paper, we provide a further case for which the answer of this question is also affirmative.*

Remark 6.2. *In this paper, we obtain all the lowering operator L used to classify the OPSs of Sheffer type as L*-*classical. It's of interest to generalize this result to d-OPSs of Sheffer type.*

Acknowledgment

The author would like to thank the referee for his/her careful considerations.

References

- W.A. Al-Salam, Characterization theorems for orthogonal polynomials, P. Nevai Ed., Orthogonal Polynomials: Theory and Practice C294 (1990) 1–23.
- [2] Y. Ben Cheikh, N. Ben Romdhane, On d-symmetric classical d-orthogonal polynomials, J. Comput. Appl. Math. 236 (2011) 85–93.
- [3] Y. Ben Cheikh, M. Blel, *d*-orthogonality of a generalization of both laguerre and Hermite polynomials, to appear in Georgian Math. J.

- [4] Y. Ben Cheikh, K. Douak, On the classical *d*-orthogonal polynomials defined by certain generating functions II, Bull. Belg. Math. Soc. 8 (2001) 591-605.
- Y. Ben Cheikh, M. Gaied, Characterization of the Dunkl-classical symmetric orthogonal polynomials, Appl. Math. Comput. 187 (2007) 105–114.
- [6] Y. Ben Cheikh, M. Gaied, A characterization of Dunkl-classical d-symmetric d-orthogonal polynomials and its applications, J. Comput. Appl. Math. 236 (2011) 49–64.
- [7] Y. Ben Cheikh, I. Gam, On some operators varying the dimensional parameters of *d*-orthogonality, Integr. Transf. Spec. F. 27 (2016) 731–746.
- [8] Y. Ben Cheikh, I. Lamiri, A. Ouni, On Askey-scheme and d-orthogonality, I: A characterization theorem, J. Comput. Appl. Math. 233 (2009) 621–629.
- [9] Y. Ben Cheikh, I. Lamiri, A. Ouni, d-orthogonality of Little q-Laguerre type polynomials, J. Comput. Appl. Math. 236 (2011) 74-84.
- [10] Y. Ben Cheikh, A. Zaghouani, Some discrete d-orthogonal polynomial sets, J. Comput. Appl. Math. 156 (2003) 253–263.
- [11] Y. Ben Cheikh, A. Zaghouani, d-orthogonality via generating functions, J. Comput. Appl. Math. 199 (2007) 2–22.
- [12] S. Bochner, Über Sturm-Liouvillesche polynomsysteme, Math. Z. 29 (1929) 730-736.
- [13] A. Boukhemis, On the classical 2-orthogonal polynomials sequences of Sheffer-Meixner type, Cubo. A Mathematical Journal 7 (2005) 39-55.
- [14] A. Boukhemis, E. Zerouki, Classical 2-orthogonal polynomials and differential equations, Int. J. Math. Math. Sci. (2006) 1-32. Article ID 12640.
- [15] K. Douak, The relation of the d-orthogonal polynomials to the Appell polynomials, J. Comput. Appl. Math. 2 (1996) 279–295.
- [16] K. Douak, P. Maroni, Les polynômes orthogonaux "classiques" de dimension deux, Analysis 12 (1992) 71-107.
- [17] K. Douak, P. Maroni, Une caractérisation des polynômes *a*-orthogonaux classiques, J. Approx. Theory 82 (1995) 177–204.
- [18] K. Douak, P. Maroni, On *d*-orthogonal Tchebyshev polynomials I, Appl. Numer. Math. 24 (1997) 23–53.
- [19] V.W. Hahn, Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Math. Z. 39 (1935) 634–638.
- [20] J. Van Iseghem, Vector orthogonal relations. Vector QD-algorithm, J. Comput. Appl. Math. 19 (1987) 141-150.
- [21] I. Lamiri, A. Ouni, d-Orthogonality of Humbert and Jacobi type polynomials, J. Math. Anal. Appl. 341 (2008) 24–51.
- [22] I. Lamiri, A. Ouni, d-orthogonality of some basic hypergeometric polynomials, Georgian Math. J. 20 (2013) no. 4 729-751.
- [23] D. G. Mead, Newton's Identities, Amer. Math. Monthly 99 (1992) no. 8 749-751.
- [24] P. Maroni, L'orthogonalité et les récurrences de polynômes d'ordre supérieur à deux, Ann. Fac. Sci. Toulouse 10 (1989) 105–139.
- [25] Earl D. Rainville, Special functions, Macmillan, New York, 1960.
- [26] F. Tasdelen, S. Varma, On a different kind of *d*-orthogonal polynomials that generalize the Laguerre polynomials, Mathematica Aeterna 2 (2012) 561–572.
- [27] A. Zaghouani, Some basic *d*-orthogonal polynomial sets, Georgian Math. J. 12 (2005) 583–593.