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Abstract. In this paper, we characterize L-classical d-orthogonal polynomial sets of Sheffer type where L
being a lowering operator commutating with the derivative operator D and belonging to {D, P -1, sin(D)}.
For the first case we state a (d + 1)-order differential equation satisfied by the corresponding polynomials.
We, also, show that, with these three lowering operators, all the orthogonal polynomial sets are classified
as L-classical orthogonal polynomial sets.

1. Introduction

Let # be the linear space of polynomials with complex coefficients and let " be its algebraic dual.
A polynomial sequence {P,},»0 is called a polynomial set (PS for short) if and only if deg P, = n for all
non-negative integer n. We denote by < u, f > the effect of the linear functional u € $’ on the polynomial
f € P. Denote by S(P) the set of polynomial sets P = {P,},>0, where P, € P.

Definition 1.1. [20, 24] Let {Py,}u>0 be in S(P) and let d be an arbitrary positive integer. The polynomial sequence
{Pulnso is called a d-orthogonal polynomial set (d-OPS, for short) with respect to a d-dimensional functional U =
Huo, - -+, ug-1) if it satisfies the following conditions:

(U, PPy =0, m>dn+k
(Ui, PuPapsicy #0, n>0

for each integer k belonging to {0,1,...,d —1}.

For d = 1, we recover the well-known notion of orthogonality.

One of the important classes of PSs is the class of Sheffer A-type zero (which we shall hereafter call
Sheffer type and note SH).[25]

Definition 1.2. A PS P = {P,},.»0 is called of Sheffer type if it is generated by a function of the form

Pn(x) tn
n

G(x,t) = A(t) exp (xH(t)) = Z )
n=0
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where

A(t) = Zant” and  H(t) = Z Ht"

n=0 nx1
with
A(0) #0, H(0) = 0and H'(0) # 0,
we will denote a such polynomial set by P(A, H).

’

Put Ly(A) = Af}—l’ the formal power series defined in terms of the logarithm derivation of A and the deriva-
tion of H.

An orthogonal polynomial set (OPS, for short) {P,},>0 in ¥ is called L,-classical if {L;,Py},>1 is also
orthogonal, where L, ,, denotes the Hahn operator given by [19]

x+w)— f(x
Lt = HEZ0 T g 20

Particular interest is devoted to the derivative operator D (w = 0 and g — 1), the finite difference operator
A (w = 1 and g = 1), g-difference operator L, (w = 0) and Dunkl operator T, = D + 2uL_q, u > —1/2. The
literature on these topics is extremely vast. For a survey see for instance [1, 5].

This notion has been extended to the d-orthogonality by Douak and Maroni [16], who introduced the notion
of classical d-OPSs which means that both {P,},>0 and its derivative {P/ ,};>0 are d-orthogonal. It is then
significant to look for characteristic properties for L;,-classical d-OPSs as was done for the case d = 1. In
this context, for the derivative operator D, Douak and Maroni [17] generalized the Pearson’s equation for
classical d-OPSs. The Sturm-Liouville equation is generalized for particular families of classical d-OPSs,
some examples may be found in [2-4, 14, 15, 18, 21, 26]. Ben Cheikh and Ben Romdhane [2] gave some
characteristic properties of the d-symmetric classical &-OPSs. Douak and Maroni [16], and later Boukhemis
and Zerouki [14] quote some families of classical d-OPSs in the particular case d = 2. For the operator A,
some examples of classical discrete d-OPSs of Sheffer type may be found in [8, 10, 11]. Some examples of
L;—classical d-OPSs are stated in [9, 22, 27]. Finally for the operator T, Ben Cheikh and Gaied [6] studied
the Dunkl-classical 4-OPSs in the d-symmetric case.

Our contribution in this direction is to determine all classical d—OPSs of Sheffer type (Theorem 3.1),
as well as (d + 1)—order differential equations satisfied by these polynomials. We also state two new
characterizations of classical discrete d-OPSs of Sheffer type. We consider the operator sin(D), to complete
the classification of the OPSs of Sheffer type as L-classical polynomials, and we characterize all sin(D)-
classical d-OPSs of Sheffer type. The cases d = 2 and d = 3 are specially carried out.

2. Main result

In this section, we state a general result that will have as applications the results of the next sections. To
this end, we need to recall the following lemmas.

Lemma 2.1. [7] Let P(A, H) = {P,},»0 be a Sheffer-type polynomial set.
{Pulnso is a d-OPS if and only if

H’l(t) is a polynomial of degree < (d + 1)

Ly (A) is a polynomial of degree d.
Lemma 2.2. [7] Let P(A, H) be a d-OPS of Sheffer type. The polynomial set KP = P(KA, H) is a d’-OPS (d’ > d)
iff Lu(K) is a polynomial of degree d’.
KP remains a d-OPS iff Ly(K) is a polynomial of degree d having a leading coefficient different from that of —Lp(A),
or a polynomial of degree < d.
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Lemma 2.3. [7] Let P = P(A, H) be a d-OPS of Sheffer type, KP = P(KA, H) be a d’-OPS, d’ > d, of Sheffer type

and L be a lowering operator which commutates with the derivation operator D. If P is L-classical d-OPS then KP is
L-classical d’-OPS.

Theorem 2.1. Let i be a formal power series satisfying
) =l5)
| =-F| <],
-
P(0) =0,9'(0) =1,
where F is a monic polynomial of degree 2. Let P(A, H) be a d-OPS of Sheffer type. P(A, H) is {(D)—classical iff

(T n(
o =() -7

ﬂ(f)

where Tt is a polynomial of degree < d + 1 satisfying 7(0) # 0 and 1 — tn’ divides t*F(—=).

lP( ) n+1

Proof. Let P(A, H) = {Py}u>0 be a d-OPS of Sheffer type. { ]

} is generated by
n>0

P,. noq o n+l 1 ’ H(t CH(
Z POP® P _ Ly [Z p,&l(x)m] = Lpoyamero) = YO e,

n+1 n! o
. . _ YH®)
which is the polynomial set of Sheffer type P(KA, H), where K(t) = —

K'(t)  _ BD’OHt 1
KHH'(t) ¢oH() tH’ (t)

leading coefficient different from that of —

By Lemma 2.2, P(KA, H) is a d-OPS iff

is a polynomial of degree d having a

or a polynomial of degree < d. Since R = L is a polynomial

AH'’ H
Yo 77()

of degree < (d + 1) satisfying R(0) # 0, so P(A, H) is i(D)—classical iff o (t) = ——=, where 7 is a

polynomial of degree < (d + 1) satisfying 7(0) # 0. That is to say

-1
He = (L) o9
Y t
) 1 t2P(n /) . 2
P(A, H) is a d-OPS so by Lemma 2.1, 00 - n-tw is a polynomial, that is = — tn" divides t“F(rt/t).

\-1
t
Conversely, if H(t) = (%) o HT), where 7 is a polynomial of degree < d + 1 satisfying m(0) # 0

2
and 7w — trr’ divides tzF(@). Hence H’l(t) = tnF_(tZ:,) is a polynomial of leading coefficient 7(0). So,
Y oH 1 n(t) - 1/H'(f) . :

_ = <d.
UoH (t) ) 7 is a polynomial of degree < d. O

This theorem provides three cases :

(2 F)=(t-a)t-p), a,peR
() F(t) = (t—a)(t—a), aeC

{ (1) F) = (t—a)?, a € R
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-
1% 1% '

Y(0)=0,9'(0) =1,
leads to Y(t) = te*. For a = 0, we have /(D) = D.

Case (1) The resolution of the system

Case (2) The resolution of the system

[5) (55 -4
AT
Y0 =090 =1,

oot — ot

leads to y(t) = a=p

. Fora =1and g = 0, we have /(D) = A.

Case (3) The resolution of the system

[5) (55 -7
AT &
PO =090 =1,

. 5in(bt)
b

where a = a +ib (b # 0), leads to Y (t) = ¢ . Fora = 0 and b = 1 we have (D) = sin(D) which

. 1 . w
my be viewed as a central difference quotient operator since sin(D) = E(e'D —eD),

For these three cases, (D) is alowering operator belonging to {D, A, sin(D)}. composed with a shift operator
e*P. Since a shift operator preserves the d-orthogonality, we limit ourselves in the sequel to characterize
L-classical d-OPS of Sheffer type where L € {D, A, sin(D)}.

3. Characterization of classical d-OPSs of Sheffer type

In this section, we consider the first case where /(D) = D and we determine D-classical d-OPSs of Sheffer
type. The particular case d = 2 was considered by Boukhemis [13]. He showed that the 2—OPSs of Hermite
type and of Laguerre type are D-classical.

Theorem 3.1. The only D—classical d-OPSs of Sheffer type are

P(e™®), at) and P ((1 - biyterTeal), o atbt)’

where m; is a polynomial of degree i; a, b are nonzero real constants and «,  are real numbers.
Proof. Let P(A, H) be a d-OPS of Sheffer type. By Theorem 2.1, P(A, H) is D—classical iff

t

H(t) = 0’

where 7 is a polynomial of degree < d + 1 satisfying 7(0) # 0 and 7 — t7’ divides 2.
It is clear that constant polynomials do the job, so suppose that 7 is not constant.
Taking the factorization of  over C

n(t) =[]t - ™,
k=1
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where ay, k =1,...,r are nonzero complex numbers, my, k =1, ..., are positive integers and ¢ is a nonzero
real number. So the factorization of 7’ is of the form

7 =[]t -a0™ Q)
k=1

where Q is a polynomial of degree r — 1, coprime with 7. This gives

m(t) - t'(0) = [ [t = an)™ 'S (0),
k=1

T _ | rifdeg(n) > 1,
where S(t) = ¢ H(t — ay) — tQ(t). We have deg(S) = { 0 ifdeg(r) = 1.
If deg(m) > 1, S is not constant, so let @ be a root of S. Since S divides 1t — t7’ which divides 72, there exists
ie({l,...,r} such that « = a;. So, a; is a root of Q, which is impossible because Q and 7 are coprime. It
follows that deg(m) = 1.

at
We conclude that H(t) = at or H(t) = =0 where a and b are nonzero real constants.

bt
o If H(t) = at, A0 - A is a polynomial of degree d iff A(t) = ¢™1"), where 14,12 polynomial of degree
d+1
Ca A . LA T . .
o IfH(t) = 10 AR must be a polynomial of degree d, that is AW - A= bie where T is a polynomial

of degree d. Taking the partial decomposition of this fraction, then its primitive, we obtain

p
A(t) = (1— btyel —DF nd‘l(t),

where «, § are real constants and ;-1 is a polynomial of degreed —1. O

[

Lemma 3.1. Let ¢(t) = Z ant", ag # 0, be a formal power series. We have
n=0

‘(D
@(D)x = [x + Z ((D))} o(D).

Theorem 3.2. The classical d-OPSs of Sheffer type satisfy a (d + 1)-order differential equation of one of the forms
(1) [Dmi(D)—-2xD +2n]y =0,
where 111 is a polynomial of degree d.
@  [-xD@ - D) + Dry(D) + n(1 - DYy = 0,
where Tt is a polynomial of degree < d satisfying m»(1) # 0.

Proof. The classical d-OPSs of Sheffer type given by Theorem 3.1 are related to Hermite and Laguerre
polynomials by [[7], p.12]

P 0,20 = pu(D)H,), P((1 - letr ), 1) = (D)L ),
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where @i (t) = @D’ oy (1) = PV 1, is a polynomial of degree i.
Since Hermite polynomials H,(x) satisfy the Sturm-Liouville equation [12]

(D?* - 2xD + 2n)y = 0.

Applying ¢1(D) and using Lemma 3.1, we get
, D
[—Dn a(5) — 20D + ?_n] o1(D)(H,) = 0.

So we obtain the first equation where 71 (f) = -7, +1(%).

On the other hand, Laguerre polynomials L () satisfy the equation [12]
(xD2+(0c+1—x)D+n)y:0.

Now, applying ¢,(D) and using Lemma 3.1, we get

5(D)
@2(D)

[—xD(l -D)+(a+1)D+n—-D(1-D) ](pz(D)y =0.

D ,  -D
Hence [(ﬁ —9D(1 - D)+ (@ + DD+ ——=7) (o) + n] 9>(D)y = 0.
Taking the Taylor development of ¢/, , at the point 1, we obtain

d-2
l([;’—x)D(l—D)+(a+1)D+DZ— +1|pa(D)y =0,
k=0

Ay
- (1 _ D)k+1

where a;_, # 0. Applying (1 — D)*"!, and using Lemma 3.1, we get

d-2
[(ﬁ - x)D1 -D) + (@ +d)DA -D)* ' +D Z a(1 - D)%+ n(1 - Dy y =0,
k=0
where a;_, # 0. We obtain the second equation, where
d-2
() = B — D + a(l - ) + Z Agak(1 =, T(1) = a4 #0. O
k=0

Since equations (1) and (2) are linear and homogeneous, multiplication of a solution by a constant again
yields a solution. But such multiplication may destroy the property of being a Sheffer type set. We cannot
therefore obtain a complete converse to Theorem 3.2. But we do have

Corollary 3.1. Ifa set {P,} satisfies an equation of the forms (1) or (2), then there exist nonzero constants c,, so that
{cnPy) is a classical d-OPSs of Sheffer type.

—t
Proof. P(e™+1(®),2t) (resp. P((l — pyralpii ), 1_—t)) satisfies equation (1) (resp. equation (2)). Since
equation (1) (resp. (2)) has a polynomial solution, and this polynomial is unique to within an arbitrary
—t
multiplicative constant. Hence, ¢, exists so that P(e™+®),2t) = {c,P,} (resp. P ((1 - t)‘“‘le%”d-l(”, m) =
{cuPu})-
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4. Characterization of classical discrete d-OPSs of Sheffer type

In this section, we consider the second case where (D) = e” — 1 and we Characterize A-classical d-OPSs
of Sheffer type. The particular case d = 2 was considered by Boukhemis [13]. He showed that the 2—OPSs
of Charlier type and of Meixner type are A-classical.

Theorem 4.1. Let P(A, H) be a d-OPS of Sheffer type. Then the following statements are equivalent :
(i) P(A, H) is A—classical.

(i) H(t) = log(ng)(ti t

number of real and complex roots of m(m — t) is equal to n.

), where 1t is a real polynomial of degree 0 < n < d + 1, satisfying 1(0) # 0 and if n > 2 the

1
iii is equal to one of these polynomials :
@) 7 iseq f these poly
! +(t — @), a is a nonzero real number,
[ =xxl— ), & 7
H'(t)
! ! (t — an)(t — @), a1, arp are nonzero real distinct numbers
[ ) = — —_ .
HO - m-m 1 2), a1, 2
. ! _1 (t — a)(t + ), v is a nonzero real number,
H'(t) 4a ’ ’
1 P
° H’_(t) =c| |(t-ar), B<p<d+1)suchthat aq,--- ,ay, are nonzero distinct complex numbers satisfying
k=1
al az e ... ap m] O
a a : :
. my 1 0
== 1
—Myy C 1 ! ( )
d o : o ),
r —1m, =

r P
where the m;’s are positive integers such that Z m; = Z m;=p

i=1 i=r+1

Proof. (i) (ii) Let P(A, H) be a d-OPS of Sheffer type. By Theorem 2.1, P(A, H) is A—classical iff

H(t) = log(ng)(tz t).

where 7 is a polynomial of degree < d + 1 satisfying 7(0) # 0 and 7 — tr’ divides n(r — t).
It is clear that polynomials of degree < 1 do the job, so suppose that deg 7 is an integer n > 2.
Taking the factorization of 7w and 7 — t over C

7

) =c[Jt-a)™, nt)—t=c[[-pom
k=1

k=1

where the a, i are nonzero numbers, the my, m; are positive integers and c is a nonzero real number. So

n(t) ') = [ [ - '5:00),
k=1
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v

and - m(t) — tr'(t) = (n(t) — ) - (' (1) - 1) = H(f =B (8),

k=1

where S1 and 7 are coprime, S, and 7 — t are coprime.
Since 1 and 7 — t are coprime, so the ays are different from the fis, we get

n(t) - (1) = [ [t = a™ ] [t - pomi's,
k=1 k=1

where S is coprime with 7 and 7 — ¢.
It follows that i — ¢’ divides (7t — t) iff S is a constant. That is

v

n—tr = c(1-n) H(t — ay)"™1 H(t — B, )
k=1

k=1

which is equivalent ton =r + 7.

n(t)
mi(t) —t
11(0) # 0 and the number of real and complex roots of rt(rt — t) is equal to n if n > 2.

(ii)=(ii) Suppose that H(t) = log( ), where 7 is a polynomial of degree 0 < n < d + 1 such that

1
-Ifn=0,s0 H'_(t) = —(t — @), a is a nonzero real number.
1 1
-lfn=1, H’_(t) =({t—-a)or H’_(t) = m(t —m)(t — an), @, a1, ap are nonzero real numbers.

T
-If n > 2, define S, k = 1,...,n by the relations Sy = Z miocf, where the s are the real and complex roots

i=1
of multiplicity m; of the polynomial rt(t) that will be noted by

m(t) = apt" + " + - + ap_at + ay. (3)
T r
. m ’ My
Taking 7(t) of the form mn(t) = ag H(t — ag)™, we deduce that 7’ (t) = 7t(t) " .
k=1 P
2
Replacin by its series expansion =1 ;& % + we get
Pache e Y P fmap t g p WS
n 51 Sz ]
wE)=nlt)|-+ 5+ =+ 4
() =r®)| ]+ + 7 @
Substituting (3) in (4) gives
n S S
napt™t + (n = Dagt™ 2 + -+ 2a, ot + a,1 = (aot" + @t L+ -+ a,_it +ay) n + t_zl + t_3’2 +-0 .
Comparing coefficients of t* on both sides, we obtain the Newton’s identities [23]
apS1+a1 =0
apS> + 151 +2a, =0
Sz + 115, + 1,51 +3a3 =0
) (6)

aOSn_l +a1S, 0+ +a,0251 + (1’1 - 1)ﬂn_1 =0
ags,, +mS, 1+ +a,.151+na, =0
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On the other hand, by hypothesis, the number of real and complex roots of @ — t is equal to n — r. So 7w — ¢
can be written in the forms

n(t) =t = apt" + ayt" 4 -+ (@, — Dt +a, = ag H (= a)™.
k=r+1

n
We now apply the same reasoning, with Sy replaced by Ty = Z m;a¥, to obtain the Newton’s identities

i=r+1

a0T1 +a1=0
apT> +a1T1 +2a, =0
apTs +a1Tr, +aT1 +3a3 =0

(6)

aoTn,1 +a1T, o+ +a, T + (Tl - 1)(01,4,1 - 1) =0
agTy, + a1 Ty 1+ + (an—l - 1)T1 +na, =0

The resolution of the systems (5) and (6) leads to two cases

S1=Ti— 7
-If n=2: S = 2a% and Ty = 245 satisfy S, =T, +___ .

ap

1
. ap = =g~ 1 1

Replacing a; by 1 —agT;, we get { = 4%;4”0 . So 70 = Q(t —a)(t+a).

Sk=Ty, V1<k<n-2 Sk=Ti, V1<k<n-2
-Ifn>3: Sn-1=Tn1 - na__ol . Replacing a1 by —ayT1, we get Spo1=Th1 — "ﬂ !

Su=T,+n -1 Su=Ty— LT,

0 0
1 n(n—t) . .

On the other hand, we have H(t) = log( O t) hence i Analysis similar to that in the proof of
(i) & (ii) shows that 7t(t) — tri’(t) = ag(1 — n) H(t — )™ Tt follows that

k=1

1 4 n ~ n )
o0 - T-n g(f — o) = Cg(f ),

where «j, ..., @, satisfy the equations

Sk =Tk, VlSkSn—Z

Sn 1=T,1 + = (7)
S, =T, + = 1)CS
which is equivalent to (1).
(iii)ﬁl(ii)
-If 20 = —(t — a), since H(0) = 0, it follows that H(t) = log(:%;) = log(%;), © = a.
-IfH,(t):(t—a),soH(t):log( _a)—log( )n—t—
11 3 B 2( ar) T _ m
-If 00 - o= (t = a1)(t — az), so H(t) = log( n(t = )) log(—7T — t)' m= (- ).
1 i B _ f—a, 1 N2
o0~ 1a (t—a)t+a),soH(t) = log(—t = a) = og(—n — t)' = -3 (t—a).
1

n
-If 70 =c H(t —ax), (3 <n <d+1)suchthatay,---,a, are nonzero distinct complex numbers satisfying
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(1). Let e(t) = c(1 —n) H(t — o)™ If we take the notation (3), we get (5), and hence we deduce (6) from (7).
k=1

p
Newton’s identities given by (6), implies that re(t)—t = c¢(1—-n) H (t—a)™. So the number of roots of t(rt—t)

k=r+1
’

P
is equal to p, it follows by the same method as in (2), that 7 — tr’ = ¢(1 - p)? H(t T H (t— ﬁk)mk_l.

k=1 k=r+1
Hence, K1) _ 1 () j .
ence, p——— H(t —ay) = —. It follows, that H(t) = log( =) = ), where 7t is a polynomial of degree
2<p<d+1,such that the number of roots of mt(rt —t) is equal to p. O
Examples.
1.d= } :
70 +(t — a), a is a nonzero real number : Charlier polynomials.
1 1
= ——(t — a1)(t — a2), a1, ap are nonzero distinct real numbers : Meixner polynomials.
H'(t) a1 —ap
. H’l(t) = E(t — a)(t + a), a is a nonzero real number : Meixner polynomials.
2.d= % :
7 ) = +(t — @), a is a nonzero real number : 2-OPS of Charlier type.
1 1

° O ———(t — a1)(t — @2), m, @z are nonzero distinct real numbers : 2-OPS of Meixner type.
a] — &

‘g 0 = E(t — a)(t + @), a is a nonzero real number : 2-OPS of Meixner type.

‘T 0) = c(t — a1)(t — ap)(t — az), a1, a2, a3 are nonzero distinct complex numbers satisfying one of
these two equations

a1 ay A3 3 0 a1 A&y A3 1 0
a% o a§ -2 9a1/2c a% oé a§ -3 9a3/2c

which we can solve using Maple for example to get

1 1
= 4+ —-
H(H) ~ ~ 542

QN N

(t — a)(t + 2a)(t + 8a).

3.d= :1)) :
7 ) = +(t — a) : 3-OPS of Charlier type.
1 1
° 00) = o (t = a1)(t — an), a1, a2 are nonzero distinct real numbers : 3-OPS of Meixner type.
1 -
. 1 i(1% — a)(t + a), a is a nonzero real number : 3-OPS of Meixner type.
H'(t) 4a
1
° H’_(t) = i@(t —a)(t + 2a)(t + 8a).
. H’L(t) =c(t — aq)(t — ax)(t — a3)(t — ), @1, ..., a4 are nonzero distinct complex numbers satisfying

one of these equations

as g 4 0

a? -2 0

o | =E e |
o] -1

2
S
2
2

1)
1)
5]
5}

)
15}
5]
5}

5

Sy WEa Y SN

5
[SESRRNINI

5]

AN

=3
N s P
IR
P AN WIN N N
22 22
SRS S
IR
A ¥ U
~—
—_—
Ll—w
NN
——
I
H
—
-
@D
=
£yl oo
=
N3
N—
<
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ay 3 0
a2 1 _ 0 .
a% -3 |~ 1/c ’
aé 1 4(3[1%:-112)
1

H{) ~ J—“—zss;aa (t = a)(t + 3a)[t + (7 + 4 V2i)al[t + (7 — 4 V2i)a];

2
)
S

[ERSRRXMI NI

=)
15
1)
2
By SRS SN
5]
N}
=)
2
AR SERREISES

=
5
1)
15}

=)

5

S}
=)
5
2

|

which gives the solutions

5
[Sy SRy RS SN
SRS
)
[ARSARFAIELD

8
8
8
NQH‘-!\' [SS SRS}
8
8

1
+

1
B0~ Tt Ot - 0wt - (3-2 V3)a][t - (3 +2V3)a);

1 1
T ~ 2m3g L~ W+ @)t =3a)(t+3a).

5. Characterization of sinD—classical d-OPSs of Sheffer type

In this section, we consider the third case where (D) = sinD and we Characterize sinD-classical d-OPSs
of Sheffer type.

Theorem 5.1. Let P(A, H) be a d-OPS of Sheffer type. Then the following statements are equivalent :
(i) P(A, H) is sinD—classical.

(i) H(t) = tan™ L , where Tt is a real polynomial of degree 0 < n < d + 1, satisfying m(0) # 0 and if n > 2, the
() poty 8 8

L n
number of roots of  — it is equal to 5

by 1 —_
(iii) 720) is equal to one of these polynomials :

. H’l(t) = %(t2 +a?), a is a nonzero real number.
. ! = L(t—oz)(t—&) acC\R
H(t)  Im(a) !
° ! = i(t2 +a?), a is a nonzero real number.
H(t) 2a ’
1 r
. =c H(t o)t @), R <r<@d+1)/2), a1, ,ar € C\R satisfying
H'(t) 1
NI B AT :
m, 2i 0
-my |~ ) 1 ! ®
: 2r %
: : : : -1 Z mic;
& a .oa —, =1

r
where the m;’s are positive integers such that Z m; = 2r
i=1
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Proof. (i) & (ii) Let P(A, H) be a d-OPS of Sheffer type. By Theorem 2.1, P(A, H) is sinD—classical iff
H(t) = tan™! L
- n(t))’

where 7 is a polynomial of degree < d + 1 satisfying 7(0) # 0 and 7 — tr’ divides 7> + 2. It is clear that
polynomials of degree < 1 do the job, so suppose that deg 7 is an integer n > 2.
Taking the factorization of m — it and 7 + it over C

n(t) — it = ¢ H(t — )™, n(t) +it = ¢ H(t — @)™,
k=1 k=1
where a4, ...,a, € C\ R, my, ..., m, are positive integers and c is a nonzero real number. So
n(t) -t (t) = (n(t) - it) = t(ne(t) - it) = [ [t = )™ $a(8),
k=1
and mi(t) — tri' () = (n(t) + it) — H(m(t) + it) = H(t — )" 1S (1),
k=1
where S1 and 7 — it are coprime, S, and 7t + it are coprime. So,

n() =t (1) = [ [ (¢ = )™ (= @)™ 'S ),

k=1

where S is coprime with 7 — it and 7t + it.
It follows that 7t — t7i’ divides 72 + #2 iff S is a constant. That is

n—tn =c(1-p) [ [t - a0t - @)™, 9)
k=1
which is equivalent to n = 2r.

(i) = (ifi) H(t) = tan™ (%), where 7 is a polynomial of degree 0 < n < d + 1, satisfying 7(0) # 0 and if

s n
n > 2, the number r of roots of m — it is equal to 5

1 .
-Iftn=0,s0 = —(#* + a®), a is a nonzero real number.
o

H(1)

-Ifn=1,s0

T0 " @t V-@acC\R

.
-If n = 2r > 2, denote by 7t(t) — it = apt" + "Vt qt+a, = ag H(t — ag)"™.
k=1

.
So, 1i(t) + it = agt" + at" + -+ + (apq + 20t +a, = ag H(t — @)™
k=1

.
Define Sy, k = 1,...,n by the relations Sy = Z miaf. Analysis similar to that in the proof of Theorem 4.1
i=1
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gives the Newton's identities

apS;1+a; =0 a0§1 + al_: 0

agSy; +a1S1 +2a, =0 H0§2 + H1§1 + 2[15 =0

(1053 +a15, + 4,51 + 3a3 =0 a0S3 + 115, + 1,51 +3a3; =0

a9Su-1 + - +a, 251 + (7’1 - ]-)an—l =0 tlogn,l + e+ IZ,,,2§1 + (7’1 - 1)(11”,1 + 21) =0
Sy + @1 Sp-1 + -+ + A1 Sy + 1ty =0 10Sy + @Syt + -+ + (@y_1 + 20)Sy +na, = 0

The resolution of these systems leads to two cases
S1=5+ 3—1
-Ifn=2: S =20k, k=1,2 satisfy 0

Sy = gz - % + 3—551 ’
= i 1 1

Replacing a; by —2_1' — a5y, we get ag = 2%10. So 70 = 5(1& —ia)(t + ia).

Sk=Sk, V1<k<n-2 Sk=S, V1<k<n-2
-Ifn>3:{ Si = Sn—;fj(zo_l) - Replacing a1 by —a0S1, we get § Sn-1 ign-lf %0_1)

Sy =5,- z(naé i + 5—;51 S, =85, + %51.

1 m?+#
On the other hand, we have H(t) = tan‘l(ﬁ), hence T Analysis similar to that in the proof of
r
(i) & (ii) shows that 7t(t) — tri’(t) = ap(1 — n) H(t — a)™ Nt — )™
k=1
It follows that . .
1 ap — —
= t— t— = t— t—
T6 " 1on Q a)(t~a) =c H a)(t = ),

where a3, ..., a, satisfy the equations

Sn—l = gn—l -2
Sn = Sn - (nz_”;)C51
which is equivalent to (8).
(iii) = (if) - If H,l(t) = i(t2 +a?), since H(0) = 0, it follows that H(t) = tan"!(%), n = a.
1 — _ —- 7 - ; — -1 i - _x 24y
If 70 - Im(a)(t a)t—a),a=x+iye C\RR. So H(t) = tan (n),n = yt+ o

- = —(F+a? —tan (L) 7= 212 — o2
If H'(#) Za(t +ta )/ SO H(t) tan (n)’ T Za(t as).
1t H’l(t) - ¢ H(t —a)(t—a), 2<r<(d+1)/2), a1, ,a, € C\R satistying (9). Let 7 be the polynomial
k=1

defined by 7t(t) — it = ¢(1 —p) H(t — ax)™. So the degree of 7 is equal to Z m; = 2r. It follows by the same
k=1 i=1

method as in (9), that 7t(t)—t7’ (t) = c(1-p)? ﬁ(t—a )" (t—a )™t Hence ﬂ =c ﬁ(t—a Wt—ag) = L

, I k k . D [l k W=

It follows that H(t) = tan™" ( ), where 7t is a polynomial of degree n = 2r satisfying n(0) # 0 and the

-+
n(t)
number of roots of © — it is equal to n/2. O
Examples.
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1.d=1:
1 1
=7 ) = E(t2 + a?), a is a nonzero real number : Meixner-Pollaczek polynomials.
1 1

. H'_(t) = Tm(a) (t—a)(t—a), a € C\ R : Meixner-Pollaczek polynomials.

—(#* + %), a is a nonzero real number : Meixner-Pollaczek polynomials.

‘H{)  2a
2.d= % .
* 0 = a(t‘2 + &%), a is a nonzero real number : 2-OPS of Meixner-Pollaczek type.
1
° ——(t—a)({t —a),a € C\ R: 2-OPS of Meixner-Pollaczek type.
0~ I @ P
* T D = 5(1‘2 +a?), a is a nonzero real number : 2-OPS of Meixner-Pollaczek type.
3.d= % : ,
* D = —(1,‘2 + &%), a is a nonzero real number : 3-OPS of Meixner-Pollaczek type.
1
o —— =——(t—a)(t—a),a € C\R: 3-OPS of Meixner-Pollaczek type.
0~ I @ P
. 70 = 5(1‘2 +a?), a is a nonzero real number : 3-OPS of Meixner-Pollaczek type.
) 20) =c(t — ar)(t — a1)(t — ax)(t — @2), a1, a are distinct numbers in C \ R satisfying one of these
equations
a ax A @ 2 0 a a A m 3 0
& & oo om |l 2 | 0 @ & a & | 1] 0 )
qoq T o 3 I - K A A -0 I A
which yields

11
H'(t)  24a3

(t* + 9a%)(t* + a?).

6. Concluding remarks

Remark 6.1. It’s well known that all classical OPS satisfy a second order differential equation. A natural question
arises:

Do all classical d-OPSs satisfy a (d + 1)-order differential equation ?

The answer is affirmative for all known classical d-OPS (See for instance [2-4, 8, 14, 15, 18, 21]). In this paper, we
provide a further case for which the answer of this question is also affirmative.

Remark 6.2. In this paper, we obtain all the lowering operator L used to classify the OPSs of Sheffer type as L-classical.
It’s of interest to generalize this result to d-OPSs of Sheffer type.
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