L-Classical d-Orthogonal Polynomial Sets of Sheffer Type

Youssèf Ben Cheikh ${ }^{\text {a }}$, Inès Gam ${ }^{\text {b }}$
${ }^{a}$ Faculté des Sciences de Monastir, Département de Mathématiques, 5019 Monastir, Tunisia
${ }^{b}$ Institut préparatoire aux études d'ingénieur de Monastir, 5019 Monastir, Tunisia

Abstract

In this paper, we characterize L-classical d-orthogonal polynomial sets of Sheffer type where L being a lowering operator commutating with the derivative operator D and belonging to $\left\{D, e^{D}-1, \sin (D)\right\}$. For the first case we state a $(d+1)$-order differential equation satisfied by the corresponding polynomials. We, also, show that, with these three lowering operators, all the orthogonal polynomial sets are classified as L-classical orthogonal polynomial sets.

1. Introduction

Let \mathcal{P} be the linear space of polynomials with complex coefficients and let \mathcal{P}^{\prime} be its algebraic dual. A polynomial sequence $\left\{P_{n}\right\}_{n \geq 0}$ is called a polynomial set (PS for short) if and only if $\operatorname{deg} P_{n}=n$ for all non-negative integer n. We denote by $\langle u, f\rangle$ the effect of the linear functional $u \in \mathcal{P}^{\prime}$ on the polynomial $f \in \mathcal{P}$. Denote by $S(\mathcal{P})$ the set of polynomial sets $P=\left\{P_{n}\right\}_{n \geq 0}$, where $P_{n} \in \mathcal{P}$.

Definition 1.1. [20,24] Let $\left\{P_{n}\right\}_{n \geq 0}$ be in $S(\mathcal{P})$ and let d be an arbitrary positive integer. The polynomial sequence $\left\{P_{n}\right\}_{n \geq 0}$ is called a d-orthogonal polynomial set (d-OPS, for short) with respect to a d-dimensional functional $\mathcal{U}=$ ${ }^{t}\left(u_{0}, \cdots, u_{d-1}\right)$ if it satisfies the following conditions:

$$
\begin{cases}\left\langle u_{k}, P_{m} P_{n}\right\rangle=0, & m>d n+k \\ \left\langle u_{k}, P_{n} P_{d n+k}\right\rangle \neq 0, & n \geq 0\end{cases}
$$

for each integer k belonging to $\{0,1, \ldots, d-1\}$.
For $d=1$, we recover the well-known notion of orthogonality.
One of the important classes of PSs is the class of Sheffer A-type zero (which we shall hereafter call Sheffer type and note $\mathcal{S H}$).[25]

Definition 1.2. A PS $P=\left\{P_{n}\right\}_{n \geq 0}$ is called of Sheffer type if it is generated by a function of the form

$$
\begin{equation*}
G(x, t)=A(t) \exp (x H(t))=\sum_{n=0}^{\infty} \frac{P_{n}(x)}{n!} t^{n} \tag{1}
\end{equation*}
$$

[^0]where
$$
A(t)=\sum_{n \geq 0} a_{n} t^{n} \quad \text { and } \quad H(t)=\sum_{n \geq 1} h_{n} t^{n}
$$
with
$$
A(0) \neq 0, H(0)=0 \text { and } H^{\prime}(0) \neq 0
$$
we will denote a such polynomial set by $P(A, H)$.
Put $L_{H}(A)=\frac{A^{\prime}}{A H^{\prime}}$ the formal power series defined in terms of the logarithm derivation of A and the derivation of H.

An orthogonal polynomial set (OPS, for short) $\left\{P_{n}\right\}_{n \geq 0}$ in \mathcal{P} is called $L_{q, w}$-classical if $\left\{L_{q, w} P_{n}\right\}_{n \geq 1}$ is also orthogonal, where $L_{q, w}$ denotes the Hahn operator given by [19]

$$
L_{q, v v}(f)(x):=\frac{f(q x+w)-f(x)}{(q-1) x+w},(q \neq 0)
$$

Particular interest is devoted to the derivative operator $D(w=0$ and $q \rightarrow 1)$, the finite difference operator $\Delta(w=1$ and $q=1), q$-difference operator $L_{q}(w=0)$ and Dunkl operator $T_{\mu}=D+2 \mu L_{-1}, \mu>-1 / 2$. The literature on these topics is extremely vast. For a survey see for instance [1,5].
This notion has been extended to the d-orthogonality by Douak and Maroni [16], who introduced the notion of classical d-OPSs which means that both $\left\{P_{n}\right\}_{n \geq 0}$ and its derivative $\left\{P_{n+1}^{\prime}\right\}_{n \geq 0}$ are d-orthogonal. It is then significant to look for characteristic properties for $L_{q, w}$-classical d-OPSs as was done for the case $d=1$. In this context, for the derivative operator D, Douak and Maroni [17] generalized the Pearson's equation for classical d-OPSs. The Sturm-Liouville equation is generalized for particular families of classical d-OPSs, some examples may be found in $[2-4,14,15,18,21,26]$. Ben Cheikh and Ben Romdhane [2] gave some characteristic properties of the d-symmetric classical d-OPSs. Douak and Maroni [16], and later Boukhemis and Zerouki [14] quote some families of classical d-OPSs in the particular case $d=2$. For the operator Δ, some examples of classical discrete d-OPSs of Sheffer type may be found in [8, 10, 11]. Some examples of L_{q}-classical d-OPSs are stated in [9, 22, 27]. Finally for the operator T_{μ}, Ben Cheikh and Gaied [6] studied the Dunkl-classical d-OPSs in the d-symmetric case.

Our contribution in this direction is to determine all classical d-OPSs of Sheffer type (Theorem 3.1), as well as $(d+1)$-order differential equations satisfied by these polynomials. We also state two new characterizations of classical discrete d-OPSs of Sheffer type. We consider the operator $\sin (D)$, to complete the classification of the OPSs of Sheffer type as L-classical polynomials, and we characterize all $\sin (D)$ classical d-OPSs of Sheffer type. The cases $d=2$ and $d=3$ are specially carried out.

2. Main result

In this section, we state a general result that will have as applications the results of the next sections. To this end, we need to recall the following lemmas.
Lemma 2.1. [7] Let $P(A, H)=\left\{P_{n}\right\}_{n \geq 0}$ be a Sheffer-type polynomial set.
$\left\{P_{n}\right\}_{n \geq 0}$ is a d-OPS if and only if

$$
\left\{\begin{array}{l}
\frac{1}{H^{\prime}(t)} \text { is a polynomial of degree } \leq(d+1) \\
L_{H}(A) \text { is a polynomial of degree } d .
\end{array}\right.
$$

Lemma 2.2. [7] Let $P(A, H)$ be a d-OPS of Sheffer type. The polynomial set $\mathcal{K} P=P(K A, H)$ is a $d^{\prime}-O P S\left(d^{\prime}>d\right)$ iff $L_{H}(K)$ is a polynomial of degree d^{\prime}.
$\mathcal{K P}$ remains a d-OPS iff $L_{H}(K)$ is a polynomial of degree d having a leading coefficient different from that of $-L_{H}(A)$, or a polynomial of degree $<d$.

Lemma 2.3. [7] Let $P=P(A, H)$ be a d-OPS of Sheffer type, $\mathcal{K} P=P(K A, H)$ be a d^{\prime}-OPS, $d^{\prime}>d$, of Sheffer type and L be a lowering operator which commutates with the derivation operator D. If P is L-classical d-OPS then $\mathcal{K} P$ is L-classical d'-OPS.

Theorem 2.1. Let ψ be a formal power series satisfying

$$
\left\{\begin{array}{l}
\left(\frac{\psi^{\prime}}{\psi}\right)^{\prime}=-F\left(\frac{\psi^{\prime}}{\psi}\right) \\
\psi(0)=0, \psi^{\prime}(0)=1
\end{array}\right.
$$

where F is a monic polynomial of degree 2. Let $P(A, H)$ be a d-OPS of Sheffer type. $P(A, H)$ is $\psi(D)$-classical iff

$$
H(t)=\left(\frac{\psi^{\prime}}{\psi}\right)^{-1} \circ \frac{\pi(t)}{t}
$$

where π is a polynomial of degree $\leq d+1$ satisfying $\pi(0) \neq 0$ and $\pi-t \pi^{\prime}$ divides $t^{2} F\left(\frac{\pi(t)}{t}\right)$.
Proof. Let $P(A, H)=\left\{P_{n}\right\}_{n \geq 0}$ be a d-OPS of Sheffer type. $\left\{\frac{\psi(D) P_{n+1}}{n+1}\right\}_{n \geq 0}$ is generated by

$$
\sum_{n=0}^{\infty} \frac{\psi(D) P_{n+1}(x)}{n+1} \frac{t^{n}}{n!}=\frac{1}{t} \psi(D)\left(\sum_{n=0}^{\infty} P_{n+1}(x) \frac{t^{n+1}}{(n+1)!}\right)=\frac{1}{t} \psi(D)\left(A(t) e^{x H(t)}\right)=\frac{\psi(H(t))}{t} A(t) e^{x H(t)}
$$

which is the polynomial set of Sheffer type $P(K A, H)$, where $K(t)=\frac{\psi(H(t))}{t}$.
By Lemma 2.2, $P(K A, H)$ is a d-OPS iff $\frac{K^{\prime}(t)}{K(t) H^{\prime}(t)}=\frac{\psi^{\prime} \circ H}{\psi \circ H}(t)-\frac{1}{t H^{\prime}(t)}$ is a polynomial of degree d having a leading coefficient different from that of $-\frac{A^{\prime}}{A H^{\prime}}$, or a polynomial of degree $<d$. Since $R=\frac{1}{H^{\prime}}$ is a polynomial of degree $\leq(d+1)$ satisfying $R(0) \neq 0$, so $P(A, H)$ is $\psi(D)$-classical iff $\frac{\psi^{\prime} \circ H}{\psi \circ H}(t)=\frac{\pi(t)}{t}$, where π is a polynomial of degree $\leq(d+1)$ satisfying $\pi(0) \neq 0$. That is to say

$$
H(t)=\left(\frac{\psi^{\prime}}{\psi}\right)^{-1} \circ \frac{\pi(t)}{t}
$$

$P(A, H)$ is a d-OPS so by Lemma 2.1, $\frac{1}{H^{\prime}(t)}=\frac{t^{2} F(\pi / t)}{\pi-t \pi^{\prime}}$ is a polynomial, that is $\pi-t \pi^{\prime} \operatorname{divides} t^{2} F(\pi / t)$. Conversely, if $H(t)=\left(\frac{\psi^{\prime}}{\psi}\right)^{-1} \circ \frac{\pi(t)}{t}$, where π is a polynomial of degree $\leq d+1$ satisfying $\pi(0) \neq 0$ and $\pi-t \pi^{\prime}$ divides $t^{2} F\left(\frac{\pi(t)}{t}\right)$. Hence $\frac{1}{H^{\prime}(t)}=\frac{t^{2} F(\pi / t)}{\pi-t \pi^{\prime}}$ is a polynomial of leading coefficient $\pi(0)$. So, $\frac{\psi^{\prime} \circ H}{\psi \circ H}(t)-\frac{1}{t H^{\prime}(t)}=\frac{\pi(t)-1 / H^{\prime}(t)}{t}$ is a polynomial of degree $\leq d$.

This theorem provides three cases :
(1) $F(t)=(t-\alpha)^{2}, \alpha \in \mathbb{R}$
(2) $F(t)=(t-\alpha)(t-\beta), \alpha, \beta \in \mathbb{R}$
(3) $F(t)=(t-\alpha)(t-\bar{\alpha}), \alpha \in \mathbb{C}$

Case (1) The resolution of the system

$$
\left\{\begin{array}{l}
\left(\frac{\psi^{\prime}}{\psi}\right)^{\prime}=-\left(\frac{\psi^{\prime}}{\psi}-\alpha\right)^{2}, \\
\psi(0)=0, \psi^{\prime}(0)=1
\end{array}\right.
$$

leads to $\psi(t)=t e^{\alpha t}$. For $\alpha=0$, we have $\psi(D)=D$.

Case (2) The resolution of the system

$$
\left\{\begin{array}{l}
\left(\frac{\psi^{\prime}}{\psi}\right)^{\prime}=-\left(\frac{\psi^{\prime}}{\psi}-\alpha\right)\left(\frac{\psi^{\prime}}{\psi}-\beta\right) \\
\psi(0)=0, \psi^{\prime}(0)=1
\end{array}\right.
$$

leads to $\psi(t)=\frac{e^{\alpha t}-e^{\beta t}}{\alpha-\beta}$. For $\alpha=1$ and $\beta=0$, we have $\psi(D)=\Delta$.
Case (3) The resolution of the system

$$
\left\{\begin{array}{l}
\left(\frac{\psi^{\prime}}{\psi}\right)^{\prime}=-\left(\frac{\psi^{\prime}}{\psi}-\alpha\right)\left(\frac{\psi^{\prime}}{\psi}-\bar{\alpha}\right), \\
\psi(0)=0, \psi^{\prime}(0)=1
\end{array}\right.
$$

where $\alpha=a+i b(b \neq 0)$, leads to $\psi(t)=e^{a t} \frac{\sin (b t)}{b}$. For $a=0$ and $b=1$ we have $\psi(D)=\sin (D)$ which my be viewed as a central difference quotient operator since $\sin (D)=\frac{1}{2 i}\left(e^{i D}-e^{-i D}\right)$.
For these three cases, $\psi(D)$ is a lowering operator belonging to $\{D, \Delta, \sin (D)\}$. composed with a shift operator $e^{\alpha D}$. Since a shift operator preserves the d-orthogonality, we limit ourselves in the sequel to characterize L-classical d-OPS of Sheffer type where $L \in\{D, \Delta, \sin (D)\}$.

3. Characterization of classical d-OPSs of Sheffer type

In this section, we consider the first case where $\psi(D)=D$ and we determine D-classical d-OPSs of Sheffer type. The particular case $d=2$ was considered by Boukhemis [13]. He showed that the 2 -OPSs of Hermite type and of Laguerre type are D-classical.

Theorem 3.1. The only D-classical d-OPSs of Sheffer type are

$$
P\left(e^{\pi_{d+1}(t)}, a t\right) \text { and } P\left((1-b t)^{\alpha} e^{\frac{\beta}{1-b t}+\pi_{d-1}(t)}, \frac{a t}{1-b t}\right)
$$

where π_{i} is a polynomial of degree $i ; a, b$ are nonzero real constants and α, β are real numbers.
Proof. Let $P(A, H)$ be a d-OPS of Sheffer type. By Theorem 2.1, $P(A, H)$ is D-classical iff

$$
H(t)=\frac{t}{\pi(t)},
$$

where π is a polynomial of degree $\leq d+1$ satisfying $\pi(0) \neq 0$ and $\pi-t \pi^{\prime}$ divides π^{2}. It is clear that constant polynomials do the job, so suppose that π is not constant.
Taking the factorization of π over \mathbb{C}

$$
\pi(t)=c \prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}}
$$

where $\alpha_{k}, k=1, \ldots, r$ are nonzero complex numbers, $m_{k}, k=1, \ldots, r$ are positive integers and c is a nonzero real number. So the factorization of π^{\prime} is of the form

$$
\pi^{\prime}(t)=\prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}-1} Q(t)
$$

where Q is a polynomial of degree $r-1$, coprime with π. This gives

$$
\pi(t)-t \pi^{\prime}(t)=\prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}-1} S(t)
$$

where $S(t)=c \prod_{k=1}^{r}\left(t-\alpha_{k}\right)-t Q(t)$. We have $\operatorname{deg}(S)=\left\{\begin{array}{l}r \text { if } \operatorname{deg}(\pi)>1, \\ 0 \text { if } \operatorname{deg}(\pi)=1 .\end{array}\right.$
If $\operatorname{deg}(\pi)>1, S$ is not constant, so let α be a root of S. Since S divides $\pi-t \pi^{\prime}$ which divides π^{2}, there exists $i \in\{1, \ldots, r\}$ such that $\alpha=\alpha_{i}$. So, α_{i} is a root of Q, which is impossible because Q and π are coprime. It follows that $\operatorname{deg}(\pi)=1$.
We conclude that $H(t)=a t$ or $H(t)=\frac{a t}{1-b t}$, where a and b are nonzero real constants.

- If $H(t)=a t, \frac{A^{\prime}}{A H^{\prime}}=\frac{A^{\prime}}{a A}$ is a polynomial of degree d iff $A(t)=e^{\pi_{d-1}(t)}$, where π_{d+1} a polynomial of degree $d+1$.
- If $H(t)=\frac{a t}{1-b t^{\prime}}, \frac{A^{\prime}}{A H^{\prime}}$ must be a polynomial of degree d, that is $\frac{A^{\prime}(t)}{A(t)}=\frac{T(t)}{(1-b t)^{2}}$, where T is a polynomial of degree d. Taking the partial decomposition of this fraction, then its primitive, we obtain

$$
A(t)=(1-b t)^{\alpha} e \frac{\beta}{1-b t}+\pi_{d-1}(t)
$$

where α, β are real constants and π_{d-1} is a polynomial of degree $d-1$.
Lemma 3.1. Let $\varphi(t)=\sum_{n=0}^{\infty} a_{n} t^{n}, a_{0} \neq 0$, be a formal power series. We have

$$
\varphi(D) x=\left[x+\frac{\varphi^{\prime}(D)}{\varphi(D)}\right] \varphi(D)
$$

Theorem 3.2. The classical d-OPSs of Sheffer type satisfy a $(d+1)$-order differential equation of one of the forms

$$
\text { (1) } \quad\left[D \pi_{1}(D)-2 x D+2 n\right] y=0
$$

where π_{1} is a polynomial of degree d.

$$
\text { (2) } \quad\left[-x D(1-D)^{d}+D \pi_{2}(D)+n(1-D)^{d-1}\right] y=0
$$

where π_{2} is a polynomial of degree $\leq d$ satisfying $\pi_{2}(1) \neq 0$.
Proof. The classical d-OPSs of Sheffer type given by Theorem 3.1 are related to Hermite and Laguerre polynomials by [[7], p.12]

$$
P\left(e^{\pi_{d+1}(t)}, 2 t\right)=\varphi_{1}(D)\left(H_{n}(x)\right), \quad P\left((1-t)^{-\alpha-1} e^{\frac{\beta}{1-t}+\pi_{d-1}(t)}, \frac{-t}{1-t}\right)=\varphi_{2}(D)\left(L_{n}^{(\alpha)}(x)\right)
$$

where $\varphi_{1}(t)=e^{\pi_{d+1}\left(\frac{t}{2}\right)+\left(\frac{t}{2}\right)^{2}}, \varphi_{2}(t)=e^{\beta(1-t)+\pi_{d-1}\left(\frac{-t}{1-t}\right)}, \pi_{i}$ is a polynomial of degree i.
Since Hermite polynomials $H_{n}(x)$ satisfy the Sturm-Liouville equation [12]

$$
\left(D^{2}-2 x D+2 n\right) y=0
$$

Applying $\varphi_{1}(D)$ and using Lemma 3.1, we get

$$
\left[-D \pi_{d+1}^{\prime}\left(\frac{D}{2}\right)-2 x D+2 n\right] \varphi_{1}(D)\left(H_{n}\right)=0
$$

So we obtain the first equation where $\pi_{1}(t)=-\pi_{d+1}^{\prime}\left(\frac{t}{2}\right)$.
On the other hand, Laguerre polynomials $L_{n}^{(\alpha)}(x)$ satisfy the equation [12]

$$
\left(x D^{2}+(\alpha+1-x) D+n\right) y=0
$$

Now, applying $\varphi_{2}(D)$ and using Lemma 3.1, we get

$$
\begin{gathered}
{\left[-x D(1-D)+(\alpha+1) D+n-D(1-D) \frac{\varphi_{2}^{\prime}(D)}{\varphi_{2}(D)}\right] \varphi_{2}(D) y=0} \\
\text { Hence }\left[(\beta-x) D(1-D)+(\alpha+1) D+\frac{D}{1-D} \pi_{d-1}^{\prime}\left(\frac{-D}{1-D}\right)+n\right] \varphi_{2}(D) y=0
\end{gathered}
$$

Taking the Taylor development of π_{d-1}^{\prime} at the point 1, we obtain

$$
\left[(\beta-x) D(1-D)+(\alpha+1) D+D \sum_{k=0}^{d-2} \frac{a_{k}}{(1-D)^{k+1}}+n\right] \varphi_{2}(D) y=0
$$

where $a_{d-2} \neq 0$. Applying $(1-D)^{d-1}$, and using Lemma 3.1, we get

$$
\left[(\beta-x) D(1-D)^{d}+(\alpha+d) D(1-D)^{d-1}+D \sum_{k=0}^{d-2} a_{k}(1-D)^{d-2-k}+n(1-D)^{d-1}\right] y=0
$$

where $a_{d-2} \neq 0$. We obtain the second equation, where

$$
\pi_{2}(t)=\beta(1-t)^{d}+\alpha(1-t)^{d-1}+\sum_{k=0}^{d-2} a_{d-2-k}(1-t)^{k}, \quad \pi_{2}(1)=a_{d-2} \neq 0
$$

Since equations (1) and (2) are linear and homogeneous, multiplication of a solution by a constant again yields a solution. But such multiplication may destroy the property of being a Sheffer type set. We cannot therefore obtain a complete converse to Theorem 3.2. But we do have

Corollary 3.1. If a set $\left\{P_{n}\right\}$ satisfies an equation of the forms (1) or (2), then there exist nonzero constants c_{n}, so that $\left\{c_{n} P_{n}\right\}$ is a classical d-OPSs of Sheffer type.
Proof. $P\left(e^{\pi_{d+1}(t)}, 2 t\right)$ (resp. $P\left((1-t)^{-\alpha-1} e^{\frac{\beta}{1-t}+\pi_{d-1}(t)}, \frac{-t}{1-t}\right)$) satisfies equation (1) (resp. equation (2)). Since equation (1) (resp. (2)) has a polynomial solution, and this polynomial is unique to within an arbitrary multiplicative constant. Hence, c_{n} exists so that $P\left(e^{\pi_{d+1}(t)}, 2 t\right)=\left\{c_{n} P_{n}\right\}\left(\right.$ resp. $P\left((1-t)^{-\alpha-1} e^{\frac{\beta}{1-t}+\pi_{d-1}(t)}, \frac{-t}{1-t}\right)=$ $\left\{c_{n} P_{n}\right\}$).

4. Characterization of classical discrete d-OPSs of Sheffer type

In this section, we consider the second case where $\psi(D)=e^{D}-1$ and we Characterize Δ-classical d-OPSs of Sheffer type. The particular case $d=2$ was considered by Boukhemis [13]. He showed that the 2-OPSs of Charlier type and of Meixner type are Δ-classical.
Theorem 4.1. Let $P(A, H)$ be a d-OPS of Sheffer type. Then the following statements are equivalent :
(i) $P(A, H)$ is Δ-classical.
(ii) $H(t)=\log \left(\frac{\pi(t)}{\pi(t)-t}\right)$, where π is a real polynomial of degree $0 \leq n \leq d+1$, satisfying $\pi(0) \neq 0$ and if $n \geq 2$ the number of real and complex roots of $\pi(\pi-t)$ is equal to n.
(iii) $\frac{1}{H^{\prime}(t)}$ is equal to one of these polynomials :

- $\frac{1}{H^{\prime}(t)}= \pm(t-\alpha), \alpha$ is a nonzero real number,
- $\frac{1}{H^{\prime}(t)}=\frac{1}{\alpha_{1}-\alpha_{2}}\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right), \alpha_{1}, \alpha_{2}$ are nonzero real distinct numbers.
- $\frac{1}{H^{\prime}(t)}=\frac{1}{4 \alpha}(t-\alpha)(t+\alpha), \alpha$ is a nonzero real number,
- $\frac{1}{H^{\prime}(t)}=c \prod_{k=1}^{p}\left(t-\alpha_{k}\right),(3 \leq p \leq d+1)$ such that $\alpha_{1}, \cdots, \alpha_{p}$ are nonzero distinct complex numbers satisfying

$$
\left(\begin{array}{ccccc}
\alpha_{1} & \alpha_{2} & \cdots & \cdots & \alpha_{p} \tag{1}\\
\alpha_{1}^{2} & \alpha_{2}^{2} & \cdots & \cdots & \alpha_{p}^{2} \\
\vdots & \vdots & & & \vdots \\
\vdots & \vdots & & & \vdots \\
\alpha_{1}^{p} & \alpha_{2}^{p} & \cdots & \cdots & \alpha_{p}^{p}
\end{array}\right)\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{r} \\
-m_{r+1} \\
\vdots \\
-m_{p}
\end{array}\right)=\frac{1}{c}\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
\frac{p}{(p-1)} \sum_{i=1}^{r} m_{i} \alpha_{i}
\end{array}\right)
$$

where the m_{i} 's are positive integers such that $\sum_{i=1}^{r} m_{i}=\sum_{i=r+1}^{p} m_{i}=p$
Proof. (i) \Leftrightarrow (ii) Let $P(A, H)$ be a d-OPS of Sheffer type. By Theorem 2.1, $P(A, H)$ is Δ-classical iff

$$
H(t)=\log \left(\frac{\pi(t)}{\pi(t)-t}\right)
$$

where π is a polynomial of degree $\leq d+1$ satisfying $\pi(0) \neq 0$ and $\pi-t \pi^{\prime}$ divides $\pi(\pi-t)$.
It is clear that polynomials of degree ≤ 1 do the job, so suppose that $\operatorname{deg} \pi$ is an integer $n \geq 2$.
Taking the factorization of π and $\pi-t$ over \mathbb{C}

$$
\pi(t)=c \prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}}, \quad \pi(t)-t=c \prod_{k=1}^{r^{\prime}}\left(t-\beta_{k}\right)^{m_{k}^{\prime}}
$$

where the α_{k}, β_{k} are nonzero numbers, the m_{k}, m_{k}^{\prime} are positive integers and c is a nonzero real number. So

$$
\pi(t)-t \pi^{\prime}(t)=\prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}-1} S_{1}(t)
$$

$$
\text { and } \quad \pi(t)-t \pi^{\prime}(t)=(\pi(t)-t)-t\left(\pi^{\prime}(t)-1\right)=\prod_{k=1}^{r^{\prime}}\left(t-\beta_{k}\right)^{m_{k}^{\prime}-1} S_{2}(t)
$$

where S_{1} and π are coprime, S_{2} and $\pi-t$ are coprime.
Since π and $\pi-t$ are coprime, so the $\alpha_{k} s$ are different from the $\beta_{k} s$, we get

$$
\pi(t)-t \pi^{\prime}(t)=\prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}-1} \prod_{k=1}^{r^{\prime}}\left(t-\beta_{k}\right)^{m_{k}^{\prime}-1} S(t)
$$

where S is coprime with π and $\pi-t$.
It follows that $\pi-t \pi^{\prime}$ divides $\pi(\pi-t)$ iff S is a constant. That is

$$
\begin{equation*}
\pi-t \pi^{\prime}=c(1-n) \prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}-1} \prod_{k=1}^{r^{\prime}}\left(t-\beta_{k}\right)^{m_{k}^{\prime}-1} \tag{2}
\end{equation*}
$$

which is equivalent to $n=r+r^{\prime}$.
(ii) \Rightarrow (iii) Suppose that $H(t)=\log \left(\frac{\pi(t)}{\pi(t)-t}\right)$, where π is a polynomial of degree $0 \leq n \leq d+1$ such that $\pi(0) \neq 0$ and the number of real and complex roots of $\pi(\pi-t)$ is equal to n if $n \geq 2$.

- If $n=0$, so $\frac{1}{H^{\prime}(t)}=-(t-\alpha), \alpha$ is a nonzero real number.
- If $n=1, \frac{1}{H^{\prime}(t)}=(t-\alpha)$ or $\frac{1}{H^{\prime}(t)}=\frac{1}{\alpha_{1}-\alpha_{2}}\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right), \alpha, \alpha_{1}, \alpha_{2}$ are nonzero real numbers.
- If $n \geq 2$, define $S_{k}, k=1, \ldots, n$ by the relations $S_{k}=\sum_{i=1}^{r} m_{i} \alpha_{i}^{k}$, where the $\alpha_{i}^{\prime} s$ are the real and complex roots of multiplicity m_{i} of the polynomial $\pi(t)$ that will be noted by

$$
\begin{equation*}
\pi(t)=a_{0} t^{n}+a_{1} t^{n-1}+\cdots+a_{n-1} t+a_{n} \tag{3}
\end{equation*}
$$

Taking $\pi(t)$ of the form $\pi(t)=a_{0} \prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}}$, we deduce that $\pi^{\prime}(t)=\pi(t) \sum_{k=1}^{r} \frac{m_{k}}{t-\alpha_{k}}$.
Replacing $\frac{1}{t-\alpha_{k}}$ by its series expansion $\frac{1}{t-\alpha_{k}}=\frac{1}{t}+\frac{\alpha_{k}}{t^{2}}+\frac{\alpha_{k}^{2}}{t^{3}}+\cdots$, we get

$$
\begin{equation*}
\pi^{\prime}(t)=\pi(t)\left[\frac{n}{t}+\frac{S_{1}}{t^{2}}+\frac{S_{2}}{t^{3}}+\cdots\right] \tag{4}
\end{equation*}
$$

Substituting (3) in (4) gives

$$
n a_{0} t^{n-1}+(n-1) a_{1} t^{n-2}+\cdots+2 a_{n-2} t+a_{n-1}=\left(a_{0} t^{n}+a_{1} t^{n-1}+\cdots+a_{n-1} t+a_{n}\right)\left[\frac{n}{t}+\frac{S_{1}}{t^{2}}+\frac{S_{2}}{t^{3}}+\cdots\right]
$$

Comparing coefficients of t^{k} on both sides, we obtain the Newton's identities [23]

$$
\left\{\begin{array}{l}
a_{0} S_{1}+a_{1}=0 \tag{5}\\
a_{0} S_{2}+a_{1} S_{1}+2 a_{2}=0 \\
a_{0} S_{3}+a_{1} S_{2}+a_{2} S_{1}+3 a_{3}=0 \\
\vdots \\
a_{0} S_{n-1}+a_{1} S_{n-2}+\cdots+a_{n-2} S_{1}+(n-1) a_{n-1}=0 \\
a_{0} S_{n}+a_{1} S_{n-1}+\cdots+a_{n-1} S_{1}+n a_{n}=0
\end{array}\right.
$$

On the other hand, by hypothesis, the number of real and complex roots of $\pi-t$ is equal to $n-r$. So $\pi-t$ can be written in the forms

$$
\pi(t)-t=a_{0} t^{n}+a_{1} t^{n-1}+\cdots+\left(a_{n-1}-1\right) t+a_{n}=a_{0} \prod_{k=r+1}^{n}\left(t-\alpha_{k}\right)^{m_{k}}
$$

We now apply the same reasoning, with S_{k} replaced by $T_{k}=\sum_{i=r+1}^{n} m_{i} \alpha_{i}^{k}$, to obtain the Newton's identities

$$
\left\{\begin{array}{l}
a_{0} T_{1}+a_{1}=0 \tag{6}\\
a_{0} T_{2}+a_{1} T_{1}+2 a_{2}=0 \\
a_{0} T_{3}+a_{1} T_{2}+a_{2} T_{1}+3 a_{3}=0 \\
\vdots \\
a_{0} T_{n-1}+a_{1} T_{n-2}+\cdots+a_{n-2} T_{1}+(n-1)\left(a_{n-1}-1\right)=0 \\
a_{0} T_{n}+a_{1} T_{n-1}+\cdots+\left(a_{n-1}-1\right) T_{1}+n a_{n}=0
\end{array}\right.
$$

The resolution of the systems (5) and (6) leads to two cases

- If $n=2: S_{k}=2 \alpha_{1}^{k}$ and $T_{k}=2 \alpha_{2}^{k}$ satisfy $\left\{\begin{array}{l}S_{1}=T_{1}-\frac{1}{a_{0}} \\ S_{2}=T_{2}+\frac{a_{1}}{a_{0}^{2}}-\frac{T_{1}}{a_{0}}\end{array}\right.$.

Replacing a_{1} by $1-a_{0} T_{1}$, we get $\left\{\begin{array}{l}\alpha_{1}=-\frac{1}{4 a_{0}} \\ \alpha_{2}=\frac{1}{4 a_{0}}\end{array}\right.$. So $\frac{1}{H^{\prime}(t)}=\frac{1}{4 \alpha}(t-\alpha)(t+\alpha)$.

- If $n \geq 3:\left\{\begin{array}{l}S_{k}=T_{k}, \forall 1 \leq k \leq n-2 \\ S_{n-1}=T_{n-1}-\frac{n-1}{a_{0}} \\ S_{n}=T_{n}+\frac{(n-1) a_{1}}{a_{0}^{2}}-\frac{T_{1}}{a_{0}}\end{array}\right.$. Replacing a_{1} by $-a_{0} T_{1}$, we get $\left\{\begin{array}{l}S_{k}=T_{k}, \forall 1 \leq k \leq n-2 \\ S_{n-1}=T_{n-1}-\frac{n-1}{a_{0}} \\ S_{n}=T_{n}-\frac{n}{a_{0}} T_{1}\end{array}\right.$.

On the other hand, we have $H(t)=\log \left(\frac{\pi(t)}{\pi(t)-t}\right)$, hence $\frac{1}{H^{\prime}}=\frac{\pi(\pi-t)}{\pi-t \pi^{\prime}}$. Analysis similar to that in the proof of
(i) $\Leftrightarrow(i i)$ shows that $\pi(t)-t \pi^{\prime}(t)=a_{0}(1-n) \prod_{k=1}^{n}\left(t-\alpha_{k}\right)^{m_{k}-1}$. It follows that

$$
\frac{1}{H^{\prime}(t)}=\frac{a_{0}}{1-n} \prod_{k=1}^{n}\left(t-\alpha_{k}\right)=c \prod_{k=1}^{n}\left(t-\alpha_{k}\right)
$$

where $\alpha_{1}, \ldots, \alpha_{n}$ satisfy the equations

$$
\left\{\begin{array}{l}
S_{k}=T_{k}, \forall 1 \leq k \leq n-2 \tag{7}\\
S_{n-1}=T_{n-1}+\frac{1}{c} \\
S_{n}=T_{n}+\frac{n}{(n-1) c} S_{1}
\end{array}\right.
$$

which is equivalent to (1).
(iii) \Rightarrow (ii)

- If $\frac{1}{H^{\prime}(t)}=-(t-\alpha)$, since $H(0)=0$, it follows that $H(t)=\log \left(\frac{\alpha}{\alpha-t}\right)=\log \left(\frac{\pi}{\pi-t}\right), \pi=\alpha$.
- If $\frac{1}{H^{\prime}(t)}=(t-\alpha)$, so $H(t)=\log \left(\frac{t-\alpha}{-\alpha}\right)=\log \left(\frac{\pi}{\pi-t}\right)$, $\pi=t-\alpha$.
- If $\frac{1}{H^{\prime}(t)}=\frac{1}{\alpha_{1}-\alpha_{2}}\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right)$, so $H(t)=\log \left(\frac{\alpha_{2}\left(t-\alpha_{1}\right)}{\alpha_{1}\left(t-\alpha_{2}\right)}\right)=\log \left(\frac{\pi}{\pi-t}\right), \pi=\frac{\alpha_{2}}{\alpha_{2}-\alpha_{1}}\left(t-\alpha_{1}\right)$.
- If $\frac{1}{H^{\prime}(t)}=\frac{1}{4 \alpha}(t-\alpha)(t+\alpha)$, so $H(t)=\log \left(\frac{t-\alpha}{t+\alpha}\right)^{2}=\log \left(\frac{\pi}{\pi-t}\right), \pi=-\frac{1}{4 \alpha}(t-\alpha)^{2}$.
- If $\frac{1}{H^{\prime}(t)}=c \prod_{k=1}^{n}\left(t-\alpha_{k}\right),(3 \leq n \leq d+1)$ such that $\alpha_{1}, \cdots, \alpha_{n}$ are nonzero distinct complex numbers satisfying
(1). Let $\pi(t)=c(1-n) \prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}}$. If we take the notation (3), we get (5), and hence we deduce (6) from (7). Newton's identities given by (6), implies that $\pi(t)-t=c(1-n) \prod_{k=r+1}^{p}\left(t-\alpha_{k}\right)^{m_{k}}$. So the number of roots of $\pi(\pi-t)$ is equal to p, it follows by the same method as in (2), that $\pi-t \pi^{\prime}=c(1-p)^{2} \prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}-1} \prod_{k=r+1}^{p}\left(t-\beta_{k}\right)^{m_{k}-1}$. Hence, $\frac{\pi(\pi-t)}{\pi-t \pi^{\prime}}=c \prod_{k=1}^{p}\left(t-\alpha_{k}\right)=\frac{1}{H^{\prime}}$. It follows, that $H(t)=\log \left(\frac{\pi(t)}{\pi(t)-t}\right)$, where π is a polynomial of degree $2 \leq p \leq d+1$, such that the number of roots of $\pi(\pi-t)$ is equal to p.

Examples.

1. $d=1$:

- $\frac{1}{H^{\prime}(t)}= \pm(t-\alpha), \alpha$ is a nonzero real number : Charlier polynomials.
- $\frac{1}{H^{\prime}(t)}=\frac{1}{\alpha_{1}-\alpha_{2}}\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right), \alpha_{1}, \alpha_{2}$ are nonzero distinct real numbers : Meixner polynomials.
- $\frac{1}{H^{\prime}(t)}=\frac{1}{4 \alpha}(t-\alpha)(t+\alpha), \alpha$ is a nonzero real number : Meixner polynomials.

2. $d=2$:

- $\frac{1}{H^{\prime}(t)}= \pm(t-\alpha), \alpha$ is a nonzero real number : 2-OPS of Charlier type.
- $\frac{1}{H^{\prime}(t)}=\frac{1}{\alpha_{1}-\alpha_{2}}\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right), \alpha_{1}, \alpha_{2}$ are nonzero distinct real numbers : 2-OPS of Meixner type.
- $\frac{1}{H^{\prime}(t)}=\frac{1}{4 \alpha}(t-\alpha)(t+\alpha), \alpha$ is a nonzero real number : 2-OPS of Meixner type.
- $\frac{1}{H^{\prime}(t)}=c\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right)\left(t-\alpha_{3}\right), \alpha_{1}, \alpha_{2}, \alpha_{3}$ are nonzero distinct complex numbers satisfying one of these two equations

$$
\left(\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \alpha_{3}^{2} \\
\alpha_{1}^{3} & \alpha_{2}^{3} & \alpha_{3}^{3}
\end{array}\right)\left(\begin{array}{c}
3 \\
-1 \\
-2
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 / c \\
9 \alpha_{1} / 2 c
\end{array}\right) ;\left(\begin{array}{lll}
\alpha_{1} & \alpha_{2} & \alpha_{3} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \alpha_{3}^{2} \\
\alpha_{1}^{3} & \alpha_{2}^{3} & \alpha_{3}^{3}
\end{array}\right)\left(\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right)=\left(\begin{array}{c}
0 \\
1 / c \\
9 \alpha_{3} / 2 c
\end{array}\right)
$$

which we can solve using Maple for example to get

$$
\frac{1}{H^{\prime}(t)}= \pm \frac{1}{54 \alpha^{2}}(t-\alpha)(t+2 \alpha)(t+8 \alpha)
$$

3. $d=3$:

- $\frac{1}{H^{\prime}(t)}= \pm(t-\alpha): 3$-OPS of Charlier type.
- $\frac{1}{H^{\prime}(t)}=\frac{1}{\alpha_{1}-\alpha_{2}}\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right), \alpha_{1}, \alpha_{2}$ are nonzero distinct real numbers : 3-OPS of Meixner type.
- $\frac{1}{H^{\prime}(t)}=\frac{1}{4 \alpha}(t-\alpha)(t+\alpha), \alpha$ is a nonzero real number : 3-OPS of Meixner type.
- $\frac{1}{H^{\prime}(t)}= \pm \frac{1}{54 \alpha^{2}}(t-\alpha)(t+2 \alpha)(t+8 \alpha)$.
- $\frac{1}{H^{\prime}(t)}=c\left(t-\alpha_{1}\right)\left(t-\alpha_{2}\right)\left(t-\alpha_{3}\right)\left(t-\alpha_{4}\right), \alpha_{1}, \ldots, \alpha_{4}$ are nonzero distinct complex numbers satisfying one of these equations

$$
\left(\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \alpha_{3}^{2} & \alpha_{4}^{2} \\
\alpha_{1}^{3} & \alpha_{2}^{3} & \alpha_{3}^{3} & \alpha_{4}^{3} \\
\alpha_{1}^{4} & \alpha_{2}^{4} & \alpha_{3}^{4} & \alpha_{4}^{4}
\end{array}\right)\left(\begin{array}{c}
4 \\
-2 \\
-1 \\
-1
\end{array}\right)= \pm\left(\begin{array}{c}
0 \\
0 \\
1 / c \\
\frac{16 \alpha_{1}}{3 c}
\end{array}\right) ;\left(\begin{array}{cccc}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \alpha_{3}^{2} & \alpha_{4}^{2} \\
\alpha_{1}^{3} & \alpha_{2}^{3} & \alpha_{3}^{3} & \alpha_{4}^{3} \\
\alpha_{1}^{4} & \alpha_{2}^{4} & \alpha_{3}^{4} & \alpha_{4}^{4}
\end{array}\right)\left(\begin{array}{c}
3 \\
1 \\
-2 \\
-2
\end{array}\right)= \pm\left(\begin{array}{c}
0 \\
0 \\
1 / c \\
\frac{4\left(3 \alpha_{1}+\alpha_{2}\right)}{3 c}
\end{array}\right) ;
$$

$$
\left(\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \alpha_{3}^{2} & \alpha_{4}^{2} \\
\alpha_{1}^{3} & \alpha_{2}^{3} & \alpha_{3}^{3} & \alpha_{4}^{3} \\
\alpha_{1}^{4} & \alpha_{2}^{4} & \alpha_{3}^{4} & \alpha_{4}^{4}
\end{array}\right)\left(\begin{array}{c}
3 \\
1 \\
-3 \\
-1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
1 / c \\
\frac{4\left(3 \alpha_{1}+\alpha_{2}\right)}{3 c}
\end{array}\right) ;\left(\begin{array}{llll}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \alpha_{3}^{2} & \alpha_{4}^{2} \\
\alpha_{1}^{3} & \alpha_{2}^{3} & \alpha_{3}^{3} & \alpha_{4}^{3} \\
\alpha_{1}^{4} & \alpha_{2}^{4} & \alpha_{3}^{4} & \alpha_{4}^{4}
\end{array}\right)\left(\begin{array}{c}
2 \\
2 \\
-2 \\
-2
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\frac{1 / c}{\frac{8\left(\alpha_{1}+c_{2}\right)}{3 c}}
\end{array}\right) ;
$$

which gives the solutions

$$
\begin{gathered}
\frac{1}{H^{\prime}(t)}= \pm \frac{1}{2^{8} 3 \alpha^{3}}(t-\alpha)(t+3 \alpha)[t+(7+4 \sqrt{2} i) \alpha][t+(7-4 \sqrt{2} i) \alpha] \\
\frac{1}{H^{\prime}(t)}= \pm \frac{1}{2^{6} 3 \alpha^{3}}(t-\alpha)(t-9 \alpha)[t-(3-2 \sqrt{3}) \alpha][t-(3+2 \sqrt{3}) \alpha] \\
\frac{1}{H^{\prime}(t)}=\frac{1}{2^{4} 3 \alpha^{3}}(t-\alpha)(t+\alpha)(t-3 \alpha)(t+3 \alpha) .
\end{gathered}
$$

5. Characterization of $\sin D$-classical d-OPSs of Sheffer type

In this section, we consider the third case where $\psi(D)=\sin D$ and we Characterize $\sin D$-classical d-OPSs of Sheffer type.

Theorem 5.1. Let $P(A, H)$ be a d-OPS of Sheffer type. Then the following statements are equivalent:
(i) $P(A, H)$ is $\sin D$-classical.
(ii) $H(t)=\tan ^{-1}\left(\frac{t}{\pi(t)}\right)$, where π is a real polynomial of degree $0 \leq n \leq d+1$, satisfying $\pi(0) \neq 0$ and if $n \geq 2$, the number of roots of $\pi-$ it is equal to $\frac{n}{2}$.
(iii) $\frac{1}{H^{\prime}(t)}$ is equal to one of these polynomials :

- $\frac{1}{H^{\prime}(t)}=\frac{1}{\alpha}\left(t^{2}+\alpha^{2}\right), \alpha$ is a nonzero real number.
- $\frac{1}{H^{\prime}(t)}=\frac{1}{\operatorname{Im}(\alpha)}(t-\alpha)(t-\bar{\alpha}), \alpha \in \mathbb{C} \backslash \mathbb{R}$.
- $\frac{1}{H^{\prime}(t)}=\frac{1}{2 \alpha}\left(t^{2}+\alpha^{2}\right), \alpha$ is a nonzero real number.
- $\frac{1}{H^{\prime}(t)}=c \prod_{k=1}^{r}\left(t-\alpha_{k}\right)\left(t-\bar{\alpha}_{k}\right),(2 \leq r \leq(d+1) / 2), \alpha_{1}, \cdots, \alpha_{r} \in \mathbb{C} \backslash \mathbb{R}$ satisfying

$$
\left(\begin{array}{cccccc}
\alpha_{1} & \cdots & \alpha_{r} & \bar{\alpha}_{1} & \cdots & \bar{\alpha}_{r} \tag{8}\\
\alpha_{1}^{2} & \cdots & \alpha_{r}^{2} & \bar{\alpha}_{1}^{2} & \cdots & \bar{\alpha}_{r}^{2} \\
\vdots & & \vdots & \vdots & & \vdots \\
\vdots & & \vdots & \vdots & & \vdots \\
\vdots & & \vdots & \vdots & & \vdots \\
\alpha_{1}^{2 r} & \cdots & \alpha_{r}^{2 r} & \bar{\alpha}_{1}^{2 r} & \cdots & \bar{\alpha}_{r}^{2 r}
\end{array}\right)\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{r} \\
-m_{1} \\
\vdots \\
-m_{r}
\end{array}\right)=-\frac{2 i}{c}\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
\frac{2 r}{2 r-1} \sum_{i=1}^{r} m_{i} \alpha_{i}
\end{array}\right)
$$

where the m_{i} 's are positive integers such that $\sum_{i=1}^{r} m_{i}=2 r$

Proof. (i) $\Leftrightarrow(i i)$ Let $P(A, H)$ be a d-OPS of Sheffer type. By Theorem 2.1, $P(A, H)$ is $\sin D$-classical iff

$$
H(t)=\tan ^{-1}\left(\frac{t}{\pi(t)}\right) .
$$

where π is a polynomial of degree $\leq d+1$ satisfying $\pi(0) \neq 0$ and $\pi-t \pi^{\prime}$ divides $\pi^{2}+t^{2}$. It is clear that polynomials of degree ≤ 1 do the job, so suppose that $\operatorname{deg} \pi$ is an integer $n \geq 2$.
Taking the factorization of $\pi-$ it and $\pi+$ it over \mathbb{C}

$$
\pi(t)-i t=c \prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}}, \quad \pi(t)+i t=c \prod_{k=1}^{r}\left(t-\bar{\alpha}_{k}\right)^{m_{k}}
$$

where $\alpha_{1}, \ldots, \alpha_{r} \in \mathbb{C} \backslash \mathbb{R}, m_{1}, \ldots, m_{r}$ are positive integers and c is a nonzero real number. So

$$
\begin{aligned}
& \pi(t)-t \pi^{\prime}(t)=(\pi(t)-i t)-t(\pi(t)-i t)^{\prime}=\prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}-1} S_{1}(t) \\
& \text { and } \pi(t)-t \pi^{\prime}(t)=(\pi(t)+i t)-t(\pi(t)+i t)^{\prime}=\prod_{k=1}^{r}\left(t-\bar{\alpha}_{k}\right)^{m_{k}-1} \overline{S_{1}}(t),
\end{aligned}
$$

where S_{1} and π - it are coprime, $\overline{S_{1}}$ and $\pi+i t$ are coprime. So,

$$
\pi(t)-t \pi^{\prime}(t)=\prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}-1}\left(t-\bar{\alpha}_{k}\right)^{m_{k}-1} S(t)
$$

where S is coprime with π-it and $\pi+i t$.
It follows that $\pi-t \pi^{\prime}$ divides $\pi^{2}+t^{2}$ iff S is a constant. That is

$$
\begin{equation*}
\pi-t \pi^{\prime}=c(1-p) \prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}-1}\left(t-\bar{\alpha}_{k}\right)^{m_{k}-1} \tag{9}
\end{equation*}
$$

which is equivalent to $n=2 r$.
(ii) $\Rightarrow($ iii $) H(t)=\tan ^{-1}\left(\frac{t}{\pi(t)}\right)$, where π is a polynomial of degree $0 \leq n \leq d+1$, satisfying $\pi(0) \neq 0$ and if $n \geq 2$, the number r of roots of $\pi-$ it is equal to $\frac{n}{2}$.

- If $n=0$, so $\frac{1}{H^{\prime}(t)}=\frac{1}{\alpha}\left(t^{2}+\alpha^{2}\right), \alpha$ is a nonzero real number.
- If $n=1$, so $\frac{1}{H^{\prime}(t)}=\frac{1}{\operatorname{Im}(\alpha)}(t-\alpha)(t-\bar{\alpha}), \alpha \in \mathbb{C} \backslash \mathbb{R}$.
- If $n=2 r \geq 2$, denote by $\pi(t)-i t=a_{0} t^{n}+a_{1} t^{n-1}+\cdots+a_{n-1} t+a_{n}=a_{0} \prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}}$.

So, $\pi(t)+i t=a_{0} t^{n}+a_{1} t^{n-1}+\cdots+\left(a_{n-1}+2 i\right) t+a_{n}=a_{0} \prod_{k=1}^{r}\left(t-\bar{\alpha}_{k}\right)^{m_{k}}$.
Define $S_{k}, k=1, \ldots, n$ by the relations $S_{k}=\sum_{i=1}^{r} m_{i} \alpha_{i}^{k}$. Analysis similar to that in the proof of Theorem 4.1
gives the Newton's identities

$$
\left\{\begin{array}{l}
a_{0} S_{1}+a_{1}=0 \\
a_{0} S_{2}+a_{1} S_{1}+2 a_{2}=0 \\
a_{0} S_{3}+a_{1} S_{2}+a_{2} S_{1}+3 a_{3}=0 \\
\vdots \\
a_{0} S_{n-1}+\cdots+a_{n-2} S_{1}+(n-1) a_{n-1}=0 \\
a_{0} S_{n}+a_{1} S_{n-1}+\cdots+a_{n-1} S_{1}+n a_{n}=0
\end{array} \quad ;\left\{\begin{array}{l}
a_{0} \bar{S}_{1}+a_{1}=0 \\
a_{0} \bar{S}_{2}+a_{1} \bar{S}_{1}+2 a_{2}=0 \\
a_{0} \bar{S}_{3}+a_{1} \bar{S}_{2}+a_{2} \bar{S}_{1}+3 a_{3}=0 \\
\vdots \\
a_{0} \bar{S}_{n-1}+\cdots+a_{n-2} \bar{S}_{1}+(n-1)\left(a_{n-1}+2 i\right)=0 \\
a_{0} \bar{S}_{n}+a_{1} \bar{S}_{n-1}+\cdots+\left(a_{n-1}+2 i\right) \bar{S}_{1}+n a_{n}=0
\end{array}\right.\right.
$$

The resolution of these systems leads to two cases

- If $n=2: S_{k}=2 \alpha_{1}^{k}, k=1,2$ satisfy $\left\{\begin{array}{l}S_{1}=\bar{S}_{1}+\frac{2 i}{a_{0}} \\ S_{2}=\bar{S}_{2}-\frac{2 i a_{1}}{a_{0}^{2}}+\frac{2 i}{a_{0}} \bar{S}_{1} \text {. } . ~ . ~ . ~\end{array}\right.$

Replacing a_{1} by $-2 i-a_{0} \bar{S}_{1}$, we get $\alpha_{1}=\frac{i}{2 a_{0}}$. So $\frac{1}{H^{\prime}(t)}=\frac{1}{2 \alpha}(t-i \alpha)(t+i \alpha)$.

- If $n \geq 3:\left\{\begin{array}{l}S_{k}=\bar{S}_{k}, \forall 1 \leq k \leq n-2 \\ S_{n-1}=\bar{S}_{n-1}+\frac{2 i(n-1)}{a_{0}} \\ S_{n}=\bar{S}_{n}-\frac{2 i\left(n-1 a_{1}\right.}{a_{0}^{2}}+\frac{2 i}{a_{0}} S_{1}\end{array}\right.$. Replacing a_{1} by $-a_{0} S_{1}$, we get $\left\{\begin{array}{l}S_{k}=\bar{S}_{k}, \forall 1 \leq k \leq n-2 \\ S_{n-1}=\bar{S}_{n-1}+\frac{2 i(n-1)}{a_{0}} \\ S_{n}=\bar{S}_{n}+\frac{2 i n}{a_{0}} S_{1} .\end{array}\right.$

On the other hand, we have $H(t)=\tan ^{-1}\left(\frac{t}{\pi(t)}\right)$, hence $\frac{1}{H^{\prime}}=\frac{\pi^{2}+t^{2}}{\pi-t \pi^{\prime}}$. Analysis similar to that in the proof of
$(i) \Leftrightarrow(i i)$ shows that $\pi(t)-t \pi^{\prime}(t)=a_{0}(1-n) \prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}-1}\left(t-\bar{\alpha}_{k}\right)^{m_{k}-1}$.
It follows that

$$
\frac{1}{H^{\prime}(t)}=\frac{a_{0}}{1-n} \prod_{k=1}^{r}\left(t-\alpha_{k}\right)\left(t-\bar{\alpha}_{k}\right)=c \prod_{k=1}^{r}\left(t-\alpha_{k}\right)\left(t-\bar{\alpha}_{k}\right)
$$

where $\alpha_{1}, \ldots, \alpha_{n}$ satisfy the equations

$$
\left\{\begin{array}{l}
S_{k}=\bar{S}_{k}, \forall 1 \leq k \leq n-2 \\
S_{n-1}=\bar{S}_{n-1}-\frac{2 i}{c} \\
S_{n}=\bar{S}_{n}-\frac{2 i n}{(n-1) c} S_{1}
\end{array}\right.
$$

which is equivalent to (8).
(iii) \Rightarrow (ii) - If $\frac{1}{H^{\prime}(t)}=\frac{1}{\alpha}\left(t^{2}+\alpha^{2}\right)$, since $H(0)=0$, it follows that $H(t)=\tan ^{-1}\left(\frac{t}{\pi}\right), \pi=\alpha$.

- If $\frac{1}{H^{\prime}(t)}=\frac{1}{\operatorname{Im}(\alpha)}(t-\alpha)(t-\bar{\alpha}), \alpha=x+i y \in \mathbb{C} \backslash \mathbb{R}$. So $H(t)=\tan ^{-1}\left(\frac{t}{\pi}\right), \pi=-\frac{x}{y} t+\frac{x^{2}+y^{2}}{y}$.
- If $\frac{1}{H^{\prime}(t)}=\frac{1}{2 \alpha}\left(t^{2}+\alpha^{2}\right)$, so $H(t)=\tan ^{-1}\left(\frac{t}{\pi}\right), \pi=\frac{-1}{2 \alpha}\left(t^{2}-\alpha^{2}\right)$.
- If $\frac{1}{H^{\prime}(t)}=c \prod_{k=1}^{r}\left(t-\alpha_{k}\right)\left(t-\bar{\alpha}_{k}\right),(2 \leq r \leq(d+1) / 2), \alpha_{1}, \cdots, \alpha_{r} \in \mathbb{C} \backslash \mathbb{R}$ satisfying (9). Let π be the polynomial defined by $\pi(t)-i t=c(1-p) \prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}}$. So the degree of π is equal to $\sum_{i=1}^{r} m_{i}=2 r$. It follows by the same method as in (9), that $\pi(t)-t \pi^{\prime}(t)=c(1-p)^{2} \prod_{k=1}^{r}\left(t-\alpha_{k}\right)^{m_{k}-1}\left(t-\bar{\alpha}_{k}\right)^{m_{k}-1}$. Hence, $\frac{\pi^{2}+t^{2}}{\pi-t \pi^{\prime}}=c \prod_{k=1}^{r}\left(t-\alpha_{k}\right)\left(t-\bar{\alpha}_{k}\right)=\frac{1}{H^{\prime}}$.
It follows that $H(t)=\tan ^{-1}\left(\frac{t}{\pi(t)}\right)$, where π is a polynomial of degree $n=2 r$ satisfying $\pi(0) \neq 0$ and the number of roots of $\pi-i t$ is equal to $n / 2$.

Examples.

1. $d=1$:

- $\frac{1}{H^{\prime}(t)}=\frac{1}{\alpha}\left(t^{2}+\alpha^{2}\right), \alpha$ is a nonzero real number : Meixner-Pollaczek polynomials.
- $\frac{1}{H^{\prime}(t)}=\frac{1}{\operatorname{Im}(\alpha)}(t-\alpha)(t-\bar{\alpha}), \alpha \in \mathbb{C} \backslash \mathbb{R}:$ Meixner-Pollaczek polynomials.
- $\frac{1}{H^{\prime}(t)}=\frac{1}{2 \alpha}\left(t^{2}+\alpha^{2}\right), \alpha$ is a nonzero real number : Meixner-Pollaczek polynomials.

2. $d=2$:

- $\frac{1}{H^{\prime}(t)}=\frac{1}{\alpha}\left(t^{2}+\alpha^{2}\right), \alpha$ is a nonzero real number : 2-OPS of Meixner-Pollaczek type.
- $\frac{1}{H^{\prime}(t)}=\frac{1}{\operatorname{Im}(\alpha)}(t-\alpha)(t-\bar{\alpha}), \alpha \in \mathbb{C} \backslash \mathbb{R}:$ 2-OPS of Meixner-Pollaczek type.
- $\frac{1}{H^{\prime}(t)}=\frac{1}{2 \alpha}\left(t^{2}+\alpha^{2}\right), \alpha$ is a nonzero real number : 2-OPS of Meixner-Pollaczek type.

3. $d=3$:

- $\frac{1}{H^{\prime}(t)}=\frac{1}{\alpha}\left(t^{2}+\alpha^{2}\right), \alpha$ is a nonzero real number : 3-OPS of Meixner-Pollaczek type.
- $\frac{1}{H^{\prime}(t)}=\frac{1}{\operatorname{Im}(\alpha)}(t-\alpha)(t-\bar{\alpha}), \alpha \in \mathbb{C} \backslash \mathbb{R}: 3$-OPS of Meixner-Pollaczek type.
- $\frac{1}{H^{\prime}(t)}=\frac{1}{2 \alpha}\left(t^{2}+\alpha^{2}\right), \alpha$ is a nonzero real number : 3-OPS of Meixner-Pollaczek type.
- $\frac{1}{H^{\prime}(t)}=c\left(t-\alpha_{1}\right)\left(t-\bar{\alpha}_{1}\right)\left(t-\alpha_{2}\right)\left(t-\bar{\alpha}_{2}\right), \alpha_{1}, \alpha_{2}$ are distinct numbers in $\mathbb{C} \backslash \mathbb{R}$ satisfying one of these equations
which yields

$$
\frac{1}{H^{\prime}(t)}=\frac{1}{24 \alpha^{3}}\left(t^{2}+9 \alpha^{2}\right)\left(t^{2}+\alpha^{2}\right)
$$

6. Concluding remarks

Remark 6.1. It's well known that all classical OPS satisfy a second order differential equation. A natural question arises:
Do all classical d-OPSs satisfy a $(d+1)$-order differential equation ?
The answer is affirmative for all known classical d-OPS (See for instance [2-4, 8, 14, 15, 18, 21]). In this paper, we provide a further case for which the answer of this question is also affirmative.

Remark 6.2. In this paper, we obtain all the lowering operator L used to classify the OPSs of Sheffer type as L-classical. It's of interest to generalize this result to d-OPSs of Sheffer type.

Acknowledgment

The author would like to thank the referee for his/her careful considerations.

References

[1] W.A. Al-Salam, Characterization theorems for orthogonal polynomials, P. Nevai Ed., Orthogonal Polynomials: Theory and Practice C294 (1990) 1-23.
[2] Y. Ben Cheikh, N. Ben Romdhane, On d-symmetric classical d-orthogonal polynomials, J. Comput. Appl. Math. 236 (2011) 85-93.
[3] Y. Ben Cheikh, M. Blel, d-orthogonality of a generalization of both laguerre and Hermite polynomials, to appear in Georgian Math. J.
[4] Y. Ben Cheikh, K. Douak, On the classical d-orthogonal polynomials defined by certain generating functions II, Bull. Belg. Math. Soc. 8 (2001) 591-605.
[5] Y. Ben Cheikh, M. Gaied, Characterization of the Dunkl-classical symmetric orthogonal polynomials, Appl. Math. Comput. 187 (2007) 105-114.
[6] Y. Ben Cheikh, M. Gaied, A characterization of Dunkl-classical d-symmetric d-orthogonal polynomials and its applications, J. Comput. Appl. Math. 236 (2011) 49-64.
[7] Y. Ben Cheikh, I. Gam, On some operators varying the dimensional parameters of d-orthogonality, Integr. Transf. Spec. F. 27 (2016) 731-746.
[8] Y. Ben Cheikh, I. Lamiri, A. Ouni, On Askey-scheme and d-orthogonality, I : A characterization theorem, J. Comput. Appl. Math. 233 (2009) 621-629.
[9] Y. Ben Cheikh, I. Lamiri, A. Ouni, d-orthogonality of Little q-Laguerre type polynomials, J. Comput. Appl. Math. 236 (2011) 74-84.
[10] Y. Ben Cheikh, A. Zaghouani, Some discrete d-orthogonal polynomial sets, J. Comput. Appl. Math. 156 (2003) 253-263.
[11] Y. Ben Cheikh, A. Zaghouani, d-orthogonality via generating functions, J. Comput. Appl. Math. 199 (2007) 2-22.
[12] S. Bochner, Über Sturm-Liouvillesche polynomsysteme, Math. Z. 29 (1929) 730-736.
[13] A. Boukhemis, On the classical 2-orthogonal polynomials sequences of Sheffer-Meixner type, Cubo. A Mathematical Journal 7 (2005) 39-55.
[14] A. Boukhemis, E. Zerouki, Classical 2-orthogonal polynomials and differential equations, Int. J. Math. Math. Sci. (2006) 1-32. Article ID 12640.
[15] K. Douak, The relation of the d-orthogonal polynomials to the Appell polynomials, J. Comput. Appl. Math. 2 (1996) $279-295$.
[16] K. Douak, P. Maroni, Les polynômes orthogonaux "classiques" de dimension deux, Analysis 12 (1992) 71-107.
[17] K. Douak, P. Maroni, Une caractérisation des polynômes d-orthogonaux classiques, J. Approx. Theory 82 (1995) 177-204.
[18] K. Douak, P. Maroni, On d-orthogonal Tchebyshev polynomials I, Appl. Numer. Math. 24 (1997) 23-53.
[19] V.W. Hahn, Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Math. Z. 39 (1935) 634-638.
[20] J. Van Iseghem, Vector orthogonal relations. Vector QD-algorithm, J. Comput. Appl. Math. 19 (1987) 141-150.
[21] I. Lamiri, A. Ouni, d-Orthogonality of Humbert and Jacobi type polynomials, J. Math. Anal. Appl. 341 (2008) 24-51.
[22] I. Lamiri, A. Ouni, d-orthogonality of some basic hypergeometric polynomials, Georgian Math. J. 20 (2013) no. 4 729-751.
[23] D. G. Mead, Newton's Identities, Amer. Math. Monthly 99 (1992) no. 8 749-751.
[24] P. Maroni, L'orthogonalité et les récurrences de polynômes d'ordre supérieur à deux, Ann. Fac. Sci. Toulouse 10 (1989) $105-139$.
[25] Earl D. Rainville, Special functions, Macmillan, New York, 1960.
[26] F. Tasdelen, S. Varma, On a different kind of d-orthogonal polynomials that generalize the Laguerre polynomials, Mathematica Aeterna 2 (2012) 561-572.
[27] A. Zaghouani, Some basic d-orthogonal polynomial sets, Georgian Math. J. 12 (2005) 583-593.

[^0]: 2010 Mathematics Subject Classification. 33C45, 42C05
 Keywords. Sheffer polynomials, d-orthogonality, Hahn property
 Received: 18 February 2017; Accepted: 13 November 2018
 Communicated by Dragan S. Djordjević
 Email addresses: youssef.bencheikh@planet.tn (Youssèf Ben Cheikh), gam_ines@yahoo.fr (Inès Gam)

