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Abstract. Several scholars are interested in fractional operators with integral inequalities. Due to its
characteristics and wide range of applications in science, engineering fields, artificial intelligence and frac-
tional inequalities should be employed in mathematical investigations. In this paper, we establish the new
identity for the Caputo-Fabrizio fractional integral operator. By utilizing this identity, the generalization
of Simpson type inequality for (@, m)-convex functions via the Caputo-Fabrizio fractional integral operator.
Furthermore, we also include the applications to special means, g-digamma functions, Simpson formula,
Matrix inequalities, Modified Bessel function, and mind-point formula. These applications have given a
new dimension to scholars.

1. Introduction

Convex functions have a known history in science and have been a focus of research for over a century.
Numerous scholars are interested in integral inequalities due to the immediately establish of convexity
theory and applications of fractional calculus. For many years, convex functions have been utilized to
investigate inequalities of the Hermite-Hadamard type, Simpson type, Hermite-Hadamard-Mercer type,
Ostrowski type, and other types. One of these integral inequalities, the Hermite-Hadamard inequality
discussed in [1] has attracted the interest of a wide range of scholars. Several inequalities of the trapezoidal
type were provided by Dragomir [2], Kirmaci [3], and give applications to special means. A few instances
of recent fractional integral operators that have been utilized to analyze, lots of mathematicians established
new refinements of the Hermite-Hadamard type inequality for various classes of convex functions and
mappings, such as harmonically convex functions [4], quasi convex functions [5], convex functions [6], m-
convex functions [7], s-convex functions of Raina type [8], and Riemann-Liouville [9], Proportional fractional
[10], k-Riemann-Liouville [11], Caputo-Fabrizio [12], and generalized Atangana-Baleanu operator [13]. It is
crucial we note that Leibniz and L'Hospital are with establish the idea of fractional calculus (1695). Other
mathematicians have a lot contributed to the topic of fractional calculus and its wide range of applications,
particularly Riemann, Liouville, Letnikov, Erdeli, Grunwald, and Kober. Fractional calculus is of interest
due to its nature how to deal with a range of real-world problems to many physical and engineering fields.
The investigation of fractional order integral and derivative functions over real and complex domains as
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well as its applications has become the focus of fractional calculus. Fractional calculus requires the use of
arithmetic from classical calculus to follow more particular results. Differential equations of fractional order
can be used to solve a wide range of mathematical models. Because they are particular cases of fractional
order mathematical models, fractional mathematical models have more certain and precise results than
classical mathematical models. Mathematical modelling can be utilized to define the endemics’” unique
transmission dynamics and obtain knowledge of how infection affects a new population. Non-integer
order fractional differential equations are utilized to enhance actual phenomena’ precision and accuracy.
Furthermore these articles [14-21] gives more information and application of fractional calculus. However,
we can take consider lots of orders and create much more significant result of fractional computation.
Fractional integral operators to demonstrate well-known inequalities in recent years mathematicians have
become more interested in employing a range of innovative theories. In fractional calculus, there exist
many different kinds of integral operators. These operators have application for crucial and well-known
integral inequalities.

In all of this years, Thomas Simpson established fundamental methods for numerical integration and
estimate of definite integrals that are now known as Simpson’s law. (1710-1761). But J. Kepler utilized
an identical approximation over a century before, which is because it is often referred to as Kepler’s
law. Estimates based just on a three-step quadratic kernel are often referred to as Newton-type results as
Simpson’s method utilizes the three-point Newton-Cotes quadrature rule.

Simpson quadrature formula (Simpsons 1/3):

) _ +
[ s 22 o +ar () ¢ fan)]. <1>
Simpson second formula or Newton-Cotes quadrature formula (Simpson's 3/8):
Fydn x o f o)+ 3 (22 ) 5 (D224 ). @

w1

The following estimation known as Simpson’s type inequality is one of many that are connected with
specific quadrature laws:

Theorem 1.1. [22] Let f : [w1,w2] — R be a four times continuously differentiable mapping on (w1, w2) and
IF9|. = SUP (01 02) |f@] < o, then following inequalities holds:

< 55 179 @2 - ).

flw)+ flw) 2, (fw+ws 1 w2
H e (S )]_wz—wlfwl £ () da

In recent years, numerous authors have focused on the generalization of Simpson’s type inequality in
various kinds of mappings. Some mathematicians have focused on the results of Simpson’s, and Newton’s
type in order to obtain a convex mapping since convexity theory is an efficient and quick method for solving
an immense kinds of problems from numerous areas of pure and applied mathematics. In particular,
Dragomir et al. [22] introduced the most recent Simpson’s inequalities and their applications in quadrature
formulas. Additionally, Alomari et al. [23] established some of Simpson’s type inequalities for s-convex
functions. Sarikaya et al. [24] then identified the significance of the dependence of the variance of the
Simpson’s type inequality on convexity. For harmonic convex, and p-harmonic convex maps the authors
established Newton's type inequality in [25]. A novel generalized, convex Newton-type inequality for
functions with the local fractional derivative was described by Iftikhar et al. [26].

Theorem 1.2. Let f : [wi, w2] — R be a differentiable mapping whose derivative is continuous on (w1, w,) and
f" € L|w1, wz], then the following inequality holds:
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where

=L “1)2 |’ (x)| dx. The bound (3) for L-Lipschitzian mapping was give in [22] by 2L (w; — w1).
Additionally, [22] provided the Simpson type inequality that is given below.

Theorem 1.3. Let f : [w1, w2] — R be an absolutely continuous mapping on (w1, wz) whose derivative belongs to
Lp [w1, 2], where 5 + ¢ =1, then the following inequality holds:

flw)+f(w2) 2 _ (w1+wn 1 w2 114201\ 1,
s sz e et

The following Hermite-Hadamard type inequalities for differentiable convex mappings that were stated
in [27].
Theorem 1.4. [27] Let f : I € R — IR be a differentiable mapping on I° where w1, w, € I with w1 < wy. If | is
convex on [wi, ws], then the following inequality holds:

fl

1 (V)
w2 — w1

)

w1 +a)2)

- g2t < e [If’(w1)|+
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Definition 1.5. [28] Let I be a convex set on R. If f : I — R is called convex on I for all (w1, w2) € I and 1 € [0,1],
then following inequality holds:

for+ 1 =n)w2) <nf(w)+ (1 -1n)f(w). (6)

The mapping f is concave on I the inequality (6) holds in reversed direction for all (w1, w,) € I and
nelo,1].

Definition 1.6. [29] A f : [0, w2) — R is said to be (o, m)-convex if (o, m) € [0, 1]2,f0r every x,y € [0, w,] and
1 € [0, 1], then following inequality holds:

fx+mA-ny)<n*f@)+m1-1")f(y).

Several mathematicians established new fractional operators, they are different from one another, the
locality and singularity are different. There are essentially two kind of nonlocal fractional derivatives,
the Riemann-Liouville and Caputo with singular kernels and others with non-singular kernels. In order
to give the fractional calculus motivation and bring the most effective operators to the discussion, the
Riemann-Liouville and Caputo-Fabrizio fractional integral operators is one of these as follows.

Definition 1.7. [30] Suppose f € L [w1, w,]. The left and right-sided Riemann-Liouville fractional integrals of order
a > 0 defined by:
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prm = o [ @ Fdn x> o

Lo = f () O, x < an
where I'(.) is the gamma function and I°, f () = I°_f (1) = f ().
1 2

Definition 1.8. [31] Let f € H (w1, w2), an < wa, for all a € [0,1], where B (@) > 0 is a normalizer satisfying
B(0) = B(1) = 1, then the left and right fractional integrals are defined by:

CFya _ *
(rrf) @ = ﬁ( ) ﬁ( 5 ) fwas
(e f) @) = ﬁf(xHM f F () dx.

The main goal in this article to established a new integral identity using the Caputo-Fabrizio fractional
integral operator, which holds a unique place among fractional integral operators. By employ this identity
to generalization the novel Simpson type inequality via (a, m)-convex function. We also include the ap-
plications to special means, g-digamma functions, Simpson formula, Matrix inequalities, Modified Bessel
function, and mind-point formula, taking many special cases of the main findings is discuses in literature.

2. Main results

In this section we established the new identity via Caputo-Fabrizio fractional integral operator. By using
this identity we obtain our main result.

Lemma 2.1. Let f : [ C [0,00) — R be an absolutely continuous mapping on I° where w1, w, € I with w1 < wy,
then the following equality holds:

[f(an) é_lf(w1+a)2)+f(g)2)]
(@) . N 1 )
s S W+ () ]+ 2 @

1
= (@) fo K() F (e + (1= ) or) i,
where
n-tnelol),

K(n) =
P a-saelia).

Proof. Let

1
I = fOK(n)f’(nwz+(1—n)w1)dn



A. Munir et al. / Filomat 38:10 (2024), 3295-3312 3299

fO% (’7_ %)f'(’?wz +(1-n)wi)dn
5
+£ (’7_ g)f’ (nw2 + (1 =) w1)dn

= L+D.

Integration by parts, we have

ho= f(n—é)f’(nwﬁ(l—n)wl)dn

1 1 1
= (1) S+ Q- - Dany
- 1 w1 + W 1 _
T B3(wr—wr) ( 2 )+ 6(a)2—w1)f(w1)
— 1 w1 + Wy 1 ml;rmz
T 3(wa— a)l)f( 2 )+ 6 (@ = a)l)f( —(a)2 Y f;l f (u)du. 7)
Multiply by “(“;gz(—‘;’l) with above equality (7), we get
alwr—w)’,  alwr—w) (w1 +@r)  alw;—aw) 5
s@ T 3B@ f( > ) 68 (@) flw 1)—m X f(u)du. ®)
Similarly,
1
5
L = ﬁ (TT - g)f' (nw2 + (1 =) wr)dn
1 5
T - (77_ g)f(ﬂwz +(1 _n)wl)@ -
- 1 w1 + W 1 B
T 3(wr—wr) ( 2 )+ 6(a)2—w1)f(w2)
= 1 w1+ w2 1 B 1 2
T 3(wy—an) ( 2 ) * 6 (s = a)1)f(w2) —(a)z "o j:;wz f (u) du. 9)
Multiply by “(“’5(;‘)“1)2 with above equality (9), we have
alwr—w)’,  alwr—w) (w1 +@)  alw;—aw)
B (@) k= 36 (@) f( 2 )+ 66 () fw2) - e )f f (u)du. (10)

Adding the equalities (8) and (10) and subtractmg 2(1 a) f (k), we obtain

a(wy — 1) B 2(1-a)

(h+b) B(a) B (a) f k)
a2 —wr) (w1 + w2 a(wy — ) sy
- ( 3p(a) f( 2 )+ 6ﬁ( a) f (@) ﬁ( D), f () du

a(wr —wi) (w1 + w> a(wr — wq) o 2(1-a)
e M f(“)2"mfwl;wf(”)d”J‘ s
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_ 2a(wy —wi) (w1 + @) a(wy — w1)
= 3@ f( )+(f w1)+f(wz))w
2(1 a)
o | a2
. tnen <wl+w2>+<f o
%JL
B (@) Jo, ﬁ( ) ﬁ( a) ﬁ( )
Thus, we have
1
@00 [ K@)f (rox+ (1= man)dy
[ flw) 4 (o +wr) flw2)
‘[6+8f( 2 )+6]
(1
e I M G [ a0}
The proof of Lemma 2.1 is completed. [
Theorem 2.2. Consider that the assumptions of Lemma 2.1 hold. If |f’| is (o, m)-convex on [w1, 2], then the

following fractional inequality holds:

fl) 4 (ontwr) fl@)
[ e () 62
L w e (Frs) @] + w0

2= 1-a X 3—2—a (1 _ 22+a X 31+a 32+a + 52+a 420 % 31+aa)

(a+1)(a+2)

< (a)2 - 0)1) [TI’Z

62 (2 (—1 432t _ 52 4 17 % 6“) 20 x 32y 4 5 x 6“a2)

o @+D@+2)

Proof. By using the Lemma 2.1, since |f’

Hﬂm)gdm+m)f?ﬂ

B (@)

a(wz—a))

2(1-a)
B (a)

n) w1)|dn

(S ) )+ (F1, ) (0] + £

IA

(w2 — w1)

IN

1
(wz—wl){fo ‘U‘g‘|f’(ﬂw2+(1—ﬂ)wl)|d77

— 5‘ | (nwz + (1 - 1) wl)ldn]
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f (@) +m(1-n%

1
_§ a | £/ ﬂ _ @ )
+£n 6‘(%7 f(m)+(1 ) dn
2—17ax3727a (1_22+a X31+0(_32+a+52+a +2ax3l+aa) (w2
B (@+1)(a+2) f(?)

672 (2(—1 + 3240 = 520 417 X 6°) + 29 x 3% + 5 X 6%0?)
(a+1)(x+2)

+m

This completes the proof. [J
Therefore, the following results can be deduce for convexity.

Corollary 2.3. If we choose m = o = 1 in Theorem 2.2, we get

Hf(é””+%f(“?”%“Z”)]‘Mffi”w [ ]
5 (a)z

)] (11)

Corollary 2.4. If we choose f (w1) = f (%) = f (w2) in Theorem 2.2, we get

‘f((m-;wz) B (a) [< I“f) k)+(cplng)(k)] 2(1 af)f( '

a(wr — w1)

271711 X 372704 (1 _ 22+a % 31+a _ 32+a + 52+a I 31+aa) W
< - ==
< (@2 —an)im (a+1)(x+2) f(m)

67270 (2(—1 4+ 3240 - 5240 + 17X 6%) + 29 X 3 + 5 6°2) | 1)
M @+ @+2) f (E) '

Corollary 2.5. If we choose m = a = 1 in Corollary 2.4, we get

(“52)- s [0+ (o]
< 5(‘”2—_ +]f @] (12)
Remark 2.6. If we choose m = a = 1 and $(0) = B (1) = 1 in Theorem 2.2, we get
‘ [f(a)1 +4f(“’1+“)2)+f(w2) () dx

5 (a)z

]

Remark 2.6 was proved by Sarikaya et. al in [32, Corollary 1].

[w1, o] and qz 1,
then the following fractional inequality holds:
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flw1) 4 (w1+wr f (w2)
H 6 +€f( 2 )+ 6 ]
pa) o a
o= (O () 0]+ T
1 2P+1 }% 2—1—0( ; 1 2—1—0( , q %
< (wz—wl)(6p+1+(p+1)) ((a+1) (wZ)‘q+m(§_a+l) (%))
1=2710\| rawp\|! (1 1-27172\, q%
+(m( a+1 )f(ﬁ) +(§_ a+1 ) )
’q,wehave
flw1)) 4 (w1+w) flw)
[ oo () }
B@ o o 2(1-a)
“aton—an G ©+ (T ] + =T @ |
< (a)z—a)1 77)0)1)|d77
< (w2 —w1) [f ‘17 ‘|f’(nw2+(1—n)w1)|dn
+ 77)“)1)|d77]
3 11IP ’7 q %
_ ) ’ - d
S w1)[[ L l=3 o) ([ 1 oonsa=mantan)
1 p 5 1 i
(-3t ]
: 17 % : a | g q ay | ¢ (@1 i %
< o[ [ o [ et sl (2o
1 p 1E 1 q 1l?
(o) (e ]
14 0op+ }—) y-1-a ) 1 2-1-a (w1 ‘7%
¢ ol e sl )

eyl

This completes the proof. [

7 (1 1-27la\ ]
+(§_ a+1 ) 1)) ’

Corollary 2.8. If we choose f (w1) = f(%) = f (wy) in Theorem 2.7, we get
‘f(a)ﬁrwz) B(a)

2 a(wy —w1)

2(1-a)
B (a)

(1) () + (P12, £) )] + f (k)'



A. Munir et al. / Filomat 38:10 (2024), 3295-3312 3303
1 1
142041 i [((21-0 1 27\ | e\
< — - — "=
< (o wl)(6p+1(p+1)) [((a+1) m(z oz+1)f(m) )
1
1-271-0\|_rap\[! (1 1-271 2\
+(m( a+l )f(%) +(§_ a+l ) ) ’

Corollary 2.9. If we choose m = o = 1 in Theorem 2.7, we get

oy L) o+ (L f (k)]‘

flw) 4 (or+aw), [fl@) B (a)
‘[ _f( ) } a(a)z—

1+27

< (wz—wl)(m) 27 [|f (@) +|f (@] (13)

[a)1, a)z] and q > 1,

then the following fractional inequality holds:

6 6f 2 6

POt (] 2

5 )1_; { 2—1—zx X 3—2—04 (1 _ 22+a X 31+a _ 32+a + 52+a + 20 % 31+aa)
m

‘[]ﬂ_'_é (a)1+a)2)+f(a)z)]

2(1

q

< (wz—w1)(72 @+1)(a+2) f,(%)

1
q]”

672 (2 (=1 + 320 — 520 417 X 6) + 29 x 3% + 5 X 6%0?)

o @+D@+2)

(o)

Proof. By using the Lemma 2.1, with the help of power-mean inequality and («,
have

q
1", we

[ ts(egen) ]

%K“”f) ©+(12.7) @]+ 25507 @)

n) w1)| dn

IA

(w2 — w1)

IA

I
(a)z—wl)[j; ‘7]—6‘|f’(17a)2+(1—1])0)1)|d17

(wz—wl)[(foé

"(nw2 + (1 =) w1)|d’7]

1

IA

TR l
’ q
n—gldn] (fo ’n—g‘lf (nw2 + (1= man)| dn
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1
”‘a’dﬂ] U -5l 75
5 -5 1 5 q 0
y [ @2 q

n 6“1’7] (f n 6'(71117 f(m) )dn]

5 1_% 2—1—a X 3—2—a (1 _ 22+a X 31+a _ 32+a + 52+a + 20 % 31+aa)
) " @+rD(@+2)

1

q] !

n- 2' f (w2 + (1 = )|’ dn”

+m(1-1n")

o

O

+(1-n")

e

q

()

672 (2 (=1 + 3240 — B¢ 417 X 6) + 29 x 3% + 5 X 6%0?)
(@+1)(a+2)

(@1
)
This completes the proof. [

Corollary 2.11. Ifwe choose o« = m = 1 in Theorem 2.10, we get
5[Fn+ar(252) - ron]+ Himsr
B(a) [(M IS f) (k) + (CFIZ')Z f) (k)]‘

a(a)z—a))
@nfl]

< ﬁ (w2 — 1) [|f' (wz)r7 +

Corollary 2.12. If we choose f (w1) = f(@) = f(w2) in Theorem 2.10, we get

o ey @ . . 201-a)
r(252) - LD (g + () @] + Mmf@'

5 1_% 271711 X 372704 (1 _ 22+a X 31+a _ 32+a + 52+a + 20 % 31+aa)
72) {m @+1)(@+2)
1
7l°
(@

Remark 2.13. If we choose q = 1 in Theorem 2.10, then Theorem 2.10 reduces to Theorem 2.2.

q

(o)

< (wz—w1)(

672 (2(—1 + 3240 — 52 417 X 6) + 29 x 3% + 5 X 6%0?)
(a+1)(a+2)

+m

wy] and q > 1, then the

following fractional inequality holds:

flw1)) 4 (w1+w f(w2)
H e (M) 6}
ﬁ?mhwmﬂwﬁw é”ﬂi

o)

1 1+ 2r*
: @”')[(w“@+n) 2
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Proof. By using the Lemma 2.1, we have

f(a)l) 4 w1 t+w f(a)z)
[ _f(l 2) 6 }
p (@) « " 21-a)
a(a)z—a))[< If) k)+(CFIw2f>(k)] B () f® '
< (@ -a) f man|dn
< (w2 —wi) {f ‘17
1
+ﬁ ——‘|f’(nwz+(1—n)w1)|dn]-
By using the Young’s inequality
w1y < %a)’{ + iwg,
we obtain
flw1) 4 (o1+w f(w2)
[F52 e fo(25) 257
p(a) « « 1-a)
T e )0+ () 0]+ S
< (wz_wl){[%‘foz n—%pdn)+%[foz 1f’(nwz+(1—n)w1)1qdn]
1 (Y 5P 1(
AR )
< o5 [Chifan) 3 (6

1 (! P 1
(3 [ b=3 3L o it - oty
1 1+204
< (02— w1)| (m) ( )| 1)|q)]-
This completes the proof. [J
following fractional inequality holds:
flw) 4 (w1 +awr)  fl@)
H 6 "o ( 2 )+ 6 }
p@) a a (1-a)
T [0+ (1) 0] ST o)
S(a)z—a)l) ' 29a)2+61a)1 , (61wy + 29w,
} b )+l ()

) dn]

3305

land q > 1, then the



A. Munir et al. / Filomat 38:10 (2024), 3295-3312

Proof. By using the Lemma 2.1, we have
flw) 4 (a)1 +CU2) f (@2)
[ e Te/\Tz2 )TTe

B (a)

a(a)z a))

10c)

(1) (0 + (P12, £) ()] + £ ’

IA

)] w1)|d77

(w2 — w1)

A

I
< (wz—w1)[j; ‘T]—g‘|f'(ﬂw2+(1—77)wl)|d77

2+ (1= 77)0)1)|d’7]-

By Jensen integral inequality, we obtain

[ b3
0176

"(nw2 + (1 =n)w1)dn

: lp-1 wy + (1 —n)w)|d
< U ‘n_%'dn)f, b In= 31wz + 0 =] dn
! b In=2dn
5|, (29w + 61w
/) ( 90 )
and
(T2 o2+ @ - manan
5 In=2ltnwz + (@ = ywn)|dn
< r}——'d]

il

J In=2lan
, (61&)2 + 29w, )
90 )

Using the inequalities (15) and (16) in (14), we have

f62. 25

2 6
%[(CFI&J() (k)+(CFIng) (k)] ﬁl( )a)f(k’
5(wy —wn) |, (29w; + 61w L (61lw; + 290
< T [f( 5 1)+ (%)]

This completes the proof. [J

3. Application to special means

(a2) The Arithmetic mean:

w1 + W
2

A=A(w,w) = , w1, 02 €ER;

3306

(14)

(15)

(16)



A. Munir et al. / Filomat 38:10 (2024), 3295-3312 3307

(b) The Logarithmic mean:

Wy — W1

L=L(w,w):= , w1, @2 € R, w1 # wy;

In wy — In w1
(c) The Generalized Logarithmic-mean:

r+1 r+1
(4)2 a)l

L =L, (@n,02) = [m

] re R\{-1,0}, w1,wr € R, w1 # w».

Proposition 3.1. Let f : [w1,w2] = R, 0 <wj <wy,n €N, n >2and x € [w, w], we have

1 2
34 (e 08) + 247 @100 - L 1,0

5n (0)2 - a)l) n—
— e

el

Proof. The assertion follows from Theorem 2.2 f (x) =x", a=m=1and B(0)=p(1)=1. O
Proposition 3.2. Let f : [w1,w2] 2 R, 0 <w; <wy,ne€N,n >2and x € [w1, w2], we have

5n (0)2 - a)l) n—
7 Gl

Proof. The assertion follows from Corollary 2.5 f (x) =x", f(0) = (1) =1. O

|A" (@1, @2) = L (1, @2)| < T+ |a)2|"_1] :

Proposition 3.3. Let f : [w1,w2] 2 R, 0 <wj <wy,ne€N,n>2and x € [wy, w2], we have

1 2
‘5’4 (@}, w}) + A" (01 @2) — Ly (@1, @2)

1+ 2rt1

1
. n-1 n-1
—W@H)) 27 [l + o]

< n(wz—a)l)(

Proof. The assertion follows from Theorem 2.7 f (x) = x", a =m=1and (0) = (1) =1. O

4. Application to Simpson Formula.

Let d is the partition of the interval [w1, w2], d : w1 = xp <x1 <xp < ... < Xp1 < Xy = wy, hi = w

Let the Simpson formula.

and

Zf(X)+4f(xz+h)+f(x,+1)

(oxip1 — 1) .

S(f,d) =

If the mapping f : [w1,w2] — R is a differentiable such that f® (x) exists on (w;,@;) and M =
maXye(w,ws) |f(4) (.X)| < o0, then

1= [ f@dr=sa B,

where the approximation error Eg (f, d) of the interval I by Simpson Formula S (f, d) satisfies:

s
|Es(fd)| 9_Z(x1+1
i=0
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Proposition 4.1. Under the assumption of Lemma 2.1, then in Corollary 2.5 for every division d of [w1, w], then
the following inequality holds:

)|+ | ()]

-1
|ES (f d)| 72 Z (x1+1 - xl
i=0

Proof. Applying the Corollary 2.5 on the subinterval [x;,x;i11], (i=0,1,2,3...n — 1) of the division d, we
have O

Xi+1

(Xl+1 (f( i)+ 4f(xZ +x1+1) f(xiﬂ))_ f @ dx

Xi

5 (x1+1 xz

)|+ |f )]

Summing over i from 0 to n — 1 and let that
we have

‘S(fd) fmfx)dx

This completes the proof.

"| is (@, m)-convex, we deduce by the triangle inequality,

+|f )]

5 -1
= Z (xir1 — %)
i=0

Proposition 4.2. Under the assumption of Lemma 2.1, for every division d of [w1, w,], then the following inequality

|

Proof. The proof is similar to the proposition 4.1, using the Theorem 2.15. [J

29x;41 + 61xi)
= )+
( 90

, (61x1‘+1 + 29xi)
90

st ] < 3 5 -2 (1
i=0

5. Application to matrix:

Example: We denote by C" the set of n X n complex matrices, M,, the algebra of n X n complex matrices,
and by M;; the strictly positive matrices in M,,. That is, w1 € M}, if (A,,, w1) > 0 for all nonzero w; € C". In
[34] Sababheh proved that the function i () = l wy € M}, X € M, is convex for
all 0 € [0, 1]. Then by using the Corollary 2.5, we have

w1 +w2 @1 +wy

LAl

|| (71+a)2

(@) ) )
~lor o Lo ATXB - ATEXB

CFIcavyz |AkXB1 —k Al—kXBk”}]
2(1-a) 5(wy — w1)
o (a)z - a)l) 72

A B + AT XB1 | + [|[A“2XB' 2 + AT2XB: |

||Ak Bl —k Al kXBk” <
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6. Q-digamma Functions

Let 0 < ¢ < 1, the g-digamma(psi) functions ¢y, is the ¢- analogue of the digamma function ¢» defined
as [35].

0 k+x
o = —m-pamp)
k=01 17[)
©0 l]l)kx
= —-In(1- 1 T
1‘1( ¢)+n¢kzzo‘1—l,bkx

For i > 1 and x > 0, the g-digamma functions ¢, defined as
2 k)

1
x‘E_Z 1_¢—<k+x>l

k=0
:—ln(¢—1)+ln1p[x—%—i y }

py = —-In(@-1)+Iny

— ok
k=o1 p

Proposition 6.1. Lef w1, w2 € R, 0 < w1 < wa, then we have

1 ©2
d
wz_wlf“ Py (1) du

U1

w1 + W

ol w0+ a0, (2524} )

5(wy —wn)

S Hq% (wz)| + ‘%, (wl)H-

Proof. The assertion can be obtained immediately by using the Corollary 2.5 to f (x) = ¢y (x) and x > 0,
BO)=B1) =1, f (x) = (p'lp (x)is convex on (0, +00). [

Proposition 6.2. Let w1, w2 € R, 0 < w1 < wy, and ;17 + % =1, q > 1,then we have

1 w2
d
a)z—wlfwl Py (1) du

@), @] +]), @)

w1 + W

ol w0+ a0, (252) 4} )

14207\
< (wz_w1)(m) 2’1[

Proof. The assertion can be obtained immediately by using the Corollary 2.9 to f (x) = ¢y (x) and x > 0,
BO)=B1)=1, f (x) = (p;# (x)is convex on (0, +00). [

7. Modified Bessel function:

Let the first kind of Modified bessel function I;,which have the series representation ([35])

I ( )_Z (§)6+2m
g% = mT(c+m+1)

m=0
Where x € R and 0 > —1 second kind of Modified bessel function K, [35] is defined as:

s (x) =I5 (%)

K =
0 (%) 2  sinom

let the function W, (x) : R — [1, 00) defined by
W, (x) =2T (0 + 1) x7 I, (x)
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Proposition 7.1. Let 0 > —1 and 0 < w1 < w,, then we have

w1 + W

E [, o) + 4w, ( 4w, @) -

5(wy — wn)

20 +1) ([Woi1 (@2)] + [Wor1 (w1)l].-

Proof. The assertion can be obtained immediately by using the Corollary 2.3 to f (x) = W, (x) and x > 0,
pO)=p1)=1,¥;(x) = Z5g¥en1 (¥). O

Proposition 7.2. Let 0 > =1 and 0 < w1 < w,, then we have

\yg(““ +w2) f W, (x)dx| <
2 Wy — W1

Proof. The assertion can be obtained immediately by using the Corollary 2.5 to f (x) = W, (x) and x > 0,
pO)=p1)=1,%,;(x) = ;5g¥on1 (x) O

5(w2 — w1)
- 72(c+1)

[[Wos1 (@2)] + [Woir (@1)I].-

Proposition 7.3. Let o > —1and 0 < w1 < wy, % + % =1, g > 1then we have

E [ @)+ 4w, (252) 4w, (@)

1

)p [(% [Woir () + % [Woi1 (w1)|q)q

((1)2—(1)1) 1 4 2r+1
(c+1) \6ert(p+1)

1
3 m q
(g [Woir () + 3 [Woi1 (w1)|q) 7} .

Proof. The assertion can be obtained immediately by using the Corollary 2.8 to f (x) = W, (x) and x > 0,
pO)=p1)=1,¥;(x) = Z7Ver1 (x). O

8. Application to mind-point formula:

Let d is the partition of the interval [w1, w2], d : w1 = x9 <x1 <xp < ... < Xp-1 <Xy =wo, hy = @ and
Let the mind-point formula

M(f,d) = Z(xm 0 f(F5).

We know that the f : [w1, w;] — R is a differentiable mapping such that f” (x) on (w1, w2) and k =
£ (x)] < oo, then

CF@)dx = M(f,d) + Ew (£, d),

w1

where the error terms Ey; (f,d) on the interval I the mind-point formula M (f, d) satisfied as:

H

|Em (f, d)] < 25 Z (xir1 — x1)° .

i=0

The new assumptions we suggest in the following section for the remainder term Ey (f,d) in terms of
the first derivative better those of [33].
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Proposition 8.1. Under the assumption of Lemma 2.1, then in Corollary 2.5, for every division D of [w1, w;], then
the following inequality holds:

B (1) = 5 3 oo =07 [ |7 )
i=1

Proof. By using the Corollary 2.5 on the subinterval [x;, xi41],i = 0,1,2....n — 1 of division D, we have

Xit1

(i1 = x;) f (x’ * it ) £ () dx

Xi

51— %) [,
< (Xlzx)[f

7

()] + | Grin)]].

By summing on i from 0 to n — 1, and by triangle inequality, we have

)| + | ()]

-1
|EM (f d) 73 Z (x1+1 - xl
i=1

This completes the proof. [J

9. Conclusion

It is obvious that recent establish in the field of inequalities have focused on finding new bounds,

and generalized versions of some well-known inequalities utilizing a different kind of fractional integral
operators. Scholars present novelty to this field by employing novel ideas, applications and operators.
In this paper, we establish the new identity via Caputo-Fabrizio fractional integral operator. Employing
this new identity the generalization of Simpson type inequality for (@, m)-convex functions. Moreover, we
also include the applications to special means, g-digamma functions, Simpson formula, Matrix inequalities,
Modified Bessel function, and mind-point formula. These applications have given a new dimension to the
scholars. In the future scholars may work with modified Caputo-Fabrizio fractional operators and modified
A-B fractional operators described in manuscripts (see [36], [37]).
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