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Abstract. In this article, a new generalised class of operators called as A-condensing operators is in-
troduced. The fixed point as well as coupled fixed point results are established for the newly defined
class of mappings. The rich theory of measure of noncompactness is utilized in this purpose. The new
results extend some of the famous works in the literature. Finally, an application to (k, ψ)-Hilfer fractional
differential equation of order 2 < p < 3 and type 0 ≤ q ≤ 1 is presented.

1. Introduction

For ease, we first provide a list of notations which will be perceived throughout as defined, unless
otherwise stated. Suppose X is a Banach space, C be a nonvoid, convex, closed and bounded subset in X,
T : dom(T) ⊆ X → X is a map, BX is the collection of all nonvoid and bounded subsets of X, fT is the set
of all fixed points of T in dom(T), η an arbitrary measure of noncompactness (MNC) (Definition 1.4) and
k ∈ (0, 1).

In 1910, the subsequent theorem [21] obtained recognition as Brouwer fixed point theorem (FPT).

Theorem 1.1. Suppose F ⊂ Rn be nonempty and convex. If F is compact then the continuous operator
T : F→ F possesses a fixed point.

It discusses about the existence of fixed point(s) for finite dimensional Banach spaces. Schauder [21]
presented its generalization to infinite dimensional Banach spaces by defining the concept of compact
operators.

Definition 1.2. An operator T : X→ X is called compact if T(V) is precompact whenever V ∈ BX.

Theorem 1.3. Suppose X is infinite dimensional and T : C → C is continuous. Then T possesses a fixed
point if T is compact.
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On the other hand, Kuratowski [3, 5] proposed the first MNC as a real valued function K : BX → [0,∞)
such that

K (V) = inf{ε > 0 : V ⊆
n⋃
α=1

Qα,Qα ⊂ X,diam(Qα) < ε (α = 1, 2, · · · ,n)}

for all V ∈ BX. However, later axiomatic approach stood to be a more convenient form when dealing with
MNC and has the following interpretation [3].

Definition 1.4. A map η : BX → [0,∞) is an MNC if

(η1) The family Ker(η) = {V ∈ BX : η(V) = 0} is nonvoid and Ker(η) ⊆ PX where PX denotes the family of
all precompact sets in X.

(η2) V1 ⊂ V2 implies η(V1) ≤ η(V2) (monotonicity).

(η3) η(V) = η(V) (invariance under closure).

(η4) η(conv(V)) = η(V) (invariance under passage to the convex hull).

(η5) η(βV1 + (1 − β)V2) ≤ βη(V1) + (1 − β)η(V2) where β ∈ [0, 1].

(η6) If the sequence {Vn}
∞

n=1 is decreasing in nature, where each Vn ∈ BX is closed in X and lim
n→∞

η(Vn) = 0

then V∞ =
∞⋂

n=1
Vn is nonvoid as well as compact (Generalized Cantor’s intersection theorem).

Moreover, if η(λV) = |λ|η(V) for any scalar λ then η is called as homogeneous whereas if η(V1 + V2) ≤
η(V1) + η(V2) then η is known as a subadditive measure. K is a suitable example of such an MNC.

Darbo [20] utilized the behaviour of MNC K in such a way that it worked in weakening the Schauder
FPT hypothesis. For this, Darbo introduced an inequality involvingK and proved the following FPT.

Theorem 1.5. Suppose T : C → C be continuous and K (TG) ≤ kK (G) for every nonvoid set G ⊆ C then T
admits a fixed point.

Aghajani et al. [1] further weakened Theoerm 1.5 by defining Meir-Keeler condensing (MKC) operators
and stated Theorem 1.9. The authors even characterized MKC operators with L-functions.

Definition 1.6. Let F be a nonvoid set in X. The operator T : F→ F is called as an MKC operator if ∀ ϵ > 0
∃ a δ > 0 such that for every nonvoid set G in F,

ϵ ≤ η(G) < ϵ + δ =⇒ η(TG) < ϵ.

Definition 1.7. [1] A map φ : [0,∞)→ [0,∞) is known to be an L-function whenever φ(0) = 0 with φ(v) > 0
for v ∈ (0,∞) and for any v > 0 ∃ a δ > 0 so that φ(u) ≤ v provided u ∈ [v, v + δ].

Remark 1.8. An operator T is MKC if and only if one can find an L-function φ such that η(TG) < φ(η(G))
whenever η(G) > 0.

Theorem 1.9. If T : C→ C is continuous and an MKC operator then T possesses a fixed point. Moverover,
fT is compact.

A very recent survey is the article [8], presenting the literature on fixed points of the condensing operators
through MNC. It also covers results concerning best proximity point (pair) of cyclic (noncyclic) condensing
operators in Banach spaces. Readers with a keen interest in this area are directed to [9, 12–15].

Moving towards the main motivation of this article, Shahzad et al. definedA-contraction [18] using the
concept of T-sequence which strictly submerges the class of all R-contractions, Meir-Keeler contractions,
Z-contractions and more. Keeping this in view, we define A-condensing operators in terms of MNC η
using the concept of Tη-sequence.
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2. Fixed point results viaA-condensing operators

We now present our notions namely, the Tη-sequence andA-condensing operators.

Definition 2.1. Let {pn} and {qn} be two real sequences. We say that {(pn, qn)} is a Tη-sequence if ∃ a sequence
{Gn} of nonvoid subsets of C such that ∀ n ∈N,

pn = η(TGn) > 0 and qn = η(Gn) > 0.

Definition 2.2. An operator T : C→ C isA-condensing if one can find a function ρ : A ×A→ R satisfying
the subsequent conditions together with T as:

(A1) ran(η) ⊆ A ⊆ R.

(A2) If {(pn, qn)} ⊆ A × A is a Tη-sequence such that both pn, qn → L with L ≥ 0 and verifying L < pn along
with ρ(pn, qn) > 0 for every n ∈N then L = 0.

(A3) ρ(η(TG), η(G)) > 0 provided η(G) > 0 and η(TG) > 0 for every ∅ , G ⊂ C.

It is proved in [18] that not everyA-contraction is Meir-Keeler contraction but the converse is always true.
On the same line we have, not every A-condensing operator is MKC but the converse is always true. See
the following example.

Example 2.3. Let C be a closed ball in X, centered at α with radius r > 0 as

C = {x ∈ X : ∥x − α∥ ≤ r}.

Suppose a, b ∈ C be arbitrary. Define T : C→ C by

Tx =


a if x = b,
b if x = a,

a+b
2 elsewhere,

then η(TG) = η(G) [i.e. η(TG) ≮ η(G)] where η(X) = diam(X) and G = {a, b}.Hence, T is not an MKC operator.
However, for any nonzero constant function ρ, (A3) is fulfilled. On the other hand, for (A2), let us assume
that {(pn, qn)} is a Tη-sequence converging to L satisfying L < pn and ρ(pn, qn) > 0 for each n ∈N. Then

pn = η(TGn) > 0 and qn = η(Gn) > 0.

Assume contrary that L > 0. Note that, for all n ∈N,Gn ⊆ G ∪ Gc where Gc is the complement of G, so that
for any n ∈N,

pn = 0 or ∥a − b∥ or ∥
a − b

2
∥.

This shows that {pn} is an eventually constant sequence satisfying L = pn for infinitely many n, a contradic-
tion. Therefore, (A2) is satisfied and so T isA-condensing.

We now state the fixed point theorem viaA-condensing operators.

Theorem 2.4. Suppose T : C → C is continuous and anA-condensing operator such that ρ(s, t) ≤ t − s for
every s, t ∈ A ∩ (0,∞) then T possesses a fixed point in C. Moreover, fT is compact.

Proof. Define a sequence {Gn} in C as Gn = conv(T(Gn−1)) for every n ∈Nwhere G0 = C. We intend to show
by mathematical induction that {Gn} is a decreasing sequence. For n = 1, G1 = conv(T(G0)) ⊂ G0. Let us
assume that Gn ⊂ Gn−1. Consider, Gn+1 = conv(T(Gn)) ⊂ conv(T(Gn−1)) = Gn. Hence, we write

· · · ⊆ Gn+1 ⊆ Gn ⊆ Gn−1 ⊆ · · · ⊆ G1 ⊆ G0.
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If η(Gn0 ) = 0 for some n0 ∈ N then Gn0 is precompact. Also, T(Gn0 ) ⊆ conv(T(Gn0 )) = Gn0+1 ⊆ Gn0 . This
means that, by Schauder FPT there exists a fixed point of T. So, we now assume that η(Gn) , 0 for every
n ∈N. Set

pn = η(T(Gn)) > 0 and qn = η(Gn) > 0.

Then, {(pn, qn)} is a Tη-sequence such that pn, qn → L and 0 ≤ L ≤ pn ≤ qn. If there exist some k0 ∈ N such
that L = pk0 then pn = qn implies 0 ≤ ρ(pn, qn) < 0 for all n > k0. This is a contradiction and hence, by the
definition ofA-condensing operators we have L = 0 so that

lim
n→∞

η(Gn) = 0.

Set G∞ :=
∞⋂

n=1
Gn then this set is nonvoid, convex and compact, implies G∞ ∈ Ker(η). Therefore, by Schauder

FPT, the operator T possesses a fixed point. If η( fT) > 0 then from (A3) we write

0 < ρ(η(T fT), η( fT)) ≤ η( fT) − η(T fT) = 0.

This cannot be possible and hence η( fT) = 0, together with continuity of T implies fT is compact.

Apart from Theorem 1.9, we have the subsequent corollaries as a consequence of the above theorem. Note
that, (A1) is easy to satisfy by setting ran(η) = A.

Corollary 2.5. Suppose T : C → C is continuous and V ⊆ C is nonvoid. For an arbitrary MNC η, let
η(TV) ≤ Ψ(η(V))η(V) whereΨ : [0,∞)→ [0, 1) is a map satisfying,Ψ(sn)→ 1 =⇒ sn → 0, then T admits a
fixed point.

Proof. Set Ψ̃(t) =
1 +Ψ(t)

2
, ∀ t ∈ [0,∞). Then Ψ̃(tn) → 1 implies tn → 0. Moreover, Ψ(t) < Ψ̃(t) < 1 ∀

t ∈ [0,∞) so that

η(TV) ≤ Ψ(η(V))η(V) < Ψ̃(η(V)η(V).

Define the function ρ as

0 < ρ(η(TV), η(V)) := Ψ̃(η(V))η(V) − η(TV) ≤ η(V) − η(TV),

then (A3) holds. For (A2), let {(pn, qn)} be a Tη-sequence satisfying pn → L, qn → L, 0 ≤ L < pn and ρ(pn, qn) > 0
for every n ∈N. Hence,

pn := η(TGn) < Ψ̃(η(Gn))η(Gn) < η(Gn) := qn.

Applying n→∞,we get Ψ̃(η(Gn))→ 1 and therefore, η(Gn)→ 0. Thus, T isA-condensing and so Theorem
2.4 concludes the rest.

The above corollary corresponds to the Geraghty type condensing operators. The proof of the remaining
corollaries can be similarly obtained. However, for more details, one can see [17, 18].

Corollary 2.6. [4] Suppose T : C → C is continuous and V ⊆ C is nonvoid. If there exists a simulation
function ζ such that ζ(η(TV), η(V)) ≥ 0 then T admits a fixed point.

Corollary 2.7. Suppose T : C→ C is continuous and V ⊆ C is nonvoid. If η(TV) ≤
η(V)

1 + µη(V)
, where µ > 0,

then T admits a fixed point.
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Proof. Choose ρ(s, t) =
t

1 + kµt
− s then 0 < ρ(s, t) ≤ t − s for all s, t ∈ (0,∞) so that (A3) is fulfilled. For

(A2), let pn = η(TGn) > 0, qn = η(Gn) > 0 converges to L, 0 ≤ L < pn and ρ(pn, qn) > 0 for every n ∈ N.

Then pn <
qn

1 + kµqn
so that as n approaches infinity, L ≤ L

1+kµL =⇒ L = 0. Thus T is A-condensing and so

possesses a fixed point.

Corollary 2.8. Suppose T : C → C is continuous and V ⊆ C is nonvoid. For an arbitrary MNC η, let
η(TV) ≤ νη(V) where ν ∈ (0, 1) then T admits a fixed point.

Corollary 2.9. Suppose T : C → C is continuous and V ⊆ C is nonvoid. For an arbitrary MNC η, let
η(TV) ≤ Λ(η(V))η(V) where Λ is a function from [0,∞) to [0,∞) satisfying lim sup

t→a+
Λ(t) < 1, for each t > 0

then T admits a fixed point.

Corollary 2.10. Suppose T : C → C is continuous and V ⊆ C is nonvoid. For an arbitrary MNC η, let
η(TV) ≤ η(V) − φ(η(V)) where φ : [0,∞) → [0,∞) is a lower semicontinuous map satisfying φ−1({0}) = {0}
then T admits a fixed point.

Corollary 2.11. Suppose T : C→ C is continuous and V ⊆ C is nonvoid. If η(TV) <
η(V)
eη(TV)

, then T admits a

fixed point.

3. Coupled fixed point results viaA-condensing operators

We now proceed towards defining the coupled fixed point theorem via A-condensing operators. For
that, we first write some preliminaries of our concern.

Definition 3.1. An ordered pair (u, v) is a coupled fixed point of a function T : X × X → X whenever
T(u, v) = u and T(v,u) = v.

Lemma 3.2. [2] If η1, η2, . . . , ηm are MNCs on the metric spaces E1,E2, . . . ,Em respectively then

η̃(H) = Φ(η1(H1), η2(H2), . . . , ηm(Hm)),

is also an MNC on E1 × E2 × · · ·Em, where Hα stands for the natural projection of H into Eα respectively for
α = 1, 2, . . . ,m, provided Φ : [0,∞)m

→ [0,∞) is a convex function and Φ(a1, a2, . . . , am) = 0 if and only if
aα = 0 for all α = 1, 2, . . . ,m.

Theorem 3.3. Suppose T : C×C→ C×C is continuous and anA-condensing operator such that ρ(s, t) ≤ t−s
for each s, t ∈ A ∩ (0,∞) then T admits a fixed point in C × C. Moreover, fT is compact.

Proof. Define a sequence {Gn × Gn} in C × C as Gn × Gn = conv(T(Gn−1 × Gn−1)) for each n ∈ N where
G0 × G0 = C × C. We intend to show by mathematical induction that {Gn × Gn} is a decreasing sequence.
For n = 1, G1 × G1 = conv(T(G0 × G0)) ⊂ G0 × G0. Let us assume that Gn × Gn ⊂ Gn−1 × Gn−1. Consider,
Gn+1 × Gn+1 = conv(T(Gn × Gn)) ⊂ conv(T(Gn−1 × Gn−1)) = Gn × Gn. Hence, we write

· · · ⊆ Gn−1 × Gn−1 ⊆ Gn × Gn ⊆ · · · ⊆ G1 × G1 ⊆ G0 × G0.

From Lemma 3.2 we have η̃ as an MNC on X × X. If η̃(Gn0 × Gn0 ) = 0 for some n0 ∈ N then Gn0 × Gn0

is precompact. Also, T(Gn0 × Gn0 ) ⊆ conv(T(Gn0 × Gn0 )) = Gn0+1 × Gn0+1 ⊆ Gn0 × Gn0 . This means that, by
Schauder FPT there exists a fixed point of T. So, we now assume that η̃(Gn × Gn) , 0 for every n ∈N. Set

pn = η̃(T(Gn × Gn)) > 0 and qn = η̃(Gn × Gn) > 0.
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Then, {(pn, qn)} is a Tη̃-sequence such that pn, qn → L and 0 ≤ L ≤ pn ≤ qn. If there exist some k0 ∈ N such
that L = pk0 then pn = qn implies 0 ≤ ρ(pn, qn) < 0 for all n > k0. This is a contradiction and hence, by the
definition of Ã-condensing operators we have L = 0 so that

lim
n→∞

η̃(Gn × Gn) = 0.

Set G∞×G∞ :=
∞⋂

n=1
Gn×Gn then this set is nonvoid, convex and compact so that G∞×G∞ ∈Ker(η̃). Therefore,

by Schauder FPT, the operator T admits a fixed point.

By F we denote the class of all functions f : [0,∞) × [0,∞)→ [0,∞) satisfying

( f 1) f (a1 + a2, b1 + b2) ≤ f (a1, b1) + f (a2, b2).

( f 2) f (a, b) = 0⇐⇒ a = b = 0.

( f 3) f is lower semicontinuous on [0,∞) × [0,∞). That is, for any two sequences {an} and {bn} in [0,∞),

f (lim inf
n→∞

an, lim inf
n→∞

bn) ≤ lim inf
n→∞

f (an, bn).

Corollary 3.4. [16] Suppose a continuous function T : C × C→ C × C satisfies

η̃(TV) ≤ η̃(V) − f (η̃(V), η̃(V)),

for all nonvoid sets V in C × C and f ∈ F then T possesses a fixed point.

Proof. For any r ∈ (0, 1) we write

ρ(η̃(TV), η̃(V)) = η̃(V) − η̃(TV) − r f (η̃(V), η̃(V)),

so that (A3) is fulfilled. Suppose {(pn, qn)} is a Tη̃-sequence such that pn, qn → L, 0 ≤ L < pn and ρ(pn, qn) > 0
for every n ∈N. Then we have a sequence {Gn × Gn} of nonvoid sets in C × C such that

pn = η̃(T(Gn × Gn)) > 0 and qn = η̃(Gn × Gn) > 0.

Applying lim inf
n→∞

, the inequality

0 < pn < qn − r f (qn, qn) =⇒ L ≤ L − r f (L,L),

so that L = 0. Thus, T isA-condensing.

By Gwe denote the class of all functions 1 : [0,∞) × [0,∞)→ [0,∞) satisfying:

(11) 1 is continuous and nondecreasing function on [0,∞) × [0,∞) with respect to lexicographic order.

(12) 1(a, a) < a for all a > 0.

(13) 1(a1, b1) + 1(a2, b2) ≤ 21( a1+a2
2 , b1+b2

2 ) ∀ a1, a2, b1, b2 ∈ [0,∞).

Corollary 3.5. [16] Suppose a continuous function T : C × C→ C × C satisfies

η̃(TV) ≤ 1(η̃(V), η̃(V)),

for all nonvoid sets V in C × C and 1 ∈ G then T possesses a fixed point in C × C.
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Proof. Suppose η̃(V) and η̃(TV) are positive then we set ρ as

ρ(η̃(TV), η̃(V)) =
1(η̃(V), η̃(V)) + η̃(V)

2
− η̃(TV),

so that (A3) is fulfilled. For (A2), let {(pn, qn)} be a Tη̃-sequence such that pn, qn → L, 0 ≤ L < pn and
ρ(pn, qn) > 0 for each n ∈N. Then we have a sequence {Gn × Gn} of nonvoid sets in C × C such that

pn = η̃(T(Gn × Gn)) > 0 and qn = η̃(Gn × Gn) > 0.

Suppose L > 0 then applying lim
n→∞

to the inequality

pn <
1(qn, qn) + qn

2
=⇒ L ≤

1(L,L) + L
2

,

so that L ≤ 1(L,L), a contradiction. Thus, T is A-condensing and hence, from Theorem 3.3, T has a fixed
point.

In order to achieve the existence of coupled fixed point for a map T : C × C→ C, we define TΦ-sequence.

Definition 3.6. Let {pn} and {qn} be two real sequences andΦ be as given in Lemma 3.2. We say that {(pn, qn)}
is a TΦ-sequence if ∃ a sequence {Gn × G′n} of nonempty subsets in C × C such that ∀ n ∈N,

pn = Φ(η(T(Gn × G′n)), η(T(G′n × Gn))) > 0 and qn = Φ(η(Gn), η(G′n)) > 0.

Definition 3.7. Let η̃ be an MNC on X × X, as given in Lemma 3.2. An operator T : C × C → C is AΦ-
condensing if one can find a function ρ : A × A → R satisfying the subsequent conditions together with T
as:

(Ã1) ran(η̃) ⊆ A ⊆ R.

(Ã2) If {(pn, qn)} ⊆ A × A is a TΦ-sequence such that both pn, qn → L with L ≥ 0 and verifying L < pn along
with ρ(pn, qn) > 0 for every n ∈N then L = 0.

(Ã3) ρ(Φ(η(T(G1×G2)), η(T(G2×G1))),Φ(η(G1), η(G2))) > 0 providedΦ(η(T(G1×G2)), η(T(G2×G1))) > 0 and
Φ(η(G1), η(G2)) > 0 for every nonempty set G1 × G2 ⊂ C × C.

Theorem 3.8. Suppose T : C×C→ C be a continuous operator. If T isAΦ-condensing such that ρ(s, t) ≤ t−s,
for every s, t ∈ A ∩ (0,∞) then T possesses a coupled fixed point.

Proof. Define T̃ : C × C → C × C as T̃(p, q) = (T(p, q),T(q, p)) for all (p, q) ∈ C × C then T̃ is continuous. We
now show that T̃ is A-condensing also. The condition (A1) trivially holds. Let, η̃(T̃(G)) > 0 and η̃(G) > 0
then

η̃(T̃(G)) = η̃(T̃(G1 × G2)) = η̃(T(G1 × G2) × T(G2 × G1))
= Φ(η(T(G1 × G2)), η(T(G2 × G1)))

and

η̃(G) = η̃(G1 × G2) = Φ(η(G1), η(G2))

so that

ρ(η̃(T̃(G)), η̃(G)) = ρ(Φ(η(T(G1 × G2)), η(T(G2 × G1))),Φ(η(G1), η(G2))) > 0
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and hence, T̃ satisfies (A3). For (A2), suppose {(pn, qn)} is a T̃η̃ sequence such that pn, qn → L, 0 ≤ L < pn and
ρ(pn, qn) > 0 for every n ∈N. Then we have a sequence {Gn × G′n} of nonempty subsets in C × C such that

pn = η̃(T̃(Gn × G′n)) > 0 and qn = η̃(Gn × G′n) > 0.

This means that

pn = Φ(η(T(Gn × G′n)), η(T(G′n × Gn))) > 0 and qn = Φ(η(Gn), η(G′n)) > 0,

so that {(pn, qn)} is a TΦ sequence and so by (Ã2), L = 0.As all the requirements of Theorem 3.3 are achieved,
we affirm that T admits a coupled fixed point.

Corollary 3.9. [16] Suppose a continuous function T : C × C→ C satisfies

η(T(V1 × V2)) ≤
1
2

[η(V1) + η(V2)] − f (η(V1), η(V2)), (1)

for all nonvoid sets V1,V2 in C and f ∈ F then T admits a coupled fixed point.

Proof. From Equation (1), we write

η(T(V1 × V2)) + η(T(V2 × V1)) ≤ η(V1) + η(V2) − f (η(V1), η(V2)) − f (η(V2), η(V1))
≤ η(V1) + η(V2) − f (η(V1) + η(V2), η(V2) + η(V1)).

For every a, b ∈ [0,∞), choose Φ(a, b) = a + b and ρ(a, b) = b − a − r f (b, b). Then T becomes AΦ condensing
operator satisfying ρ(s, t) ≤ t − s and hence, the above theorem proves the rest.

Corollary 3.10. [16] Suppose a continuous function T : C × C→ C satisfies

η(T(V1 × V2)) ≤ 1(η(V1), η(V2)), (2)

for all nonvoid sets V1,V2 in C and 1 ∈ G then T possesses a coupled fixed point.

Proof. From Equation (2), we write

η(T(V1 × V2)) + η(T(V2 × V1)) ≤ 1(η(V1), η(V2)) + 1(η(V2), η(V1))

≤ 21
(η(V1) + η(V2)

2
,
η(V1) + η(V2)

2

)
.

Suppose s = Φ(η(T(G1 × G2)), η(T(G2 × G1))) and t = Φ(η(G1), η(G2)) be positive and for every a, b ∈ [0,∞),
choose Φ(a, b) = a+b

2 then we set ρ as

ρ(s, t) =
1(t, t) + t

2
− s,

so that (Ã3) is fulfilled. For (Ã2), let {(pn, qn)} be a TΦ-sequence such that pn, qn → L, 0 ≤ L < pn and
ρ(pn, qn) > 0 for each n ∈N. Then we have a sequence {Gn × Gn} of nonvoid sets in C × C such that

pn = η̃(T(Gn × Gn)) > 0 and qn = η̃(Gn × Gn) > 0.

Suppose L > 0 then applying lim
n→∞

to the inequality

pn <
1(qn, qn) + qn

2
=⇒ L ≤

1(L,L) + L
2

so that L ≤ 1(L,L), a contradiction. Thus, T is AΦ-condensing and hence, from Theorem 3.3, T has a fixed
point.
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4. Application to (k, ψ)-Hilfer fractional differential equations

Fractional Calculus deals with the study of differentiation and integration of arbitrary order and thus
generalises the classical structure. This generalisation grabbed focus due to its efficiency in providing more
accurate description to the real world phenomenas. For a brief study, one can see [10]. Motivated by the
definition of Riemann Liouville and Caputo deriavtives, the authors [7] proposed Hilfer derivative and
solved an existence-uniqueness problem involving this deriavtive for the order lying between 0 to 1. Later
to this, in 2018, Sousa et al. [19] initiated the discussion of ψ-Hilfer derivative, involving a continuously
differentiable increasing functionψ.Various authors using renowned fixed point theorems showed up with
the existence of solutions to more and more generalised form of such fractional order differential equations.
In recent times, Kucche et al. in their paper [11] stated the most general form and defined (k, ψ)-Hilfer
fractional differential operator of order α ∈ (0,∞) and type β ∈ [0, 1] acting on a function h ∈ Cn[a, b] with
n = ⌈αk ⌉ ∈N as

k,HDα,β;ψh(t) = kIβ(nk−α);ψ
( k
ψ′(t)

d
dt

)n
kI(1−β)(nk−α);ψh(t),

where k ∈ (0,∞), ψ ∈ Cn[a, b] is an increasing function such thatψ′(t) , 0∀ t ∈ [a, b], kIγ;ψ is the (k, ψ)-Riemann
Liouville integral (RLI) of order γ ∈ (0,∞) as

kIγ;ψh(t) =
1

kΓk(γ)

∫ t

a
ψ′(s)[ψ(t) − ψ(s)]

γ
k −1h(s)ds,

and the notation Γk stands for the k-gamma function given by Γk(γ) =
∫
∞

0 tγ−1e−
tk
k dt, which enjoys the

following properties:

Γk(γ + k) = γΓk(γ), Γk(k) = 1 and Γk(γ) = k
γ
k −1Γ(

γ

k
).

Here, we consider (k, ψ)-Hilfer fractional differential equation (HFDE) of order 2 < p < 3 and type q ∈ [0, 1]
of the form:

k,HDp,q;ψy(t) = G(t, y(t)), (3)

y(a) = 0, y′(a) = 0,uy(b) + vδψy(b) = w kIν;ψ1(ζ, y(ζ)), (4)

satisfying the stated boundary conditions. The quantities a, b,u, v and w are suitable real scalars with
J = [a, b]. The functions 1,G : J × R → R and ψ : J → R are continuous such that ψ′(t) > 0 for all t ∈ J
with δψ ≡ k

ψ′(t)
d
dt , a < ζ < b and kIν;ψ is the (k, ψ)-RLI of order ν ∈ (0,∞). The following lemma gives an

equivalence between the differential equation (3)-(4) with the integral equation (5).

Lemma 4.1. Let a < b, 2 < p < 3, q ∈ [0, 1] and ωk = p + q(3k − p) then the equivalent integral to the above
differential equation is

y(t) = kIp;ψG(t, y(t)) +
(ψ(t) − ψ(a))

ωk
k −1

AL
ωk
k −1

[
w kIν;ψ1(ζ, y(ζ)) − u kIp;ψG(b, y(b)) − v kIp−k;ψG(b, y(b))

]
, (5)

where, L = ψ(b) − ψ(a) and A = u +
v(ωk − k)

L
, 0.

We are now about to show the existence of the solution of the system (3)-(4) for a more general setting.
Let S = C(J,E) be the Banach space consisting of all continuous functions defined from J in to a Banach
space E together with the supremum norm. Choose a subset D of S as

D = {y ∈ S : y ∈ C(J,B) and y(a) = 0},
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where B = B(q0, κ) represents a closed ball centered at q0 with radius κ in E. The functions 1,G : J × B→ E
are all continuous. Clearly, D is nonvoid, convex, closed and bounded set in S. Define T on D as

T y(t) = kIp;ψG(t, y(t)) +
(ψ(t) − ψ(a))

ωk
k −1

AL
ωk
k −1

[
w kIν;ψ1(ζ, y(ζ)) − u kIp;ψG(b, y(b)) − v kIp−k;ψG(b, y(b))

]
.

Lemma 4.2. If Nh = sup
s∈[a,b]
{∥h(s, y(s))∥ : y ∈ D} for h = 1,G, and B

r
k =

L
r
k

Γk(r + k)
for r = k, p, ν such that

[
1 +
|u|
|A|
+
|v|
|AB|

]
NGB

p
k +
|w|
|A|

N1B
ν
k + ∥q0∥ ≤ κ

then T is invariant in D.

Proof. Suppose y ∈ D and consider

∥∥∥(T y)(t)
∥∥∥ ≤ ∥∥∥kIp;ψG(t, y(t))

∥∥∥ + ∣∣∣∣∣ (ψ(t) − ψ(a))
ωk
k −1

AL
ωk
k −1

∣∣∣∣∣[∥∥∥w kIν;ψ1(ζ, y(ζ))∥ + ∥u kIp;ψG(b, y(b))∥

+ ∥v kIp−k;ψG(b, y(b))
∥∥∥]

≤
NG

kΓkp

∫ t

a
ψ′(s)(ψ(t) − ψ(s))

p
k−1ds +

1
|A|

[
|w|N1
kΓkν

∫ ζ

a
ψ′(s)(ψ(ζ) − ψ(s))

ν
k−1ds

+
|u|NG

kΓkp

∫ b

a
ψ′(s)(ψ(b) − ψ(s))

p
k−1ds +

|v|NG

kΓk(p − k)

∫ b

a
ψ′(s)(ψ(b) − ψ(s))

p−k
k −1ds

]
≤

NG(ψ(t) − ψ(a))
p
k

pΓkp
+

1
|A|

[
|w|N1
νΓkν

(ψ(ζ) − ψ(a))
ν
k +
|u|NG

pΓkp
(ψ(b) − ψ(a))

p
k

+
|v|NG

(p − k)Γk(p − k)
(ψ(b) − ψ(a))

p−k
k

]
≤

NGL
p
k

pΓkp
+

1
|A|

[
|w|N1L

ν
k

νΓkν
+
|u|NGL

p
k

pΓkp
+

|v|NGL
p−k

k

(p − k)Γk(p − k)

]
≤ κ − ∥q0∥.

Therefore, we have T y ∈ D and hence, T is invariant in nature.

We now state the Mean Value Theorem of Integral Calculus for (k, ψ)-Riemann Lioville integral.

Lemma 4.3. [6] If µ, k > 0 and ĥ is any continuous function then we can find z ∈ (a, b) such that

kIµ;ψĥ(t) =
1

kΓkµ

∫ t

a
ψ′(s)(ψ(t) − ψ(s))

µ
k −1ĥ(s)ds =

(ψ(t) − ψ(a))
µ
k

µΓkµ
ĥ(z).

Theorem 4.4. Along with the assumptions of Lemma 4.2, suppose there exists a positive real scalar λ such
that for all t ∈ [a, b] and y ∈ D we have

max{∥1(t, y(t)) − 1(t, 0)∥, ∥G(t, y(t)) − G(t, 0)∥} ≤ λ∥y(t) − 0∥,

where λ ∈ (0, 1] satisfying λM < 1 and M = 1
|A|

[(
|A| + |u| + |v|B

)
B

p
k + |w|B

ν
k

]
. Then, the system (3)-(4) of

(k, ψ)-HFDE has a solution.
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Proof. For any nonvoid set V in D, consider

η(TV) = sup
t∈I
{η({T y(t) : y ∈ V})

= sup
t∈I

{
η
({

kIp;ψG(t, y(t)) +
(ψ(t) − ψ(a))

ωk
k −1

AL
ωk
k −1

[
w kIν;ψ1(ζ, y(ζ)) − u kIp;ψG(b, y(b))

− v kIp−k;ψG(b, y(b))
]

: y ∈ D
})}

= sup
t∈I

{
η
({ (ψ(t) − ψ(a)

p
k G(z, x(z)))

pΓkp
+

(ψ(t) − ψ(a))
ωk
k −1

AL
ωk
k −1

[w(ψ(ζ) − ψ(a))
ν
k

νΓkν
1(z, x(z))

−
u(ψ(b) − ψ(a))

p
k

pΓkp
G(z, x(z)) −

v(ψ(b) − ψ(a))
p−k

k

pΓkp
G(z, x(z))

]
: for some z ∈ [a, b]

})}
<

L
p
k

pΓkp
η
({

G(z, x(z)) + G(z, 0) − G(z, 0)
})
+

1
|A|

[
|w|L

ν
k

νΓkν
η
({
1(z, x(z)) + 1(z, 0) − 1(z, 0)

})
+
|u|L

p
k

pΓkp
η
({

G(z, x(z)) + G(z, 0) − G(z, 0)
})
+

|v|L
p−k

k

(p − k)Γk(p − k)
η
({

G(z, x(z)) + G(z, 0) − G(z, 0)
})]

≤ λMη(V).

By choosing ρ(t, s) = λMs− t and considering η asK , the operatorT becomesA-condensing. Hence, all the
hypothesis of Theorem 2.4 are fulfilled and so, the fixed point of T is the solution of the system (3)-(4).

We now give an example in support of the above theorem.

Example 4.5. Consider the (k, ψ)-HFDE of the form

3
2 ,HD

5
2 ,

1
4 ;et

y(t) =
1
2

tan
(4y(t)

9

)
,

y(0) = 0, y′(0) = 0, 3y(1) + 2δψy(1) = 0 ·
3
2 Iν;et ∣∣∣ 7y

13 −
1
2

∣∣∣.
Upon comparison, we have the following values of the variables: p = 5

2 , q =
1
4 , k =

3
2 , ψ(t) = et,u = 3, v =

2,w = 0, a = 0, b = 1 and 1 ≡
∣∣∣ 7y

13 −
1
2

∣∣∣. Therefore, L = e − 1, ωk = 3,A = 3e
e−1 ,B =

2(e−1)
3 ,B

5
3 ≈ 0.8336 so that

M = 1.6672. Consider, y, z ∈ C([0, 1], [−κ, κ]) with κ = 19
10 then

|G(t, y(t)) − G(t, z(t))| =
1
2

∣∣∣∣ tan
(4y

9

)
− tan

(4z
9

)∣∣∣∣ ≤ 0.50|y − z|. (6)

This inequality can be easliy seen through Figure 1, as the lower surface represents the LHS of (6) whereas
the upper surface stands for the RHS of (6). Also, the inequality

|1(t, y(t)) − 1(t, 0)| =

∣∣∣∣∣∣
∣∣∣∣∣7y
13
−

1
2

∣∣∣∣∣ − 1
2

∣∣∣∣∣∣ ≤ 0.57|y(t)|, (7)

gets validated by Figure 2. As a result, λ = 0.57 and hence, λM ≈ 0.95 < 1. Moreover, MNG < κ. Therefore,
by Theorem 4.4, solution of the given system exists.
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Figure 1: LHS and RHS of inequality (6)
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Figure 2: LHS and RHS of inequality (7)
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