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Abstract. In this article, some Stancu-type operators, their products and boolean sum operators are con-
structed on a triangular domain with curved sides. Their interpolation features have been described. Also
remainders of approximation formulas have been discussed. Graphical representations have been given to
demonstrate the theoretical findings.

1. Introduction

The study of mathematical approximation theory has recently given a considerable amount of attention
to the examination of Dunkl analogues and their significance in diverse mathematical operations. In a
recent publication [29], V.N. Mishra, M. Raiz, and N. Rao introduced the Dunkl Analogue of Szász Schurer-
Beta Operators, providing insight into their approximative behavior. This research delves into the intricate
relationship between Dunkl analogues and their practicality in computational mathematics.

The study of complex mathematical sequences is enhanced by the utilization of Szász-type operators
that involve q-Appell polynomials. This approach is particularly intriguing, as demonstrated through the
research conducted in [20]. This work serves as a critical resource for integrating specialized mathematical
methods into the overall scope of approximation theory.

The Dunkl analogue of the Szász Schurer Beta bivariate operator has been the subject of a recent inquiry
[30]. This investigation, completed in 2023, has added to our comprehension of the many uses of Dunkl
analogues in operations involving multiple variables. These discoveries emphasize the dynamic and
constantly evolving nature of mathematical approximation theory and its ever-growing range of pragmatic
implementations.

Expanding upon the progress made in prior research, the objective of this present investigation is
to expand upon the examination of specialized operators in a new, relevant domain: the application of
Stancu operators on triangular domains with curved borders. While previous research has predominantly
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focused on the Dunkl analogues and their utility in multivariate operations, this study delves into the
realm of approximating functions on complicated, curved domains. This provides valuable insights into
the behavior of Stancu operators in intricate geometries. By amalgamating the discoveries from the works of
Mishra, Raiz, and Rao, with the current research on Stancu operators, this study aims to make a contribution
towards the developing landscape of approximation theory in mathematics and its practical implications
in various fields.

In the field of practical application, we frequently encounter the issue of approximating a function that
is defined on a planar domain with curvature. Situations may arise where we need to interpolate or fit data,
or solve problems related to boundary values. A popular technique to tackle such problems is to utilize
piecewise polynomial spline functions, which are defined on a triangulation that only partly encompasses
the domain. Although it may appear more intuitive to work with piecewise polynomial splines defined
directly on a curved triangulation of GTw, research on such splines in the spline literature has been scarce;
where GTw =

{
(xw, yw) ∈ R ×R|xw + yw ≤ w

}
. The functions that form the basis are characterized by their

non-negative values and are united by a common trait. The notion of partition of unity requires that
functions have local supports, which can be achieved through the use of a single curved triangle, the
union of all curved triangles attached to a common vertex, or two adjoining curved triangles. Typically,
closed NURBs curves define the curves that define the boundary of a curved domain known as GTw.
However, these curves could also be expressed in terms of piecewise elementary parametric curves, such
as lines, circles, ovals, and the like. Assuming that the boundary curves are oriented, we can determine
on which side of the curve the domain lies. Error bounds for approximating smooth functions with
polynomial splines on ordinary are also relevant to our purposes. Classical spline theory places significant
emphasis on the utilization of triangulations. Through the implementation of triangulations, we can obtain
outcomes for polynomials in this context. The quasi-interpolation operator is utilized to implement splines
on curved triangulations. Macro-element spline spaces typically rely on a regular refinement of a given
triangulation. In the case of curved domains with well-behaved borders, inscribed triangulations with an
ample amount of boundary points can facilitate the creation of associated curved triangulations. Several
methods based on polynomial splines have been developed for ordinary triangulations to fit functions with
various shape constraints. These methods can also be adapted to address concerns on curved domains
by utilizing curved triangulations instead. Triangulations with polynomial splines are valuable in solving
fitting problems, particularly when dealing with noisy data. All of the previously mentioned methods,
inclusive of penalized least-squares methods, can be expanded to operate with curved triangulations. The
process of triangulating curved domains involves the partitioning of such regions into smaller, simpler
shapes using triangular elements.

Stancu operators are a type of approximation operators used in numerical analysis and approximation
theory. They are commonly employed to approximate functions defined on a given domain, including
triangular domains. The Stancu operators are defined by a combination of Bernstein polynomials and
certain weight functions. These weight functions affect the contribution of each Bernstein polynomial to
the approximation. With the paper of Barnhill and Gregory [1], [2], [3], [14] and with the right choice
of parameters c, d, Stancu polynomials have potential to produce a better approximation at a point than
the Bernstein polynomials. Interpolation operators of Bernstein type have been defined in ( [4], [5]). The
choice of Stancu operators and their parameters will depend on factors like the desired accuracy of the
approximation, the specific properties of the function being approximated, and the geometric characteristics
of the triangular domain.

D.D. Stancu [24] constructed sequence of approximating operators that are more generalized version
of the Classical Bernstein operators. These operators can be used in the creation of surfaces that meet a
set of predetermined conditions, in the solution of differential equation problems using the finite element
method, and in the numerical integration of function.

Since many features of Bernstein operators can be extended to the Stancu operators, numerous re-
searchers in mathematics have examined these outcomes from this angle. Boundary requirements can be
met precisely using the Stancu-type operators established on domains with curved sides. Stancu operators
are constructed on GTw triangle ( [9]), [22], [27]). Recently, Iliyas et. al. [10] studied Lupaş type Bernstein
operators on triangle with one curve side; and Mansoori et. al. [13] studied q-Bernstein operators on
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triangular domain with all curved sides.
The objective of this manuscript is to furnish a preliminary understanding of Stancu-type operators

on a triangle with either two or three curved sides. The present study serves as an expansion upon the
latest research conducted by Cheregi[6], as it delves into the behavior of Stancu interpolation operators
when used on a triangle with more than one curved side. This paper will explore both the accuracy of
the operators derived and their ability to approximate. This adds a level of complexity compared to the
traditional Stancu operators applied to simpler domains like intervals or triangles with straight sides. The
shape and curvature of the sides of the triangle will impact the distribution of points and the weighting of
the approximating functions.

2. Construction of operators on a triangular domain with two or three curved sides

Let us consider the triangle GTw with the three curved sides Γ1, Γ2 (along the coordinate axis) and Γ3
(opposite to the C) with vertices A = (0,w), B = (w, 0), C = (0, 0). The curved side Γ1 is defined by (xw, 11(xw))
with 11(0) = 11(w) = 0, 11(xw) ≤ 0, ∀xw ∈ [0,w]. Γ2 is characterized by (h2(yw), yw) with h2(0) = h2(w) = 0,
h2(yw) ≤ 0, ∀yw ∈ [0,w] and Γ3 is characterized by the functions 13 and h3, where inverse function of 13 is
h3, i.e., yw = 13(xw) and xw = h3(yw); xw, yw ∈ [0; w] and 13(0) = h3(0) = w (Figure 1). We express by ei j the
monomial functions ei j(x, y) = xiy j, i, j ∈N. In the following figure 1, xw and yw are represented by x and y
respectively.

Figure 1: GTw triangle

Let G be a function determined by GTw =
{
(xw, yw) ∈ R ×R|xw + yw ≤ w

}
, xw, yw,w ∈ R+, (xw, 0), (0, yw)

and (h(yw), yw) are intersection points of curved sides Γi, i = 1, 3. [26]
D.D. Stancu[25] constructed sequence of positive linear positive operator based on two parameters c

and d , 0 ≤ c ≤ d. Suppose that FG is a function defined on the set GTw. The operators referred to as the
Stancu-type operators G(c,d)

xw,m and G(c,d)
yw,n [23], xw, yw ∈ [0, 1] are defined as follows

(
G(c,d)

xw,mFG

)
(xw) =

m∑
i=0

sm,i
(
xw, yw

)
FG

(
h2(yw) +

i + c
m + d

(h3
(
yw

)
− h2

(
yw

)
), yw

)
(
G(c,d)

yw,nFG

)
(xw) =

n∑
j=0

sn, j
(
xw, yw

)
FG

(
xw, 11 (xw) +

j + c
n + d

(13 (xw) − 11 (xw))
)
,

with

sm,i =

(
m
i

) (
xw − hs(yw)

h3(yw) − h2(xw)

)i (
1 −

xw

h(yw)

)m−i

, 0 ≤ xw + yw ≤ h(yw) and
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sn, j =

(
n
j

) (
yw − 11(xw)
13(xw) − 11(xw)

) j (
1 −

yw − 11(xw)
13(xw) − 11(xw)

)n− j

, 0 ≤ xw + yw ≤ f (xw),

where uniform partitions of
[
h2(yw), h3(yw)

]
and

[
11(xw), 13(xw)

]
are defined as follows

∆(c,d)
xw,m =

{
h2(yw) +

i + c
m + d

(h3(yw) − h2(yw))|i = 0, l
}
,

∆(c,d)
yw,n =

{
11(xw) +

j + c
r + d

(13(xw) − 11(xw))| j = 0,n
}
.

Remark 2.1. For c = d = 0, G(c,d)
m change into classical Bernstein operator (Bm).

Theorem 2.2. If FG is function on GTw then

(i) G(c,d)
xw,mFG = FG on Γ2 ∩ Γ3,

(ii) G(c,d)
yw,nFG = FG on Γ1 ∩ Γ3,

(iii) (G(c,d)
xw,mei j)(xw, yw) =

[
xi

w +
c−dxi

w
m+d

]
y j

w, i, j ∈N,

(G(c,d)
xw,me2 j)(xw, yw) =

[
x2

w +
m(xw−h2(yw))(h3(yw)−xw)+(c−dxw)(2mxw+dxw+c)

(m+d)2

]
y j

w, j ∈N,

(iv) (G(c,d)
yw,nei j)(xw, yw) = xi

w

[
y j

w +
c−dy j

w
n+d

]
, i, j ∈N,

(G(c,d)
yw,nei2)(xw, yw)=xi

w

[
y2

w +
n(yw−11(xw))(13(xw)−yw)+(c−dyw)(2nyw+dyw+c)

(n+d)2

]
, i ∈N.

Proof. One can prove properties (i) and (ii) easily from the following relations:

sm,i
(
h2(yw), yw

)
=

{
1, for i = 0
0, for i > 0 , sm,i

(
h3(yw), yw

)
=

{
0, for i < m
1, for i = m

respectively by

sn, j
(
xw, 11(xw)

)
=

{
1, for j = 0
0, for j > 0 , sn, j

(
xw, 13(yw)

)
=

{
0, for j < n
1, for j = n .

(G(c,d)
xw,mFG)(h2(yw), yw) = FG(h2(yw), yw), (G(c,d)

xw,mFG)(h3(yw), yw) = FG(h3(yw), yw).

Regarding to the properties (iii) we obtain

(G(c,d)
xw,mei j)(xw, yw) = y j

w(G(c,d)
xw,mei0)(xw, yw), i, j ∈N,

(G(c,d)
xw,me00)(xw, yw) =(Bme00)(xw, yw) = 1,

(G(c,d)
xw,me10)(xw, yw) =

m
m + d

(Bme10)(xw, yw) +
c

m + d
(Bme00)(xw, yw) =

mxw + c
m + d

=xw +
c − dxw

m + d
,
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(G(c,d)
xw,me20)(xw, yw) =

m2

(m + d)2 (Bme20)(xw, yw) +
2cm

(m + d)2 (Bme10)(xw, yw)

+
c2

(m + d)2 (Bme00)(xw, yw)

=
m2

(m + d)2

[
x2

w +
(xw − h2(yw))(h3(yw) − xw)

m

]
+

2cm
(m + d)2 xw +

c2

(m + d)2

=x2
w +

m(xw − h2(yw))(h3(yw) − xw) − x2
wd2
− 2mdx2

w + 2cmxw + c2

(m + d)2

=x2
w +

m(xw − h2(xw))(h3(yw) − xw) + 2mxw(−dxw + c) + c2
− d2x2

w

(m + d)2

=x2
w +

m(xw − h2(yw))(h3(yw) − xw) + (c − dxw)(2mxw + dxw + c)
(m + d)2 .

Properties (iv) is easy to follow in a similar way.

We consider the approximation formula as follows

FG = G(c,d)
xw,mFG + Rxw,mFG,

where estimation error is denoted by Rxw,lFG.

Theorem 2.3. If FG(·, yw) ∈ C
[
h2(yw), h3(yw)

]
then

|(Rxw,mFG)(xw, yw)| ≤

1 +
(h3(yw) − h2(yw))

√

m + 4d2

2δ(m + d)

ω(FG(·, yw); δ), yw ∈ [0,w]

where ω(FG(·, yw); δ) is the usual modulus of continuity of the function FG with regard to the variable x. Moreover, if
δ =

√

m+4d2

m+d then

|(Rxw,mFG)(xw, yw)| ≤
(
1 +

h3(yw) − h2(yw)
2

)
ω

FG(·, yw);

√

m + 4d2

m + d

 .
Proof. Regarding to (Bxw

m e00)(xw, yw) = 1 = (G(c,d)
xw,me00)(xw, yw) proceed that

|(Rxw,mFG)(xw, yw)| ≤
m∑

i=0

sm,i(xw, yw)
∣∣∣∣∣FG(xw, yw) − FG

(
h2(yw) +

i + c
m + d

(h3(yw) − h2(yw)), yw

)∣∣∣∣∣ .
Using the inequality∣∣∣∣∣FG(xw, yw) − FG

(
h2(yw) +

i + c
m + d

(h3(yw) − h2(yw)), yw

)∣∣∣∣∣
≤

(1
δ

∣∣∣∣∣xw −

(
h2(yw) +

i + c
m + d

(h3(yw) − h2(yw))
)∣∣∣∣∣ + 1

)
· ω(FG(·, yw); δ)
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one attains

|(Rxw,mFG)(xw, yw)| ≤
m∑

i=0

sm,i(xw, yw)
(1
δ

∣∣∣∣∣xw −

(
h2(yw) +

i + c
m + d

(h3(yw) − h2(yw))
)∣∣∣∣∣ + 1

)
× ω(FG(·, yw); δ)

≤

1 + 1
δ

 m∑
i=0

sm,i(xw, yw)
(
xw −

(
h2(yw) +

i + c
m + d

(h3(yw) − h2(yw))
))2


1/2

× ω(FG(·, yw); δ)

=

1 + 1
δ

√
m(xw − h2(yw))(h3(yw) − xw) + (c − dxw)(2mxw + dxw + c)

(m + d)2

ω(FG(·, yw); δ)

≤

1 + 1
δ
·

1
m + d

√
m(h3(yw) − h2(yw))2

4
+ (c − dx)2

ω(FG(·, yw); δ),

where 0 ≤ c ≤ d, with max
h2(yw)≤xw≤h3(y)

[(xw − h2(yw))(h3(yw) − xw) = (h3(yw)−h2(yw))2

4 .

Thus,

|(Rxw,mFG)(xw, yw)| ≤

1 +
(h3(yw) − h2(yw))

√

m + 4d2

2δ(m + d)

ω(FG(·, yw); δ), yw ∈ [0,w]

and we obtain

|(Rxw,mFG)(xw, yw)| ≤

1 +
(h3(yw) − h2(yw))

√

m + 4d2

2(m + d)

ω FG(·, yw);

√

m + 4d2

m + d

 .

Remark 2.4. Similar conclusions are obtained for the remainder formula
FG = G(c,d)

yw,nFG + Ryw,nFG, FG(xw, ·) ∈ C
[
11(xw), 13(xw)

]
, xw ∈ [0,w]. Then

|(Ryw,nFG)(xw, yw)| ≤

1 +
(13(xw) − 11(xw))

√

n + 4d2

2(n + d)

ω FG(xw, ·);

√

n + 4d2

n + d

 .
2.1. Product operator

Let Pmn and Qnm denote the product operators defined as Pmn = G(c,d)
xw,mG(c,d)

yw,n and Qnm = G(c,d)
yw,nG(c,d)

xw,m.

(PmnFG)(xw, yw) =
m∑

i=0

n∑
j=0

sm,i(xw, yw)sn, j
(
xi, yw

)
· FG

(
xi; 11(xi) +

j + c
n + d

(13(xi) − 11(xi)
)
,

(QnmFG)(xw, yw) =
m∑

i=0

n∑
j=0

sm,i

(
xw, y j

)
)sn, j(xw, yw) · FG

(
h2(y j) +

i + c
m + d

(h3(y j) − h2(y j); y j

)

with xi = h2(yw) +
i + c

m + d
(h3(yw) − h2(yw) and y j = 11(xw) +

j + c
n + d

(13(xw) − 11(xw)).

Theorem 2.5. If FG : GTw → GTw ( [1]) then

(i) (PmnFG)(C) = FG(C) , PmnFG = FG on Γ3 ,
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(ii) (QnmFG)(C) = FG(C) , QmnFG = FG on Γ3 .

Proof.

(PmnFG)(xw, 11(xw)) = (G(c,d)
xw,mFG)(xw, 11(xw))

(PmnFG)(12(yw), yw) = (G(c,d)
yw,nFG)(h2(yw), yw)

(PmnFG)(xw, 13(xw)) = FG(xw, 13(xw)), xw, yw ∈ [0,w]
and

(QnmFG)(xw, 11(xw)) = (G(c,d)
xw,mFG)(xw, 11(xw))

(QnmFG)(h2(yw), yw) = (G(c,d)
yw,nFG)(h2(yw), yw)

(QnmFG)(h3(yw), yw) = FG(h3(yw), yw), xw, yw ∈ [0,w]

are easy to verify by a straight forward calculation.
In remainders formula FG = PmnFG + RP

m,nFG, RP
m,n is the corresponding remainder operator.

Theorem 2.6. If FG ∈ C (GTw) then

|(RP
m,nFG)(xw, yw)| ≤

1 +
(h3(yw) − h2(yw))

√

m + 4d2

2(m + d)
+

(13(xw) − 11(xw))
√

n + 4d2

2(n + 4d)


× ω

FG;

√

m + 4d2

m + d
;

√

n + 4d2

n + d

 , (xw, yw) ∈ GTw.

Proof.

|(RP
m,nFG)(xw, yw)| ≤ [

1
δ1

m∑
i=0

n∑
j=0

sm,i
(
xw, yw

)
sn, j

(
xi, yw

)
· |xw − xi|

+
1
δ2

m∑
i=0

n∑
j=0

sm,i(xw, yw)sn, j
(
xi, yw

)
·

∣∣∣∣∣∣yw −

(
11(xi) +

j + c
n + d

(13(xi) − 11(xi))
)∣∣∣∣∣∣

+

m∑
i=0

n∑
j=0

sm,i
(
xw, yw

)
sn, j

(
xi, yw

)
] · ω(FG; δ1; δ2)

≤

1 + 1
δ1

√
m(xw − h2(yw))(h3(yw) − xw) + (c − dxw)(2mxw + dxw + c)

(m + d)2

+
1
δ2

√
n(yw − 11(x))(13(x) − yw) + (c − dyw)(2nyw + dyw + c)

(n + d)2

ω(FG; δ1; δ2).

But

m(xw − h2(yw))(h3(yw) − xw) + (c − dxw)(2mxw + dxw + c) ≤
w2(m + 4d2)

4
(h3(yw) − h2(yw)),

n(yw − 11(xw))(13(xw) − yw) + (c − dyw)(2nyw + dyw + c) ≤
w2(n + 4d2)

4
(13(xw) − 11(xw)),



L. Cheregi et al. / Filomat 38:10 (2024), 3453–3465 3460

|(RP
m,nFG)(xw, yw)| ≤

1 + 1
δ1

(h3(yw) − h2(yw))
√

m + 4d2

2(m + d)
+

1
δ2

(13(xw) − 11(xw))
√

n + d2

2(n + d)


× ω(FG; δ1; δ2), δ1 =

√

m + 4d2

m + d
, δ2 =

√

n + 4d2

n + d

|(RP
m,nFG)(xw, yw)| ≤

1 +
(h3(yw) − h2(yw))

√

m + 4d2

2(m + d)
+

(13(xw) − 11(xw))
√

n + d2

2(n + d)


× ω

FG;

√

m + 4d2

m + d
;

√

n + 4d2

n + d

 .
Remark 2.7. Similar conclusions are obtained for the remainder of the formula

FG = Qn,mFG + RQ
n,mFG.

Now we get

|(RP
n,mFG)(xw, yw)| ≤

1 +
(h3(yw) − h2(yw))

√

m + 4d2

2(m + d)
+

(13(xw) − 11(xw))
√

n + d2

2(n + d)


× ω

FG;

√

m + 4d2

m + d
;

√

n + 4d2

n + d

 .
2.2. Boolean sum operators

Boolean sum operators G(c,d)
xw,m and G(c,d)

yw,n are defined by,

G(c,d)
mn = G(c,d)

xw,m ⊕ G(c,d)
yw,n = G(c,d)

xw,m + G(c,d)
yw,n − G(c,d)

xw,mG(c,d)
yw,n

respectively

T(c,d)
nm = G(c,d)

yw,n ⊕ G(c,d)
xw,m = G(c,d)

yw,n + G(c,d)
xw,m − G(c,d)

yw,nG(c,d)
xw,m.

Theorem 2.8. If FG : GTw → GTw, then

Gm,nFG|∂GTw = FG|∂GTw and Tn,mFG|∂GTw = FG|∂GTw .

Proof. As (PmnFG)(xw, 11(xw)) = (G(c,d)
xw,mFG)(xw, 11(xw)),

(PmnFG)(h2(yw), yw) = (G(c,d)
yw,nFG)(h2(yw), yw) and (PmnFG)(xw, 13(xw)) = FG(xw, 13(xw)),

the conclusion follows.

Thus, remainder of the boolean sum estimation formula are defined as follows

FG = GmnFG + RG
m,nFG.

Theorem 2.9. If FG ∈ C (GTw), then

|(RG
m,nFG)(xw, yw)| ≤

1 + (h3(yw) − h2(yw))
√

m + 4d2

2

ω FG(·, yw);

√

m + 4d2

m + d


+

1 + (13(xw) − 11(xw))
√

n + 4d2

2

ω FS(xw, ·);

√

n + 4d2

n + d


+

(
1 +

(h3(yw) − h2(yw))(13(xw) − 11(xw))
2

)
ω

FG;

√

m + 4d2

m + d
;

√

n + 4d2

n + d

 ,
(xw, yw) ∈ GTw.
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Proof. FG − GmnFG = FG − G(c,d)
xw,mFG + FG − G(c,d)

yw,nFG − (FG − PmnFG) implies that

|(RG
m,nFG)(xw, yw)| ≤ |(Rxw,mFG)(xw, yw)| + |(Ryw,nFG)(xw, yw)| + |(RP

m,nFG)(xw, yw)|

and the conclusion follows. An equivalent form of inequity can be derived in regards to the RT
m,nFG error.

Boolean sum operators, often referred to as logical OR operators, are used to combine Boolean values
(true or false) in logic and computer programming. They allow you to express conditions where at least one
of the operands needs to be true for the entire expression to be true. When considering the use of Boolean
sum operators, it is important to note the disparity between their application on a triangular domain versus
their use in closed intervals [a, b]. The Boolean sum operators themselves do not differ in their fundamental
logic when applied to a triangular domain versus a closed interval. The difference lies in how the conditions
are defined and how they relate to the specific context of the domain. Triangular domains involve spatial
relationships and geometric regions, while closed intervals involve numerical values and their ranges.

3. Graphical Analysis

We take the functions [21] for graphical analysis which are usually used in the literature:

GENTLE : H1(u, v) =
1
3

exp
[
−81
16

((u − 0.5)2 + (v − 0.5))2
]
,

SADDLE : H2(u, v) =
125 + cos(5.4v)
6 + 6 ∗ (3u − 1)2 ,

We have taken the triangular region {(u, v) : u + v ≤ 1,u, v ≥ 0} as domain of the functions H1 and H2. We
have used Python 3 to plot some graphics for operator convergence in Figure 2 for H2 and in Figure 3 for
H1 [21], considering w = 1, n = 5, n = 6, c = 1, d = 1 and 11, h2, 13, h3 : [0, 1]→ [0, 1] defined by

11(u) = −

√
15
2
−

√
4 − (u − 0.5)2,

h2(v) = −

√
15
2
−

√
4 − (v − 0.5)2,

13(u) =
√

1 − u2,

h3(u) =
√

1 − v2.
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(i) (ii)

(iii) (iv)

(v) (vi)

Figure 2: Graphs of H1 and H2(i), GumH1 (ii), GnvH1 (iii), PmnH1(iv), QnmH1(v), GmnH1(vi), TnmH1(vii)
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(i) (ii)

(iii) (iv)

(v) (vi)

Figure 3: Graphs of GumH2(i), GnvH2(ii), PmnH2(iii), QnmH2(iv), GmnH2(v), TnmH2(vi)

The Maple software was utilized to create a table of approximations with the highest allowable amount
of error.

Table 1: The approximation error.
Max error H1 H2

G(1,1)
u,m 0.0872 0.1114

G(1,1)
n,v 0.0617 0.0925

P(1,1)
mn 0.1479 0.1576

Q(1,1)
nm 0.1346 0.1443

G(1,1)
mn 0.0383 0.0478

T(1,1)
nm 0.0331 0.0356

4. Conclusion

The approximation operators on triangles have been the subject of extensive research due to their
applications in the fields like computer-aided geometric design (CAGD) and finite element analysis. In
this work, we have constructed some Stancu-type operators, their products and boolean sum operators
on a triangular domain with curved sides and described their interpolation features. Further, we have
discussed remainders of approximation formula. Graphical representations have been given to demonstrate
the theoretical findings. We observed with the aid of figures and a table that displays errors that the
approximation properties are quite satisfactory. As the selection parameters m and n are expanded, the
operators G(c,d)

xw,m and G(c,d)
yw,n are able to provide a close approximation of the function.
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