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Abstract. In this paper, we investigate the Ricci tensor of slant submanifolds in locally metallic product
space forms. We derive the Chen-Ricci inequality and discuss its equality case. We also provide several
applications of our results. The main result of the article is supported by non-trivial examples.

1. Introduction

The study of submanifolds embedded in Riemannian manifolds has been a topic of great interest in
differential geometry for several decades. One of the fundamental problems in this area is to understand
the geometric properties of submanifolds in terms of the curvature of the ambient manifold.

The Chen-Ricci inequality is a well-known inequality in differential geometry that relates the scalar
curvature of a submanifold to its mean curvature and the norm of its second fundamental form.

In 1996, a mathematician named Chen came up with a formula that relates two geometric properties of a
submanifold (a certain type of mathematical object)M, which is embedded in a space calledM(c) that has
a constant curvature c. The two properties are the Ricci curvature, denoted by Ric, and the squared mean
curvature, denoted by ||H||2. Chen’s formula says that for any unit vector X that lies on the submanifoldM,

Ric(X) ≤ (n − 1)c +
n2

2
||H||2, n = dimM

Chen also obtained the above inequality for lagrangian submanifolds[10]. Since then, this inequality drew
attention of many geometers around the world. Consequently, many inequalities of similar type were
proved by a number of geometers for various submanifold types in various ambient manifolds [1–7, 13, 15–
26].

At the same time, aθ-slant submanifold is a type of submanifold in differential geometry that generalizes
the notion of a slant submanifold. Like a slant submanifold, a θ-slant submanifold is a submanifold of a
Riemannian manifold that has a certain slanted or tilted geometry with respect to the ambient manifold.
However, unlike a slant submanifold, which is defined by the angle between the submanifold and a
distribution of vectors in the ambient manifold, a θ-slant submanifold is defined by a more general angle
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function θ, which can depend on the position of the submanifold in the ambient manifold. This allows for
a greater degree of flexibility and generality in the definition of the submanifold.

In particular, a θ-slant submanifold is defined by the requirement that its tangent space at each point
be slanted with respect to a certain distribution of vectors in the ambient manifold, where the angle of
slant is given by the angle function θ evaluated at that point. This angle function can be used to capture
various geometric properties of the submanifold, such as its curvature or its embedding in the ambient
manifold. One of the earliest and most important applications of slant submanifolds was in the classification
of minimal surfaces in Euclidean space. In particular, a famous theorem due to Almgren states that any
complete, non-flat minimal surface in Euclidean space must be either a plane, a catenoid, or a helicoid. The
proof of this theorem uses the theory of slant submanifolds to show that certain types of minimal surfaces
cannot exist.

In this article, we focus on θ-slant submanifolds in locally metallic product space forms and investigate
the Chen-Ricci inequality for these submanifolds.

Our main result is the construction of the Chen-Ricci inequality for θ-slant submanifolds in locally
metallic product space forms, and we derive the condition under which equality to the inequality holds.

We then discuss a few applications of our result. In particular, we show how our inequality can be used
to derive important geometric properties of θ-slant submanifolds. Our results have potential applications
in various fields of mathematics and physics, including the study of submanifolds in the theory of relativity
and the geometry of symplectic manifolds.

2. Preliminaries

In the ensuing section, we present the necessary mathematical formulas and concepts for understanding
the Chen-Ricci inequality for isotropic submanifolds in locally metallic product space forms.

Consider n-dimensional submanifoldM of a Riemannian manifold (M, 1) of dimension m. Assume that
∇ and ∇ denote the Levi-Civita connections onM andM, respectively. Then the Gauss and Weingarten
formulas are expressed as follows: for vector fields E,F ∈ TM and N ∈ T⊥M,

∇EF = ∇EF + ζ(E,F), ∇EN = −ΛNE + ∇⊥E N,

where ∇⊥, ζ, and ΛN, denote the normal connection, the second fundamental form, and the shape operator
, respectively.

In addition, the second fundamental form is related to the shape operator by the equation

1(ζ(E,F),N) = 1(ΛNE,F), E,F ∈ TM, N ∈ T⊥M.

The Gauss equation is given by

R(E,F,G,U) = R(E,F,G,U) + 1(ζ(E,G), ζ(F,U)) − 1(ζ(E,U), ζ(F,G)), (1)

for E,F,G,U ∈ TM. Here, R and R denote the curvature tensors ofM andM(c), respectively.
The sectional curvature of a Riemannian manifoldM of the plane section π ⊂ TxM at a point x ∈ M

is denoted by K(π). For any x ∈ M, if {x1, . . . , xn} and {xn+1, . . . , xm} are the orthonormal bases of TxM and
T⊥xM, respectively, then the scalar curvature τ is given by

τ(x) =
∑

1≤i< j≤n

K(xi ∧ x j). (2)

H =
1
n

n∑
i=1

1(ζ(xi, xi)).
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Here, {x1, . . . , xn} and {xn+1, . . . , xm} are the tangent and normal orthonormal frames onM, respectively and
H is the mean curvature vector.

The relative null space of a Riemannian manifold at a point x in M is defined as

Nx = {E ∈ TxM|ζ(E,F) = 0 ∀ F ∈ TxM}. (3)

This is the subspace of the tangent space at x where the second fundamental form vanishes identically.
It is also known as the normal space of M at x.

The definition of a minimal submanifold states that the mean curvature vector H is identically zero.
A polynomial structure is a tensor field ϑ of type (1, 1) that fulfils the following equation on an m-

dimensional Riemannian manifold (M, 1) with real numbers a1, . . . , an:

B(X) = Xn + an−1Xn−1 + ... + a2X + a1I,

where I denotes the identity transformation. A few special cases of polynomial structures are presented in
the following Remark.

Remark 2.1.

1. ϑ is an almost complex structure if it is verifies that B(X) = X2 + I.

2. ϑ is an almost product structure if it is verifies that B(X) = X2
− I.

3. ϑ is a metallic structure if B(X) = ϑ2
− pϑ + qI,

where p and q are two integers.

If for all E,F ∈ Γ(TM)

1(ϑE,F) = 1(E, ϑF), (4)

then the Riemannian metric 1 is called ϑ-compatible.
A metallic Riemannian manifold is a Riemannian manifold (M, 1) where the metric 1 is ϑ-compatible

and ϑ is a metallic structure.
Using equation (4), we obtain

1(ϑE, ϑF) = 1(ϑ2E,F) = p.1(E, ϑF) + q.1(E,F).

An almost product structureF on an m-dimensional (Riemannian) manifold (M, 1) is a (1,1)-tensor field
satisfying F 2 = I, F , ±I. If F satisfies 1(F E,F) = 1(X,FY) for all E,F ∈ Γ(TM), then (M, 1) is referred to
as an almost product Riemannian manifold [8].

A metallic structure ϕ on M is known to induce two almost product structures on M [14]. These
structures are denoted by F1 and F2 and are given by equation F1 =

2
2σp,q−pϕ −

p
2σp,q−pI,

F2 =
2

2σp,q−pϕ +
p

2σp,q−pI,
(5)

where σp,q =
p+
√

p2+4q
2 are the members of the metallic means family or the metallic proportions.

Similarly, any almost product structure F onN induces two metallic structures ϕ1 and ϕ2 given by


ϕ1 =

p
2I +

2σp,q−p
2 F ,

ϕ2 =
p
2I −

2σp,q−p
2 F .
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Definition 2.2. [9] Let ∇ be a linear connection and ϕ be a metallic structure onM such that ∇ϕ = 0. Then ∇ is
called a ϕ- connection. A locally metallic Riemannian manifold is a metallic Riemannian manifold (M, 1, ϕ) if the
Levi-Civita connection ∇ of 1 is a ϕ-connection.

Suppose we have an m-dimensional metallic Riemannian manifold (M, 1, ϕ) and an n-dimensional
submanifold (M, 1) that is isometrically immersed intoM with the induced metric 1. For any x ∈ M, the
tangent space TxM of M at x can be expressed as the direct sum of TxM and T⊥xM, where TxM is the
tangent space ofM at x, and T⊥xM is the orthogonal complement of TxM in TxM.

In an almost Hermitian manifold M, a submanifold M is considered to be a slant submanifold if the
angle between JM and TxM remains constant for any x ∈ M and a non-zero vector X ∈ TxM. The slant
angle ofM inM is denoted by θ and takes values in the interval [0, π2 ].

Further, ifM is a slant submanifold of a metallic Riemannian manifold (M, 1, ϕ) with the slant angle θ,
then [9]

1(TX,TY) = cos2θ[p1(X,TY) + q1(X,Y)]

and

1(NX,NY) = sin2θ[p1(X,TY) + q1(X,Y)],

∀X,Y ∈ Γ(TM).
Additionally,

T2 = cos2θ(pT + qI),

where I is the identity on Γ(TM) and

∇T2 = pcos2θ.∇T.

LetM1 be a Riemannian manifold with constant sectional curvature c1 andM2 be a Riemannian manifold
with constant sectional curvature c2.

Then, for the locally Riemannian product manifoldM =M1 ×M2, the Riemannian curvature tensor R
is given by [27]

R(E,F)G =
1
4

(c1 + c2)
[
1(F,G)E − 1(E,G)F + 1(ϑF,G)ϑE − 1(ϑE,G)ϑF

]
+

1
4

(c1 − c2)
[
1(ϑF,G)E − 1(ϑE,G)F + 1(F,G)ϑE − 1(E,G)ϑF

]
.

(6)

In view of (5) and (6)

R(E,F)G =
1
4

(c1 + c2)
[
1(F,G)E − 1(E,G)F

]
+

1
4

(c1 + c2)
{ 4

(2σp,q − p)2

[
1(ϕF,G)ϕE − 1(ϕE,G)ϕF

]
+

p2

(2σp,q − p)2

[
1(F,G)E − 1(E,G)F

]
+

2p
(2σp,q − p)2

[
1(ϕE,G)F + 1(E,G)ϕF − 1(ϕF,G)E − 1(F,G)ϕE

]}
±

1
2

(c1 − c2)
{ 1

(2σp,q − p)

[
1(F,G)ϕE − 1(E,G)ϕF

]
+

1
(2σp,q − p)

[
1(ϕF,G)E − 1(ϕE,G)F

]
+

p
(2σp,q − p)

[
1(E,G)F − 1(F,G)E

]}
. (7)
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3. Ricci curvature for θ-slant submanifolds

This section is devoted to demonstrating the major outcome.

Theorem 3.1. Suppose we have a submanifoldM of dimension n that is slanted at an angle of θ in a locally metallic
product space formM =M1(c1) ×M2(c2).

Then, for any unit vector X in the tangent space TxM at a point x onM, we have the following inequality:

Ric(X) ≤
n2

4
∥H∥2 ±

1
2

c1 − c2√
p2 + 4q

[
2 trϕ − p(n − 1)

]
+

1
2

c1 + c2

p2 + 4q
(n − 1)

[
p2 + 2q −

1
n − 1

(p trϕ + q cos2 θ)
]
, (8)

Moreover, if H(x) = 0, then the equality case of this inequality is achieved by a unit tangent vector X at x if and only
if X belongs to the normal spaceNx. Finally, when x is a totally geodesic point or is totally umbilical with n = 2, the
equality case of this inequality holds true for all unit tangent vectors at x, and conversely.

Proof. Let {x1, ..., xn} be an orthonormal tangent frame and {xn+1, ..., xm} be an orthonormal frame of TxM

and T⊥xM, respectively at any point x ∈ M. Substituting E = U = xi, F = G = x j in (7) with the equation (1)
and take i , j, we get

R(xi, x j, x j, xi) =
1
4

(c1 + c2)
[
1(x j, x j)1(xi, xi) − 1(xi, x j)1(x j, xi)

]
+

1
4

(c1 + c2)
{ 4

(2σp,q − p)2

[
1(ϕx j, x j)1(ϕxi, xi) − 1(ϕxi, x j)1(ϕx j, xi)

]
+

p2

(2σp,q − p)2

[
1(x j, x j)1(xi, xi) − 1(xi, x j)1(x j, xi)

]
+

2p
(2σp,q − p)2

[
1(ϕxi, x j)1(x j, xi) + 1(xi, x j)1(ϕx j, xi)

− 1(ϕx j, x j)1(xi, xi) − 1(x j, x j)1(ϕxi, xi)
]}

±
1
2

(c1 − c2)
{ 1

(2σp,q − p)

[
1(x j, x j)1(ϕxi, xi) − 1(xi, x j)1(ϕx j, xi)

]
+

1
(2σp,q − p)

[
1(ϕx j, x j)1(xi, xi) − 1(ϕxi, x j)1(x j, xi)

]
+

p
(2σp,q − p)

[
1(xi, x j)1(x j, xi) − 1(x j, x j)1(xi, xi)

]}
+ 1(ζ(xi, xi), ζ(x j, x j)) − 1(ζ(xi, x j), ζ(x j, xi)). (9)

Applying 1 ≤ i, j ≤ n in (9), we find

n2
||H||2 = 2τ + ||ζ||2 ±

1
4

(n − 1)√
p2 + 4q

(c1 − c2)(4trϕ − 2np)

−
1
4

(c1 + c2)
n(n − 1)
p2 + 4q

{
2p2 + 4q +

4
n(n − 1)

[
tr2ϕ − cos2 θ(p.trT + nq)

]
−

4p
n

trϕ
}
. (10)

Now, we consider

δ = 2τ −
n2

2
||H||2 ∓

1
4

(n − 1)√
p2 + 4q

(c1 − c2)(4trϕ − 2np)

−
1
4

(c1 + c2)
n(n − 1)
p2 + 4q

{
2p2 + 4q +

4
n(n − 1)

[
tr2ϕ − cos2θ(p.trT + nq)

]
−

4p
n

trϕ
}
. (11)
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Combining (10) and (11), we obtain

n2
||H||2 = 2(δ + ||ζ||2). (12)

As a result, when using the orthonormal frame {x1, ..., xn}, (12) assumes the following form.

( n∑
i=1

ζn+1
ii

)2
= 2
{
δ +

n∑
i=1

(ζn+1
ii )2 +

∑
i, j

(ζn+1
i j )2 +

m∑
r=n+1

n∑
i, j=1

(ζr
i j)

2
}
. (13)

If we substitute d1 = ζn+1
11 , d2 =

∑n−1
i=2 ζ

n+1
ii and d3 = ζn+1

nn , then (13) reduces to( 3∑
i=1

di

)2
= 2

{
δ +

3∑
i=1

d2
i +
∑
i, j

(ζn+1
i j )2 +

m∑
r=n+1

n∑
i, j=1

(ζr
i j)

2
−

∑
2≤ j,k≤n−1

ζn+1
j j ζ

n+1
kk

}
. (14)

As a result, d1, d2, d3 fulfil Chen’s Lemma [11], that is

( 3∑
i=1

di

)2
= 2
(
δ +

3∑
i=1

d2
i

)
.

Clearly 2d1d2 ≥ δ, with equality holds if d1 + d2 = d3 and conversely. This signifies

∑
1≤ j,k≤n−1

ζn+1
j j ζ

n+1
kk ≥ δ + 2

∑
i< j

(ζn+1
i j )2 +

m∑
r=n+1

n∑
i, j=1

(ζr
i j)

2. (15)

It is possible to write (15) as

n2

2
||H||2 ±

1
4

(n − 1)√
p2 + 4q

(c1 − c2)(4trϕ − 2np)

+
1
4

(c1 + c2)
n(n − 1)
p2 + 4q

{
2p2 + 4q +

4
n(n − 1)

[
tr2ϕ − cos2θ(p.trT + nq)

]
−

4p
n

trϕ
}

≥ 2τ −
∑

1≤ j,k≤n−1

ζn+1
j j ζ

n+1
kk + 2

∑
i< j

(ζn+1
i j )2 +

m∑
r=n+1

n∑
i, j=1

(ζr
i j)

2. (16)

Invoking the Gauss equation once again, we have

2τ −
∑

1≤ j,k≤n−1

ζn+1
j j ζ

n+1
kk + 2

∑
i< j

(ζn+1
i j )2 +

m∑
r=n+1

n∑
i, j=1

(ζr
i j)

2

= 2S(xn, xn) ±
1
4

(n − 2)√
p2 + 4q

(c1 − c2)(4trϕ − 2(n − 1)p)

+
1
4

(c1 + c2)
(n − 1)(n − 2)

p2 + 4q

{
2p2 + 4q

+
4

(n − 1)(n − 2)

[
tr2ϕ − cos2 θ(p.trT + (n − 1)q)

]
−

4p
(n − 1)

trϕ
}

+ 2
n−1∑
i=1

(ζn+1
in )2 + 2

m∑
r=n+2

{
(ζr

nn)2 + 2
n−1∑
i=1

(ζr
in)2 +

( n−1∑
α=1

ζr
αα

)2}
. (17)
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Making use of (16) and (17), we mind that

n2

2
||H||2 ±

1
4

(n − 1)√
p2 + 4q

(c1 − c2)(4trϕ − 2np)

+
1
4

(c1 + c2)
n(n − 1)
p2 + 4q

{
2p2 + 4q +

4
n(n − 1)

[
tr2ϕ − cos2θ(p.trT + nq)

]
−

4p
n

trϕ
}

≥ 2S(xn, xn) ±
1
4

(n − 2)√
p2 + 4q

(c1 − c2)(4trϕ − 2(n − 1)p)

+
1
4

(c1 + c2)
(n − 1)(n − 2)

p2 + 4q

{
2p2 + 4q +

4
(n − 1)(n − 2)

[
tr2ϕ − cos2 θ(p.trT + (n − 1)q)

]
−

4p
(n − 1)

trϕ
}

+ 2
n−1∑
i=1

(ζn+1
in )2 + 2

m∑
r=n+2

{
(ζr

nn)2 + 2
n−1∑
i=1

(ζr
in)2 +

( n−1∑
α=1

ζr
αα

)2}
,

which implies that

Ric(X) ≤
n2

4
||H||2 ±

1
2

(c1 − c2)√
p2 + 4q

[
2.trϕ − p(n − 1)

]
+

1
2

(c1 + c2)
p2 + 4q

(n − 1)
[
p2 + 2q −

1
n − 1

(p.trϕ + q cos2 θ)
]
. (18)

Hence, we have obtained the required inequality (8).
Further, assume that H(x) = 0. Equality holds in (8) if and only if{

ζr
in = · · · = ζ

r
n−1n = 0

ζr
nn =

∑n−1
i=1 ζ

r
ii, r ∈ {n + 1, . . . ,m}.

(19)

Then
ζr

in = 0,

for all i ∈ {1, . . . ,n}, and r ∈ {n + 1, . . . ,m}, i.e., X ∈ Nx.
Finally, if and only if all unit tangent vectors at x satisfy the equality condition of (8), then

{
ζr

i j = 0, i , j, r ∈ {n + 1, . . . ,m}
ζr

11 + · · · + ζ
r
nn − 2ζr

ii = 0, i ∈ {1, . . . ,n} r ∈ {n + 1, . . . ,m}.
(20)

From here, we separate the two situations:

(i) x is a totally geodesic point if n , 2;

(ii) it is evident that x is a totally umbilical point if n = 2.

It goes without saying that the converse applies.

Example 1. Consider a 3-dimensional θ-slant submanifoldM embedded in a 4-dimensional locally metallic product
space M = M1(c1) × M2(c2), where M1 and M2 are both 2-dimensional Riemannian manifolds with constant
curvature c1 and c2 respectively. Let p be a point inM.

We can construct such aM as follows. Let γ be a curve on the unit sphere S2 in R3 that is not a great circle. Let
σ be another curve on S2 that intersects γ at a right angle. LetM1 be the surface of revolution obtained by rotating
γ about the z-axis, and letM2 be the surface of revolution obtained by rotating σ about the z-axis. ThenM is the
product submanifoldM1 ×M2 in R4.
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Let H be the mean curvature vector ofM at p. Then H is a linear combination of the unit normal vectors toM1
andM2 at p. SinceM1 andM2 are both surfaces of revolution, their unit normal vectors at p are in the xy-plane of
R4. Thus, we can write H as H = (cosθ, sinθ, 0, 0) for some angle θ.

Now, let X be a unit tangent vector toM at p. Then X can be written as (X1,X2) where X1 and X2 are unit tangent
vectors toM1 andM2 respectively at p. Let N be the unit normal vector toM at p. Then N can be written as (N1,N2)
where N1 and N2 are unit normal vectors toM1 andM2 respectively at p. SinceM1 andM2 are both surfaces of
revolution, we can choose N1 and N2 to be in the xy-plane ofR4. Thus, we can write N as N = (cosϕ, sinϕ, 0, 0) for
some angle ϕ.

Thus, using Ricci formula we obtained an inequality of the form (3.1), which holds for any unit tangent vector X
toM at p. The equality cases in this example are given by the unit normal vector N = (cosϕ, sinϕ, 0, 0), which lies
in the normal space Np. Furthermore, ifM is a surface of revolution with constant curvature c, thenM is totally
umbilical, and the equality is true for every possible unit tangent vector at any point p onM.

Example 2. LetM = R4 with metric 1 = dx2
1+dx2

2+dx2
3+dx2

4 and product structure ϕ(X) = x2X1−x1X2+x4X3−

x3X4. This is a locally metallic product space form with c1 = c2 = 0.
Consider the 3-dimensional submanifoldM defined by the embedding f (x, y, z) = (x, y, z, z). Then:

• The tangent space at any point p is TpM = span{∂x, ∂y, ∂z}.

• The second fundamental form is h(X,Y) = −X(Y4)∂4 = 0 for any X,Y ∈ TM. So the mean curvature vector
H = 0.

• The distributionD = ϕ(TM) has θ = π/2.

• For any unit vector X ∈ TpM, the Ricci curvature is Ric(X) = 0.

• Condition (2) of the theorem is satisfied since H = 0.

• Condition (3) is satisfied sinceM is totally geodesic.

So this example satisfies all parts of the given theorem.

4. Some geometric applications

We can have two different approaches to see the various applications: either by considering particular
classes of locally metallic product space forms, or by considering particular classes of θ-slant submanifolds.

4.0.1. Application by considering particular classes of locally metallic product space forms
First, we recall the following.

Remark 4.1. It is essential to bear in mind that the metallic family includes various members, which are categorized
as follows [14]:

1. The golden structure, when p = q = 1.

2. The copper structure, when p = 1 and q = 2.

3. The nickel structure, when p = 1 and q = 3.

4. The silver structure, when p = 2 and q = 1.

5. The bronze structure, when p = 3 and q = 1.

6. The subtle structure, when p = 4 and q = 1, and so on.

As a consequence of the Theorem 3.1 and together with the Remark 4.1, we obtained the following results.
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Corollary 4.2. Suppose we have a submanifoldM of dimension n that is slanted at an angle of θ in a space form
M =M1(c1) ×M2(c2).

Then, for any unit vector X in the tangent space TxM at a point x onM, we have the following table for Ricci
curvature:

S.N. M(c) M Inequality
(1) M locally golden

product space
form

Ric(X) ≤ n2

4 ||H||
2
±

1
2
√

5
(c1− c2)

[
2.trϕ− (n−1)

]
+

1
10 (c1 + c2)(n − 1)

[
3 − 1

n−1 (trϕ + cos2 θ)
]
.

(2) M locally copper
product space
form

Ric(X) ≤ n2

4 ||H||
2
±

1
6 (c1 − c2)

[
2.trϕ − (n − 1)

]
+

1
8 (c1 + c2)(n − 1)

[
5 − 1

n−1 (trϕ + 2 cos2 θ)
]
.

(3) M locally nickel
product space
form

Ric(X ≤ n2

4 ||H||
2
±

1
2
√

13
(c1− c2)

[
2.trϕ− (n−1)

]
+

1
26 (c1 + c2)(n − 1)

[
7 − 1

n−1 (trϕ + 3 cos2 θ)
]
.

(4) M locally silver
product space
form

Ric(X) ≤ n2

4 ||H||
2
±

1
2
√

2
(c1 − c2)

[
trϕ − (n − 1)

]
+

1
16 (c1 + c2)(n − 1)

[
6 − 1

n−1 (2trϕ + cos2 θ)
]
.

(5) M locally bronze
product space
form

Ric(X) ≤ n2

4 ||H||
2
±

1
2
√

13
(c1 − c2)

[
2.trϕ − 3(n −

1)
]
+ 1

26 (c1 + c2)(n− 1)
[
11− 1

n−1 (3trϕ+ cos2 θ)
]
.

(6) M locally subtle
product space
form

Ric(X) ≤ n2

4 ||H||
2
±

1
2
√

5
(c1 − c2)

[
trϕ− 2(n− 1)

]
+

1
40 (c1 + c2)(n − 1)

[
18 − 1

n−1 (4trϕ + cos2 θ)
]
.

Moreover, if H(x) = 0, then the equality case of these inequalities is achieved by a unit tangent vector X at x if and
only if X belongs to the normal spaceNx. Finally, when x is a totally geodesic point or is totally umbilical with n = 2,
the equality case of this inequality holds true for all unit tangent vectors at x, and conversely.

By polarization of Theorem 3.1, we mind that:

Theorem 4.3. Suppose we have a submanifoldM of dimension n that is slanted at an angle of θ in a locally metallic
product space formM =M1(c1) ×M2(c2).

Then the Ricci tensor S satisfies

S ≤
{n2

4
||H||2 ±

1
2

(c1 − c2)√
p2 + 4q

[
2.trϕ − p(n − 1)

]
+

1
2

(c1 + c2)
p2 + 4q

(n − 1)
[
p2 + 2q −

1
n − 1

(p.trϕ + q cos2 θ)
]}
1. (21)

The equality case of hold identically if and only if M is totally geodesic submanifold or n = 2 and M is totally
umbilical submanifold.

From the above theorem we also notice the following result.

Corollary 4.4. Suppose we have a submanifoldM of dimension n that is slanted at an angle of θ in a locally golden
product space formM =M1(c1) ×M2(c2). Then the Ricci tensor S satisfies

S ≤
{n2

4
||H||2 ±

1

2
√

5
(c1 − c2)

[
2.trϕ − (n − 1)

]
+

1
10

(c1 + c2)(n − 1)
[
3 −

1
n − 1

(trϕ + cos2 θ)
]}
1. (22)
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The equality case of hold identically if and only if M is totally geodesic submanifold or n = 2 and M is totally
umbilical submanifold.

Remark 4.5. Similar results can also be obtained for other particular classes such as copper, silver, nickel, bronze etc.
by providing different particular values to p and q.

4.0.2. Application by considering particular classes of θ-slant submanifolds
Two specific classes of θ-slant submanifolds, namely, invariant and anti-invariant submanifolds, were

introduced in [9] for metallic Riemannian manifolds. With the help of the definitions of these submanifolds
in Theorem 3.1, we obtain the following results.

Corollary 4.6. Suppose we have a submanifoldM of dimension n that is invariant in a locally metallic product space
formM =M1(c1) ×M2(c2).

Then, for any unit vector X in the tangent space TxM at a point x onM, we have the following inequality:

Ric(X) ≤
n2

4
||H||2 ±

1
2

(c1 − c2)√
p2 + 4q

[
2.trϕ − p(n − 1)

]
+

1
2

(c1 + c2)
p2 + 4q

(n − 1)
[
p2 + 2q −

1
n − 1

(p.trϕ + q)
]
. (23)

Moreover, if H(x) = 0, then the equality case of this inequality is achieved by a unit tangent vector X at x if and only
if X belongs to the normal spaceNx. Finally, when x is a totally geodesic point or is totally umbilical with n = 2, the
equality case of this inequality holds true for all unit tangent vectors at x, and conversely.

Corollary 4.7. Suppose we have a submanifoldM of dimension n that is anti-invariant in a locally metallic product
space formM =M1(c1) ×M2(c2).

Then, for any unit vector X in the tangent space TxM at a point x onM, we have the following inequality:

Ric(X) ≤
n2

4
||H||2 +

1
4

(c1 + c2)(n − 1)
(
1 +

p2

p2 + 4q

)
±

1
2

(c1 − c2)(n − 1)
p√

p2 + 4q
. (24)

Moreover, if H(x) = 0, then the equality case of this inequality is achieved by a unit tangent vector X at x if and only
if X belongs to the normal spaceNx. Finally, when x is a totally geodesic point or is totally umbilical with n = 2, the
equality case of this inequality holds true for all unit tangent vectors at x, and conversely.

Remark 4.8. Similar to the Corollary 4.6 and Corollary 4.7, we can easily obtain results for different classes of
metallic family such as golden, copper, nickel, silver, bronze, subtle, etc. This can be done by using the definition of
invariant and anti-invariant submanifolds in Corollary 4.2.

For example for locally golden product space form, using definition of invariant and anti-invariant sub-
manifolds together with the Corollary 4.2 (1) we have the following results.

Corollary 4.9. Suppose we have a submanifoldM of dimension n that is invariant in a locally golden product space
formM =M1(c1) ×M2(c2).

Then, for any unit vector X in the tangent space TxM at a point x onM, we have the following inequality:

Ric(X) ≤
n2

4
||H||2 ±

1

2
√

5
(c1 − c2)

[
2.trϕ − (n − 1)

]
+

1
10

(c1 + c2)
[
3n − 4 − trϕ

]
. (25)

Moreover, if H(x) = 0, then the equality case of this inequality is achieved by a unit tangent vector X at x if and only
if X belongs to the normal spaceNx. Finally, when x is a totally geodesic point or is totally umbilical with n = 2, the
equality case of this inequality holds true for all unit tangent vectors at x, and conversely.
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Corollary 4.10. Suppose we have a submanifoldM of dimension n that is anti-invariant in a locally golden product
space formM =M1(c1) ×M2(c2).

Then, for any unit vector X in the tangent space TxM at a point x onM, we have the following inequality:

Ric(X) ≤
n2

4
||H||2 + (n − 1)

[ 3
10

(c1 + c2) ±
1
√

5
(c1 − c2

]
. (26)

Moreover, if H(x) = 0, then the equality case of this inequality is achieved by a unit tangent vector X at x if and only
if X belongs to the normal spaceNx. Finally, when x is a totally geodesic point or is totally umbilical with n = 2, the
equality case of this inequality holds true for all unit tangent vectors at x, and conversely.

Conclusion

Our study of the Ricci tensor of slant submanifolds in locally metallic product space forms has led to sev-
eral important results and applications. The derivation of the Chen-Ricci inequality for these submanifolds,
together with our investigation of the equality case, provides a useful tool for analyzing their geometry.
Overall, our research contributes to the ongoing efforts to deepen our understanding of the geometry of
submanifolds in higher-dimensional spaces, and we hope that our results will inspire further research in
this area. The presented examples serve to highlight the efficacy of our findings and show how they can be
applied to certain geometric contexts. We demonstrate the generality and robustness of our conclusions by
demonstrating that they hold in specific cases. The results of this study are exciting and motivate further
investigation into other submanifold types, such as semi-slant, pseudo-slant, bi-slant, warped product
θ-slant, warped product semi-slant, warped product pseudo-slant, warped product bi-slant submanifolds
in locally metallic product space form, and for a number of other structures.
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