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Abstract. For a connected graph H, the adjacent eccentric distance sum index (AEDSI) is defined as

ξsv(H) =
∑

vx∈V(H)

εH(vx) ·DH(vx)
degH(vx)

,

where εH(vx) denotes the eccentricity of the vertex vx, degH(vx) is the degree of vx and DH(vx) = Σvy∈V(H)d(vx, vy)
is the sum of all distances from vx in H. AEDSI is proven to be very helpful on predicting anti-HIV activity.
In this paper, we give a best possible upper bound on the AEDSI of H with given radius that guarantees H
is ω-connected, β-deficient, ω-Hamiltonian, ω-path-coverable and ω-edge-Hamiltonian, respectively. This
supplies a continuation of the results presented by Feng et al. (2017).

1. Introduction

We study simple, undirected, connected and finite graphs throughout this paper. Let H be a graph
with vertex set V(H) = {v1, v2, . . . , vp}, i.e., p = |V(H)|. For a vertex vs ∈ V(H), the degree degH(vs) (= ds)
of vs is the number of edges incident with vs in H and denote by (d1, d2, . . . , dp) the degree sequence of H
with d1 ≤ d2 ≤ · · · ≤ dp. A degree sequence π = (d1, d2, . . . , dp) is called graphical if there exists a graph H
having π as its vertex degree sequence. Let dH(vs, vt) be the distance between two vertices vs and vt in H,
and DH(vs) = Σvt∈V(H)d(vs, vt) the sum of all distances from the vertex vs in H. The eccentricity εH(vs) of vs is
the maximum distance from vs to any other vertex in H. The radius r(H) of H is the minimum eccentricity
among the vertices of H. We write α(H) for the independence number of H. In the following context, we
usually delete the footnote H from the symbols if there is no ambiguity, and refer the reader to [10] for
undefined notation and terminologies.

We shall use H1 + H2, H1▽H2 to denote the union, the join of two vertex-disjoint graphs H1 and H2,
respectively. We use Kp to denote the complete graph of order p, and by H we denote the complement of H.

A connected graph H with more than ω vertices, remains connected whenever fewer than ω vertices are
removed, then H is said to be ω-connected. The deficiency of H is the number of vertices that are not matched
under a maximum matching in H, and is denoted by def(H). Particularly, H has a 1-factor if and only if
def(H)= 0. We say H, β-deficient if def(H)≤ β. For a connected graph H and X ⊆ V(H) with |X| ≤ ω, ω ∈ Z+,
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if the subgraph induced by V(H) \X is Hamiltonian, then H is called to be ω-Hamiltonian. Thus the notions
“0-Hamiltonian” and “Hamiltonian” are equivalent.

A path (cycle) with |V(H)| vertices is called a Hamiltonian path (cycle) of H. If H contains a Hamiltonian
path, then H is traceable. We say a graph H, ω-path-coverable, if the vertex set of H can be covered by ω or
fewer vertex-disjoint paths. In particular, the notions “1-path-coverable” and “traceable” are equivalent. A
graph H is ω-edge-Hamiltonian if any collection of pairwise vertex-disjoint paths altogether with at most ω
edges belong to a Hamiltonian cycle in H.

Molecular structure descriptors, also regarded as topological indices, are used in theoretical chemistry
to depict the characteristics of chemical compounds [17]. Up to now, a large number of topological indices
have been found to have a wide range of practical applications [12], such as the connective eccentricity
index (CEI) [15], eccentric connectivity index (ECI) [31] and eccentric distance sum (EDS) [16].

The adjacent eccentric distance sum index (AEDSI), which was first introduced in [29], is defined as

ξsv(H) =
∑

vx∈V(H)

εH(vx) ·DH(vx)
degH(vx)

.

On the above eccentricity-based topological indices one can refer to [6, 7, 14, 19, 28, 30] for more details.

According to the definition of DH(vx), we get

DH(vx) ≥ deg(vx) + 2
(
n − 1 − deg(vx)

)
. (1)

A popular research topic in graph theory is the study of whether a given graph has some important
property (such as Hamiltonicity or traceability). It shows that [20] determining whether a graph has a
Hamiltonian cycle is NP-complete. Although there are some literatures [5, 13, 18, 23–27, 33] using the
bounds of topological indices to confirm the structure of graphs, there are still few results related to them.
Recently, based on the first Zagreb index or reciprocal degree distance, the κ-connectivity, β-deficiency
[2, 4], Hamiltonian-connectedness [1] and ℏ-Hamiltonicity, ℏ-path-coverability and ℏ-edge-Hamiltonicity
[3] of graphs have been discussed. By employing the Wiener index, some vulnerability parameters (such
as integrity, toughness, tenacity and binding number) of graphs have been studied [34]. However, it is
still unknown to judge a graph with the above graph properties by means of eccentricity-based topological
indices.

In this paper, we have partially solved the problems above, that is to say, we give a best possible
upper bound on the AEDSI of a graph H with given radius that guarantees H is ω-connected, β-deficient,
ω-Hamiltonian, ω-path-coverable and ω-edge-Hamiltonian, respectively.

In Section 2, we give some necessary lemmas. The major results and their proofs will be given in Section
3.

2. Preliminaries

In this section, some useful lemmas will be given.

Lemma 2.1. [9] Let (t1, . . . , tp) be a graphical sequence with 1 ≤ ω ≤ p − 1 and p ≥ 2. If

t j ≤ ω + j − 2⇒ tp+1−ω ≥ p − j for j ∈
[
1,

p − ω + 1
2

]
,

then any graph with this degree sequence is ω-connected.

Lemma 2.2. [32] Let (t1, . . . , tp) be a graphical sequence, 0 ≤ β ≤ p and p ≡ β (mod 2). If

t j+1 ≤ j − β⇒ tp+β− j ≥ p − j − 1 for j ∈
[
1,

p + β − 2
2

]
,

then any graph with this degree sequence is β-deficient.
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Lemma 2.3. Let (t1, . . . , tp) be a graphical sequence, ω ∈ [0, p − 3].
(i) [11] If

t j ≤ ω + j⇒ tp− j−ω ≥ p − j for j ∈
[
1,

p − ω
2

)
,

then any graph with this degree sequence is ω-hamiltonian.
(ii) [21] If

t j−ω ≤ j⇒ tp− j ≥ p + ω − j for j ∈
[
ω + 1,

ω + p
2

)
,

then any graph with this degree sequence is ω-edge-hamiltonian.

Lemma 2.4. [8, 22] Let (t1, . . . , tp) be a graphical sequence with ω ≥ 1. If

t j+ω ≤ j⇒ tp− j ≥ p − ω − j for j ∈
[
1,

p − ω
2

)
,

then any graph with this degree sequence is ω-path-coverable.

Lemma 2.5. [8] Let (t1, . . . , tp) be a graphical sequence with ω ≥ 1. If tω+1 ≥ p−ω, then any graph with this degree
sequence satisfies α(H) ≤ ω.

3. Results

Now, we give a best possible upper bound on the AEDSI of a graph H with given radius that guarantees
H is ω-connected, β-deficient, ω-Hamiltonian, ω-path-coverable and ω-edge-Hamiltonian, respectively.

We first denote H1 =
{
Kω−1▽(K1 + Kp−ω), K p−1

2
+ K p+1

2
, H1

}
, H2 =

{
H2, K p−2

2
▽(K2 + K p−2

2
), K p−1

2
▽K p+1

2
,
}
,

H3 =
{
K p−2−ω

2
▽(K2 + K p−2+ω

2
), K p−ω−1

2
▽(K1 + K p+ω−1

2
)
}

andH4 =
{

H2, K p−2+ω
2
▽(K2 + K p−2−ω

2
), K p+ω−1

2
▽(K1 + K p−ω−1

2
)
}
,

where p (p > 2) is an integer, H1 is the
( p

2 − 1
)
-regular graph and H2 = Kω+1▽(K1 + Kp−ω−2).

Theorem 3.1. Let H be a graph on p ≥ ω+ 1 vertices such that ω ≥ 1 and with radius r. If ξsv(H) ≤ rΓ1(p, ω), then
H is ω-connected if and only if H < H1, where

Γ1(p, ω) =


3p2
−5p−4
p−3 if ω = 1 and p is odd,

p(3p−2)
p−2 if ω = 1 and p is even,

2(p−1)
ω−1 +

2(p−1)(p−ω)
p−2 + 2ω − p − 2 if ω ≥ 2.

Proof. Sufficiency. Assume H is notω-connected for some s in 1 ≤ s ≤ p−ω+1
2 . Therefore according to Lemma

2.1, we know that ds ≤ s+ω− 2 and dp−ω+1 ≤ p− s− 1. Notice that 1 ≤ ω ≤ p− 1. Then by inequality (1) and
the fact that ε(vx) ≥ r, for any vertex vx ∈ V(H), we obtain

ξsv(H) =
∑

v j∈V(H)

ε(v j) ·D(v j)
deg(v j)

≥ r
p∑

j=1

d j + 2
(
p − 1 − d j

)
d j

= 2r(p − 1)
p∑

j=1

1
d j
− pr (2)

≥ 2(p − 1)r
( s

s + ω − 2
+

p − ω − s + 1
p − s − 1

+
ω − 1
p − 1

)
− pr.
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Now we consider the following function

f (x) =
x

x + ω − 2
+

p − ω − x + 1
p − x − 1

with 1 ≤ x ≤ 1
2 (p − ω + 1). So we get

f ′(x) = (ω − 2)
( 1

(x + ω − 2)2 −
1

(p − 1 − x)2

)
. (3)

Since 1 ≤ x ≤ p−ω+1
2 and ω ≥ 1, we have 0 ≤ x + ω − 2 ≤ p − 1 − x. Thus 1

(x+ω−2)2 −
1

(p−1−x)2 ≥ 0.

Case 1 : ω ≥ 2. Then by Eq. (3), f ′(x) ≥ 0, which follows that f (x) is increasing on x ∈ [1, p−ω+1
2 ]. So

f (x) ≥ f (1), and

ξsv(H) ≥

(2(p − 1)
ω − 1

+
2(p − 1)(p − ω)

p − 2
+ 2ω − p − 2

)
r = rΓ1(p, ω).

In combination with the conditions of the theorem, the above inequality is true if and only if we take an
equal sign. So s = 1, and correspondingly d1 = ω − 1, d2 = · · · = dp+1−ω = p − 2, dp−ω+2 = · · · = dp = p − 1.
Therefore H � Kω−1▽(K1 + Kp−ω), contrary to the assumption.

Case 2 : ω = 1. Then from Eq. (3), f ′(x) ≤ 0. Implying that f (x) is decreasing on x ∈ [1, p
2 ]. So

fmin(x) = f (⌊ p
2 ⌋) as x is an integer.

Subcase 2.1 : p is odd. Thus f (x) ≥ f ( p−1
2 ). Hence

ξsv(H) ≥ r
(3p2

− 5p − 4
p − 3

)
= rΓ1(p, ω).

In combination with the conditions of the theorem, the inequality above can only be true if equality holds.
Thus s = p−1

2 , and correspondingly d1 = · · · = d p−1
2
= 1

2 (p − 3), d p+1
2
= · · · = dp =

p−1
2 . So H � K p−1

2
+ K p+1

2
, a

contradiction.
Subcase 2.2 : p is even. Thus f (x) ≥ f ( p

2 ). So

ξsv(H) ≥
rp(3p−2)

p−2 = rΓ1(p, ω).

In combination with the conditions of the theorem, the above inequality is true if and only if we take an
equal sign. Therefore s = p

2 , and correspondingly d1 = · · · = dp =
p
2 − 1. Thus H � H1, contrary to the

assumption. Hence H is ω-connected.
Conversely, suppose that H ∈ H1. Then one can check that H is not ω-connected.

Theorem 3.2. Let H be a graph on p ≥ 10 vertices and with radius r and matching number ν, p ≡ β(mod 2) and
0 ≤ β ≤ p. If

ξsv(H) ≤
(2(p − 1)(p + β + 2)

p − β − 2
− β − 2

)
r,

then H is β-deficient if and only if H � (p − ν + 1)K1▽Kν−1.
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Proof. Sufficiency. Assume that H is not β-deficient. Therefore according to Lemma 2.2, there exists an
integer s with 1 ≤ s ≤ p+β−2

2 such that ds+1 ≤ s − β and dp+β−s ≤ p − s − 2. Note that β + 1 ≤ s ≤ p − 2 as H is
connected. So by inequality (2), we have

ξsv(H) ≥ 2r(p − 1)
p∑

j=1

1
d j
− pr

≥ 2(p − 1)r
( s + 1

s − β
+

p + β − 2s − 1
p − s − 2

+
s − β
p − 1

)
− pr.

We define

1(x) =
x + 1
x − β

+
p + β − 2x − 1

p − x − 2
+

x − β
p − 1

with x ∈ [1, 1
2 (p − 2 + β)]. Obviously β + 1 ≤ x ≤ p − 2. Then

1′(x) =
(x − β)2

[
(p − 2 − x)2

− (p − 1)(p − β − 3)
]
− (p − 1)(β + 1)(p − 2 − x)2

(p − 1)(x − β)2(p − 2 − x)2 .

Since 1 ≤ β + 1 ≤ x ≤ p − 2, we have 0 ≤ p − 2 − x ≤ p − 3 < p − 1 and p − 2 − x ≤ p − β − 3. So
(p − 2 − x)2

− (p − 1)(p − β − 3) < 0, and consequently 1′(x) < 0 when x ∈ [1, p+β−2
2 ]. Implying that 1(x) is

decreasing on x ∈ [1, p+β−2
2 ]. Thus 1(x) ≥ 1( p+β−2

2 ). So

ξsv(H) ≥

(2(p − 1)(p + β + 2)
p − β − 2

− β − 2
)
r.

In combination with the conditions of the theorem, the inequality above can only be true if equality holds.
Hence s = p+β−2

2 . Note that p−β
2 = ν. Then β = p − 2ν and s = p − ν − 1. So d1 = · · · = dp−ν+1 = ν − 1,

dp−ν+2 = · · · = dp = p − 1. Thus H � (p − ν + 1)K1▽Kν−1, contradicting the assumption. Therefore H is
β-deficient.

Conversely, suppose that H � (p − ν + 1)K1▽Kν−1. Then one can check that H is not β-deficient.

Theorem 3.3. Let H be a graph on p (p is sufficiently large) vertices and with radius r, 0 ≤ ω ≤ p − 3. If
ξsv(H) ≤ rΓ2(p, ω), then H is ω-Hamiltonian if and only if H < H2, where

Γ2(p, ω) =


2(p + 2 − 4

p ) if ω = 0 and p is even,
2p + 1 if ω = 0 and p is odd,
2(p−1)
ω+1 +

2(p−1)(p−ω−2)
p−2 + 2ω − p + 2 if ω ≥ 1.

Proof. Sufficiency. Assume H is not ω-Hamiltonian for some s in 1 ≤ s < p−ω
2 . Therefore according to

Lemma 2.3 (i), we know that ds ≤ s + ω and dp−s−ω ≤ p − s − 1. Thus by inequality (2), we have

ξsv(H) ≥ 2r(p − 1)
p∑

j=1

1
d j
− pr

≥ 2(p − 1)r
( s

s + ω
+

p − 2s − ω
p − s − 1

+
s + ω
p − 1

)
− pr.

Since s is an integer, we have 1 ≤ s ≤ p−ω−1
2 . Denote

h(x) =
x

x + ω
+

p − 2x − ω
p − x − 1

+
x + ω
p − 1
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with 1 ≤ x ≤ 1
2 (p − 1 − ω). Thus

h′(x) =
ω(p − 1)(p − 1 − x)2

− (p − 1)(p + ω − 2)(x + ω)2 + (x + ω)2(p − 1 − x)2

(p − 1)(x + ω)2(p − 1 − x)2 .

Case 1 : ω ≥ 1. Denote

η(x) = ω(p − 1)(p − 1 − x)2
− (p − 1)(p + ω − 2)(x + ω)2 + (x + ω)2(p − 1 − x)2

with x ∈ [1, 1
2 (p − 1 − ω)]. Simplifying the expression of η(x), we obtain

η(x) = x4
− 2(p − ω − 1)x3 + (p − 4ωp + 4ω + ω2

− 1)x2
− 2ω(p − 1)(2ω + p − 2)x

+ω(p − 1)
(
(p − 1)2

− ω(ω − 1)
)
.

Take the first and second derivatives of η(x) on x ∈ [1, p−ω−1
2 ] respectively, we have

η′(x) = 4x3
− 6(p − ω − 1)x2 + 2(p − 4ωp + 4ω + ω2

− 1)x − 2ω(p − 1)(p + 2ω − 2),

and

η′′(x) = 2
[
6x2
− 6(p − ω − 1)x + p − 4ωp + 4ω + ω2

− 1
]
� 2ρ(x).

Then ρ′(x) = 6
[
2x− (p−ω− 1)

]
≤ 0 as x ≤ p−ω−1

2 . So ρ(x) is decreasing on 1 ≤ x ≤ 1
2 (p−ω− 1). It follows that

ρ(x) ≤ ρ(1). Note that ρ(1) = −(4ω + 5)p + ω2 + 10ω + 11 < 0 when p is sufficiently large. So ρ(x) < 0 and
consequently η′′(x) is negative. Therefore η(x) is concave up for x ∈ [1, 1

2 (p − 1 − ω)]. Hence η(x) attains its
minimum value at x = 1 or x = ⌊ p−ω−1

2 ⌋. Direct calculations yield η(1) ≤ η(⌊ p−ω−1
2 ⌋). Thus η(x) ≥ η(1). So

ξsv(H) ≥ r
(2(p − 1)
ω + 1

+
2(p − 1)(p − ω − 2)

p − 2
+ 2ω − p + 2

)
= rΓ2(p, ω).

In combination with the conditions of the theorem, the inequality above can only be true if equality holds.
Hence s = 1 and correspondingly d1 = ω + 1, d2 = · · · = dp−ω−1 = p − 2, dp−ω = · · · = dp = p − 1. Thus
H � Kω+1▽(K1 + Kp−ω−2) = H2, a contradiction.

Case 2 : ω = 0. Therefore 1 ≤ x ≤ 1
2 (p − 1) and

h′(x) =
(p − 1 − x)2

− (p − 1)(p − 2)
(p − 1)(p − 1 − x)2 .

Since 1 ≤ x ≤ p − 1, we have 0 ≤ p − 1 − x ≤ p − 2 < p − 1. So (p − 1 − x)2
− (p − 1)(p − 2) < 0. Thus h′(x) < 0

when 1 ≤ x ≤ 1
2 (p − 1), implying that h(x) is decreasing on x ∈ [1, p−1

2 ]. Hence hmin(x) = h(⌊ p−1
2 ⌋) as x ∈ Z.

Subcase 2.1 : p is even. It follows that h(x) ≥ h( p−2
2 ). Thus

ξsv(H) ≥ 2r
(
p + 2 −

4
p

)
= rΓ2(p, ω).

In combination with the conditions of the theorem, the inequality above can only be true if equality holds.
Hence s = p−2

2 , and correspondingly d1 = · · · = d p−2
2
= 1

2 (p − 2), d p
2
= d p+2

2
=

p
2 , d p+4

2
= · · · = dp = p − 1. Thus

H � K p−2
2
▽(K2 + K p−2

2
), contrary to the assumption.

Subcase 2.2 : p is odd. Thus h(x) ≥ h( p−1
2 ). Then

ξsv(H) ≥ r(2p + 1) = rΓ2(p, ω).

In combination with the conditions of the theorem, the above inequality is true if and only if we take an
equal sign. Hence s = p−1

2 , and correspondingly d1 = · · · = d p+1
2
= 1

2 (p − 1), d p+3
2
= · · · = dp = p − 1. Thus

H � K p−1
2
▽K p+1

2
, a contradiction. Therefore H is ω-Hamiltonian.
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Conversely, suppose that H ∈ H2. Then one can check that H is not ω-Hamiltonian.

The following corollary can be obtained directly from Theorem 3.3 by setting ω = 0. Note that in this
caseH2 =

{
K p−2

2
▽(K2 + K p−2

2
), K p−1

2
▽K p+1

2

}
.

Corollary 3.4. Let H be a graph on p (p is sufficiently large) vertices and with radius r. If ξsv(H) ≤ rΓ2(p, 0), then
H is Hamiltonian if and only if H < H2, where

Γ2(p, 0) =
{

2(p + 2 − 4
p ) if p is even,

2p + 1 if p is odd.

Theorem 3.5. Let H be a graph on p ≥ 3 vertices and with radius r, ω ∈ [1, p − 3]. If ξsv(H) ≤ rΓ3(p, ω), then H is
ω-path-coverable if and only if H < H3, where

Γ3(p, ω) =


2(p−1)(p+ω−2)

p−ω−2 +
8(p−1)
p−ω − ω − 2 if p − ω is even,

2(p−1)(p+ω+1)
p−ω−1 − ω − 1 if p − ω is odd.

Proof. Sufficiency. Assume H is not ω-path-coverable for some s in 1 ≤ s < p−ω
2 . Thus from Lemma 2.4, we

know that ds+ω ≤ s and dp−s ≤ p − s − ω − 1. Hence by inequality (2), we have

ξsv(H) ≥ 2r(p − 1)
p∑

j=1

1
d j
− pr

≥ 2r(p − 1)
( s + ω

s
+

p − 2s − ω
p − s − ω − 1

+
s

p − 1

)
− pr.

Note that 1 ≤ s ≤ p−ω−1
2 . Define

φ(x) =
x + ω

x
+

p − 2x − ω
p − x − ω − 1

+
x

p − 1

with x ∈ [1, p−ω−1
2 ]. Then

φ′(x) = −
ω

x2 −
p − 2 − ω

(p − 1 − ω − x)2 +
1

p − 1
.

Note that 0 ≤ p−ω−1−x ≤ p−ω−2 < p−1. Hence p−ω−2
(p−ω−1−x)2 ≥

1
p−ω−2 , and consequently − p−ω−2

(p−ω−1−x)2 +
1

p−1 ≤

−
1

p−ω−2 +
1

p−1 < 0. So φ′(x) < 0 implies φ(x) is decreasing for x ∈ [1, 1
2 (p − ω − 1)]. Thus φmin(x) = φ(⌊ p−ω−1

2 ⌋)
as x ∈ Z.

Case 1 : p − ω is even. Thus φ(x) ≥ φ( p−ω−2
2 ). Therefore

ξsv(H) ≥ r
(2(p − 1)(p + ω − 2)

p − ω − 2
+

8(p − 1)
p − ω

− ω − 2
)
= rΓ3(p, ω).

In combination with the conditions of the theorem, the inequality above can only be true if equality
holds. Hence s = p−ω−2

2 , and correspondingly d1 = · · · = d ω+p−2
2
= 1

2 (p − 2 − ω), d p+ω
2
= d p+ω+2

2
=

p−ω
2 ,

d p+ω+4
2
= · · · = dp = p − 1. Thus H � K p−2−ω

2
▽(K2 + K p−2+ω

2
), contradicting the assumption.
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Case 2 : p − ω is odd. Therefore φ(x) ≥ φ( p−ω−1
2 ). Thus

ξsv(H) ≥ r
(2(p − 1)(p + ω + 1)

p − ω − 1
− ω − 1

)
= rΓ3(p, ω).

In combination with the conditions of the theorem, the above inequality is true if and only if we take
an equal sign. Hence s = p−ω−1

2 , and correspondingly d1 = · · · = d p+ω−1
2
= 1

2 (p − 1 − ω), d ω+p+1
2
=

p−ω−1
2 ,

d p+ω+3
2
= · · · = dp = p − 1. Thus H � K p−ω−1

2
▽(K1 + K p+ω−1

2
), contrary to the assumption. Hence H is ω-path-

coverable.
Conversely, suppose that H ∈ H3. Then one can check that H is not ω-path-coverable.

The following corollary can be obtained directly from Theorem 3.5 by setting ω = 1. Evidently, in this
caseH3 =

{
K p−3

2
▽(K2 + K p−1

2
), K p−2

2
▽(K1 + K p

2
)
}
.

Corollary 3.6. Let H be a graph on p ≥ 3 vertices and with radius r. If ξsv(H) ≤ rΓ3(p, 1), then H is traceable if and
only if H < H3, where

Γ3(p, 1) =


2p2+p−13

p−3 if p is odd,
2p2

p−2 if p is even.

Theorem 3.7. Let H be a graph on p (p is sufficiently large) vertices and with radius r, ω ∈ [0, p − 3]. If
ξsv(H) ≤ rΓ4(p, ω), then H is ω-edge-Hamiltonian if and only if H < H4, where

Γ4(p, ω) =


2(p−1)(p−ω−2)

p+ω−2 +
8(p−1)
p+ω + ω − 2 if ω ∈ [0, 1] and p + ω is even,

2(p−1)(p−ω+1)
p+ω−1 + ω − 1 if ω ∈ [0, 1] and p + ω is odd,

2(p−1)
ω+1 +

2(p−1)(p−ω−2)
p−2 + 2ω − p + 2 if ω ≥ 2.

Proof. Sufficiency. Assume H is not ω-edge-Hamiltonian for some s in ω + 1 ≤ s < p+ω
2 . Then from Lemma

2.3 (ii), we see that ds−ω ≤ s, dp−s ≤ p − s + ω − 1. Therefore by inequality (2), we have

ξsv(H) ≥ 2r(p − 1)
p∑

j=1

1
d j
− pr

≥ 2r(p − 1)
( s − ω

s
+

p − 2s + ω
p − s + ω − 1

+
s

p − 1

)
− pr.

Note that 1 ≤ s ≤ p+ω−1
2 . We define

ψ(x) =
x − ω

x
+

p − 2x + ω
p − x + ω − 1

+
x

p − 1

with ω + 1 ≤ x ≤ 1
2 (ω − 1 + p). Then

ψ′(x) =
ω(p − 1)(p + ω − 1 − x)2

− (p − 1)x2(ω − 2 + p) + x2(ω − 1 + p − x)2

x2(p − 1)(p + ω − 1 − x)2 . (4)

Denote

ζ(x) = ω(p − 1)(p + ω − 1 − x)2
− (p − 1)x2(ω − 2 + p) + x2(ω − 1 + p − x)2
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with x ∈ [ω + 1, 1
2 (ω + p − 1)]. It can be deformed to

ζ(x) = x4
− 2(p + ω − 1)x3 +

[
(p + ω − 1)2

− (p − 1)(p − 2)
]
x2

−2ω(p − 1)(p + ω − 1)x + ω(p − 1)(p + ω − 1)2.

Take the first, second and third derivatives of ζ(x) respectively, we get

ζ′(x) = 4x3
− 6(p + ω − 1)x2 + 2

[
(p + ω − 1)2

− (p − 1)(p − 2)
]
x

−2ω(p − 1)(p + ω − 1),

and

ζ′′(x) = 2
[
6x2
− 6(ω − 1 + p)x + (ω − 1 + p)2

− (p − 1)(p − 2)
]
,

and

ζ′′′(x) = 12
[
2x − (p + ω − 1)

]
.

It is easy to know that ζ′′′(x) ≤ 0 as x ≤ 1
2 (p + ω − 1), which implies that ζ′′(x) is decreasing for ω + 1 ≤ x ≤

1
2 (ω + p − 1). So ζ′′(x) ≤ ζ′′(ω + 1). By direct calculation,

ϕ(ω) := ζ′′(ω + 1) = 2
[
ω2 + 2(5 − 2p)ω + 11 − 5p

]
.

Note that ϕ′(ω) = 4(ω + 5 − 2p) ≤ 4[(p − 3) + 5 − 2p] = 4(2 − p) < 0 when p ≥ 5. Thus ϕ(ω) is decreasing on
ω ∈ [0, p − 3]. So ϕ(ω) ≤ ϕ(0). Evidently, ϕ(0) = 2(11 − 5p) < 0 when p ≥ 5. Hence ζ′′(ω + 1) = ϕ(ω) < 0 and
consequently ζ′′(x) < 0. Implying that ζ′(x) is decreasing on ω+ 1 ≤ x ≤ 1

2 (ω− 1+ p). Thus ζ′(x) ≤ ζ′(ω+ 1).
Note that

ζ′(ω + 1) = (8 − 4p) + 2ω2(3 − 2p) + 2ω(5 − p) − 2p2ω < 0,

when p ≥ 5 and ω ≥ 0. So ζ′(x) < 0, and consequently ζ(x) is decreasing on ω + 1 ≤ x ≤ 1
2 (ω − 1 + p). Thus

ζ( p+ω−1
2 ) ≤ ζ(x) ≤ ζ(ω + 1). Evidently,

ζ
(p + ω − 1

2

)
= −

1
8

[
2(p − 1)(p + ω − 1)3

− (p + ω + 1)2(p + ω − 1)2

− 2(ω + 1)(p − 1)(p + ω + 1)2
]
< 0,

and

ζ(ω + 1) = ω(p − 1)(p − 2)2
− (ω + 1)2(p − 1)(p + ω − 2) + (ω + 1)2(p − 2)2 > 0,

when p is sufficiently large. Also notice that ζ(x) is continuous for x ∈ [ω + 1, p+ω−1
2 ]. Then by the zero

point theorem, there exists some σ in σ ∈ (ω + 1, p+ω−1
2 ) such that ζ(σ) = 0. So ζ(x) ≥ 0 when x ∈ [ω + 1, σ)

and ζ(x) < 0 when x ∈ [σ, p+ω−1
2 ]. By Eq. (4), ψ′(x) ≥ 0 when x ∈ [ω + 1, σ) and ψ′(x) < 0 when

x ∈ [σ, p+ω−1
2 ]. Consequently, ψ(x) is increasing on x ∈ [ω+ 1, σ) and decreasing on x ∈ [σ, p+ω−1

2 ]. Therefore
ψ(x) ≥ min

{
ψ(ω + 1), ψ(⌊ p+ω−1

2 ⌋)
}
.

Case 1 : ω ≥ 2. Then by direct computation, ψmin(x) = ψ(ω + 1). Thus

ξsv(H) ≥r
(2(p − 1)
ω + 1

+
2(p − 1)(p − ω − 2)

p − 2
+ 2ω − p + 2

)
= rΓ4(p, ω).

In combination with the conditions of the theorem, the inequality above can only be true if equality holds.
Hence s = ω + 1, and correspondingly d1 = ω + 1, d2 = · · · = dp−ω−1 = p − 2, dp−ω = · · · = dp = p − 1. Thus
H � Kω+1▽(K1 + Kp−2−ω) = H2, contrary to the assumption.
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Case 2 : ω ∈ [0, 1]. Thus ψmin(x) = ψ(⌊ p+ω−1
2 ⌋).

Subcase 2.1 : p + ω is even. Hence ψ(x) ≥ ψ( p+ω−2
2 ). So

ξsv(H) ≥ r
(2(p − 1)(p − ω − 2)

p + ω − 2
+

8(p − 1)
p + ω

+ ω − 2
)
= rΓ4(p, ω).

In combination with the conditions of the theorem, the inequality above can only be true if equality holds.
Thus s = p−2+ω

2 , and correspondingly d1 = · · · = d 1
2 (p−2−ω) =

1
2 (p − 2 + ω), d 1

2 (p−ω) = d 1
2 (p+2−ω) =

1
2 (p + ω),

d 1
2 (p+4−ω) = · · · = dp = p − 1. Hence H � K p−2+ω

2
▽(K2 + K p−2−ω

2
), contrary to the assumption.

Subcase 2.2 : p + ω is odd. Thus ψ(x) ≥ ψ( p+ω−1
2 ). So

ξsv(H) ≥ r
(2(p − 1)(p − ω + 1)

p + ω − 1
+ ω − 1

)
= rΓ4(p, ω).

In combination with the conditions of the theorem, the inequality above can only be true if equality
holds. Therefore s = p+ω−1

2 , and correspondingly d1 = · · · = d p−ω−1
2
= 1

2 (p + ω − 1), d p+1−ω
2
= 1

2 (p − 1 + ω),

d 1
2 (p+3−ω) = · · · = dp = p − 1. Thus H � K p+ω−1

2
▽(K1 + K p−ω−1

2
), contradicting the assumption. Hence H is

ω-edge-Hamiltonian.
Conversely, suppose that H ∈ H4. Then one can check that H is not ω-edge-Hamiltonian.

Theorem 3.8. Let H be a graph on p vertices and with radius r. If ξsv(H) ≤
( 2(p−1)(ω+1)

p−ω−1 + p − 2ω − 2
)
r, then H

satisfies α(H) ≤ ω if and only if H � Kω+1▽Kp−ω−1.

Proof. Sufficiency. Assume that α(H) > ω. Thus from Lemma 2.5, dω+1 ≤ p −ω − 1. So by inequality (2), we
have

ξsv(H) ≥ 2r(p − 1)
p∑

j=1

1
d j
− pr

≥ 2r(p − 1)
(
ω + 1

p − 1 − ω
+

p − 1 − ω
p − 1

)
− pr

=
(2(p − 1)(ω + 1)

p − ω − 1
+ p − 2ω − 2

)
r.

In combination with the conditions of the theorem, the inequality above can only be true if equality holds.
Thus d1 = · · · = dω+1 = p − 1 − ω, dω+2 = · · · = dp = p − 1. Therefore H � Kω+1▽Kp−ω−1, contrary to the
assumption. Hence H satisfies α(H) ≤ ω.

Conversely, suppose that H � Kω+1▽Kp−ω−1. Then one can check that α(H) > ω.

4. Conclusion

In this paper, by employing the adjacent eccentric distance sum index, we present sufficient conditions
for a graph with given radius to possess certain properties. These results partially solved the problems
raised at the end of [13]. How to apply the method in this paper to other eccentricity-based topological
indices, such as CEI, ECI and EDS, is still unknown. These are all interesting questions for future study.
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