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Abstract. Let Fq be a finite field of order q and F(2ν)
q be a 2ν-dimensional symplectic space. In the present

paper, we study a class of generalized symplectic graphs Γ based on m-dimensional totally isotropic
subspaces in F(2ν)

q . It is shown that Γ is vertex-transitive, and it is a 5-Deza graph with diameter m + 1.
Moreover, we determine the parameters concerning the first subconstituent Γ1 and it is shown that Γ1 is
also a 5-Deza graph.

1. Introduction

At the beginning of the paper, we present some necessary concepts and notations that will be used later.
Let Γ = (V,E) be a graph and u and v be two elements of the vertex set V(Γ). If u and v are adjacent, that is u
and v are joined by an edge of the graph, then they are neighbours, and we write u ∼ v. We denote Γ(u, v) by
the common neighbors of vertices u and v in Γ. We will denote by dΓ(u, v) the distance between two vertices
u and v in graph Γ, and denote by Γi(u) the set of all vertices v for which dΓ(u, v) = i. The diameter of the
graph Γ is the maximal distance between two of its vertices. A graph is edge-transitive(resp. arc-transitive or
vertex-transitive) if its automorphism group Aut(Γ) acts transitively on the edge(resp. arc or vertice) set. A
k-regular graph Γ is called a strongly regular graph with parameters (n, k, λ, µ) if Γ has precisely n vertices,
any two adjacent vertices of Γ have precisely λ common neighbours, and any two nonadjacent vertices of Γ
have µ common neighbours. As a generalization of strongly regular graphs, a k-regular graph on n vertices
is called a d-Deza graph with parameters (n, k, {c1, ..., cd}) if every two distinct vertices of the graph have ci
common adjacent vertices, where i = 1, . . . , d, see [7]. All other unexplained notions and terminology about
graph theory are standard and follow mainly the reference [5].

Suppose that Fq is a finite field and F(2ν)
q = {(a1, a2, . . . , a2ν) : ai ∈ Fq, i = 1, . . . , 2ν} is the row vector space

over Fq of dimension 2ν, where ν is a positive integer. Let

K =
(

0 I(ν)

−I(ν) 0

)
.
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It is easy to see that the set of 2ν × 2ν matrices M satisfying MKMt = K forms a group with respect to the
matrix multiplication, which is called symplectic group of degree 2ν, and denoted by Sp2ν(Fq). Define an
action of symplectic group Sp2ν(Fq) on vector space F(2ν)

q by matrix multiplication:

F(2ν)
q × Sp2ν(Fq) −→F(2ν)

q

((a1, a2, . . . , a2ν),M) 7−→(a1, a2, . . . , a2ν)M.

The vector space F(2ν)
q with the above group action is called symplectic space. Let α1, . . . , αm be linearly

independent vectors of F(2ν)
q and W be the vector subspace spanned by α1, . . . , αm. For simplicity of

notation, we write W as the matrix

W =


α1
...
αm


when no confusion can arise. It is easy to know that if matrix W(as an m × 2ν matrix) is transformed
into P with the elementary row transformations, then W and P are the same subspace. A subspace W
of dimension m is totally isotropic if WKWt = 0. For the sake of simplicity, let M denote the set of all
m-dimensional totally isotropic subspaces. For the above concepts and notations about symplectic spaces
we follow the monograph [16].

Recall that the symplectic graph relative to matrix K over a finite filed is the graph with the set {⟨α⟩ : α ∈
F(2ν)

q }, where ⟨α⟩ means the 1-dimensional subspaces generated by α, as its vertex set and α ∼ β whenever
αKβt = 0 for two vertices α and β. In [12], Rotman firstly studied the symplectic graph modulo 2. In 2006,
Tang and Wan[14] further developed the symplectic graph over an arbitrary finite field. After that, the study
related to symplectic graph has always been a hot topic. There are many remarkable results concerning
symplectic graphs or generalized symplectic graphs over different algebraic structures, see[6–11, 13, 18]
for example. As a development of the symplectic graphs over finite fields, authors in [13] introduced the
generalized symplectic graph of type (m, r, t) over finite commutative rings, it has the set of m-dimensional
totally isotropic free submodules, where 1 ≤ m ≤ ν, as the vertex set V(Γ), and for two different vertices P
and Q, there is an edge between them if r(PKQt) = r and the dimension of P∩Q(denoted by dim(P∩Q)) is
m − t, where r(PKQt) = r is the rank of the matrix PKQt. The author showed some properties of the graph,
such as the transitivity, regularity and the degree of the graph and so on.

In this paper, we will focus on the generalized symplectic graph of type (m, 0, 1) over a finite field, which
is denoted by Γ(K,m,m − 1, 0), and we write it Γ for brevity. The graph Γ has the setM as the vertex set,
and for vertices X and Y, X ∼ Y if XKYt = 0 and dim(X ∩ Y) = m − 1. In particular, if m = ν, then the
graph is the dual polar graph constructed by dual polar spaces (see [3]), and the dual polar graphs have
been extensively studied, see[1, 2, 15]. In the special case m = 1, the graph is exactly the complement of
symplectic graph. Therefore, we will consider the case 1 < m < ν in this paper.

The rest of the paper is organized as follows. In the second section, we firstly studied the basic
properties of the graph Γ(K,m,m − 1, 0), where we give the vertex and arc-transitivity and the diameter of
the graph. And then, we show that Γ is a 5-Deza graph. The final section is devoted to investigating the
first subconstituent Γ1 of Γ and we obtain that Γ1 is also a 5-Deza graph.

2. The generalized symplectic graph Γ

In this section we discuss the basic properties and parameters of the graph Γ, which will play a crucial
role in the study of subconstituents of Γ.

Lemma 2.1. [16, Theorem 3.7] The symplectic group Sp2ν(Fq) acts transitively on the vertex setM.

Lemma 2.2. [16, Corollary 3.19] The number of vertices of graph Γ is

ν∏
i=ν−m+1

(q2i
−1)

m∏
i=1

(qi−1)
.
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By [13, Theorem 2.2], the graph Γ is arc-transitive and thus it is a vertex transitive regular graph.
Therefore, to study the diameter of Γ, without loss of generality, it suffices to consider the longest path
which starts with a fixed vertex. We introduce the following notations. Let M be a vertex of Γ given by

M = (I(m), 0(m×(2ν−m)))

and S(r, t) denotes the vertex set composed of vertices X ∈ V(Γ) such that r(MKXt) = r and dim(M ∩ X) = t.
For any vertex

X =
( m ν −m m ν −m

A B C D
A′ 0 0 0

)
m − t
t ∈ S(r, t),

where r(A′) = t. It is easy to check that r(MKXt) = r
(

C
0

)
= r. So r ≤ m − t. Let Γi be the subgraph induced

by the vertex set Γi(M), and it is clear that V(Γ1) = S(0,m − 1).

Lemma 2.3. Suppose that there are two vertices of S(r, t) and S(r′, t′), say P and Q respectively, such that P ∼ Q.
We have | t − t′ |≤ 1, and

(i) if t − t′ = 1, then r′ − r = 1 or 0;

(ii) if t − t′ = −1, then r − r′ = 1 or 0;

(iii) if t − t′ = 0, then r − r′ = ±1 or 0.

Proof. Since P is adjacent to Q, clearly, dim(P ∩ Q) = m − 1 and r(PKQt) = 0. Suppose that P ∩ Q = W and
P =

( W
α

)
, Q =

(
W
β

)
, where α is not in Q and β is not in P. Furthermore, assume that dim(M ∩W) = t0, then

without loss of generality, let

P =
(
W
α

)
=


m ν −m m ν −m
A 0 0 0
B1 B2 B3 B4

α1 α2 α3 α4

 t0

m − t0 − 1
1

,

where r(A) = t0,
(
B2 B3 B4
α2 α3 α4

)
, 0,A

(
B3
α3

)
= 0. It is easy to see from elementary matrix transformations

that there is matrix S ∈ GLm(Fq) such that AS = (I(t0), 0). Let T =


S

I(ν−m)

(S−1)t

I(ν−m)

. Clearly, T is an

element of Sp2ν(Fq) such that

PT =


m ν −m m ν −m

AS 0 0 0
B1S B2 B3(S−1)t B4
α1S α2 α3(S−1)t α4

.
Further, by performing a series of elementary matrix transformations, PT has the form of

PT =


t0 m − t0 ν −m t0 m − t0 ν −m
I 0 0 0 0 0
0 B12 B2 0 B32 B4
0 α12 α2 0 α32 α4

.
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Since (M,P) and (MT,PT) = (M,PT) are in the same orbit by [17, Theorem 2.1], where M and MT are the
same as subspaces, hence we have dim(M ∩ PT) = dim(MT ∩ PT) = dim(M ∩ P) = t and r(MK(PT)t) =
r((MT)K(PT)t) = r(MKPt) = r, where r = r

(
B32
α32

)
. Since dim(M ∩W) = t0, it clear that t = t0 or t0 + 1.

Similarly, QT can be written as

QT =


t0 m − t0 ν −m t0 m − t0 ν −m
I 0 0 0 0 0
0 B12 B2 0 B32 B4
0 β12 β2 0 β32 β4

,
where dim(M ∩ QT) = t′ = t0 or t0 + 1 and r(MKQt) = r′ = r

(
B32
β32

)
. Since r((PT)K(QT)t) =r(PKQt) = 0, we

have

α12β
t
32 − α32β

t
12 + α2β

t
4 − α4β

t
2 = 0. (1)

Obviously, | t − t′ |≤ 1, and so we will break into the following several possible cases depending on the
values of t and t′.

(i) Firstly, if t − t′ = 1, that is, t = t0 + 1 and t′ = t0, then we can take a matrix representation of PT such
that α12 , 0 and (α2, α32, α4) = 0. Clearly r = r(B32). It follows at once from the equation (1) that α12βt

32 = 0,
and r′ = r(B32) or r′ = r(B32) + 1, which is determined by β32. It follows that r′ − r = 1 or 0.

(ii) Then suppose that t − t′ = −1, it is easy to show that r − r′ = 1 or 0, the proof follows in exactly the
same way as above.

(iii) Finally, suppose that t − t′ = 0. Then there are the following two subcases. If t = t′ = t0 + 1, then
we can take suitable matrix representations of PT and QT such that (α2, α32, α4) = (β2, β32, β4) = 0, α12 , 0
and β12 , 0. It follows that r = r′ = r(B32). If t = t′ = t0, then similarly it is easy to see from (1) that there are
three possibilities of r − r′, i.e., r − r′ = 0, 1 or −1.

Proposition 2.4. There exists edges between S(r, t) and S(r′, t′) for each one of the conditions (i)-(iii) in Lemma 2.3
except for the cases t − t′ = r′ − r = ±1 when r + t = m.

Proof. Suppose that r + t = m and t − t′ = r′ − r = ±1. Without loss of generality, take t − t′ = r′ − r = −1 for
example, let

P =


t r ν −m t r ν −m
I 0 0 0 0 0
0 α1 α2 0 α3 α4
0 A1 A2 0 A3 A4

 t
1
r − 1

∈ S(r, t),

where r
(
α3
A3

)
= r. Suppose by way of contradiction that there is a vertex Q ∈ S(r′, t′) such that P ∼ Q. Then

Q =


t r ν −m t r ν −m
I 0 0 0 0 0
0 β 0 0 0 0
0 A′1 A′2 0 A′3 A′4

 t
1
r − 1

∈ S(r′, t′) = S(r − 1, t + 1),

where β , 0, r(A′3) = r′ = r − 1 and (0,A′1,A
′

2,A
′

3, 0,A
′

4) is (r − 1)-dimensional subspace of

( t r ν −m t r ν −m
0 α1 α2 0 α3 α4
0 A1 A2 0 A3 A4

)
.



L. Huo, W. Cheng / Filomat 38:10 (2024), 3651–3663 3655

Without loss of generality, we assume that (0, α1, α2, 0, α3, α4) is in P but not in Q. Since P ∼ Q, we have(
α3
A3

)
βt = 0. (2)

where the matrix
(
α3
A3

)
has column full rank, it turns out that β = 0, this contradicts with β , 0. Hence there

is no such vertex Q in S(r′, t′) with the property that P is adjacent to Q.
It is clear that there exists edges between S(r, t) and S(r′, t′) for other cases.

Lemma 2.3 provides us with significant implication to explore the following partition of vertex sets
Γi, i ≥ 2, and from which we can easily obtain the diameter of graph Γ.

Theorem 2.5. Let i ≥ 2. Then V(Γi) =
i−1⋃
r=0

S(r,m − i) ∪ S(i − 1,m − (i − 1)).

Proof. Induct on the integer i. If i = 2 and P is any vertex of V(Γ1) = S(0,m − 1), then by Lemma 2.3, the
vertices adjacent to P are in S(1,m−1),S(0,m−1),S(0,m−2),S(1,m−2) or S(0,m), where S(0,m) is the vertex
M. Therefore, the vertices in S(1,m − 1),S(0,m − 2) and S(1,m − 2) are at distance 2 from the vertex M.

Now assume that i ≥ 3 and the conclusion holds for i. For any X ∈ V(Γi+1), there is vertex P ∈ V(Γi) such
that P ∼ X. If P is in S(i − 1,m − (i − 1)), then it is easy to see from Lemma 2.3 and Proposition 2.4 that X
belongs to S(i− 1,m− i), S(i− 1,m− i+ 1) or S(i− 2,m− i+ 1) , and by induction the vertices in S(i− 1,m− i)
and S(i − 1,m − i + 1) are at distance i, and the vertices in set S(i − 2,m − i + 1) are at distance i − 1 from M,
which is a contradiction. Therefore, P ∈ S(r,m − i), where 0 ≤ r ≤ i − 1. Then by Lemma 2.3 again, we have
X ∈ S(r,m− i+1)∪S(r,m− i)∪S(r+1,m− i)∪S(r−1,m− i)∪S(r+1,m− i−1)∪S(r,m− i−1)∪S(r−1,m− i+1).
By induction the vertices in set S(r,m− i+ 1) are at distance i− 1 and the vertices in S(r,m− i), S(r+ 1,m− i)
and S(r − 1,m − i) are at distance i from M. Hence X ∈ S(r + 1,m − i − 1), S(r,m − i − 1), or S(r + 1,m − i)(if
r = i − 1). Thus we see that V(Γi+1) =

⋃i
r=0 S(r,m − i − 1) ∪ S(i,m − i).

It is easy to see that Theorem 2.5 yields the next corollary.

Corollary 2.6. Suppose that P ∈ S(r, t), Then

dΓ(M,P) =
{

m − t, if r + t ≤ m − 1
r + 1, if r + t = m.

Theorem 2.7. The diameter of the graph Γ is m + 1.

Proof. In Corollary 2.6, let t = 0, it is easy to see that the diameter of Γ is less than or equal to m + 1. In fact, there
exist

P =
( ν m ν −m

0 I 0
)
∈ S(m, 0)

such that dΓ(M,P) = m + 1 by Corollary 2.6.

Lemma 2.8. (1) V(Γ1) consists of vertices of form

Γ(k, γ; b, α, β) =


k − 1 1 m − k ν −m m ν −m

0 b 0 α 0 β
I 0 0 0 0 0
0 γt I 0 0 0

 ∈ S(0,m − 1), (3)

where (α, β) , 0 and in particular, γ = ∅ (disappear) in the special case k = m.
(2) V(Γ2) consists of vertices of forms
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(i)


k − 1 1 m − k ν −m k − 1 1 m − k ν −m

0 b 0 α 0 1 γ β
I 0 0 0 0 0 0 0
0 −γt I 0 0 0 0 0

 ∈ S(1,m − 1); (4)

(ii)



k − 1 1 l − k − 1 1 m − l ν −m m ν −m
0 a1 0 b1 0 α1 0 β1

0 a2 0 b2 0 α2 0 β2

I 0 0 0 0 0 0 0
0 γt

1 I 0 0 0 0 0
0 γt

2 0 γt
3 I 0 0 0

 ∈ S(0,m − 2), (5)

where r
(
α1 β1
α2 β2

)
= 2, and α1βt

2 − β1αt
2 = 0;

(iii)



k − 1 1 l − k − 1 1 m − l ν −m k − 1 1 l − k − 1 1 m − l ν −m
0 a1 0 b1 0 α1 0 c cγ1 d δ β1

0 a2 0 b2 0 α2 0 0 0 0 0 β2

I 0 0 0 0 0 0 0 0 0 0 0
0 −γt

1 I 0 0 0 0 0 0 0 0 0
0 −γt

2 0 −γt
3 I 0 0 0 0 0 0 0

, (6)

where δ = cγ2 + dγ3, (α2, β2) , 0, (c, d) , 0, a2c + b2d + α2βt
1 − β2αt

1 = 0. And clearly the vertices of form (6)
belong to S(1,m − 2).

Proof. (1) Suppose that X ∈ V(Γ1) = S(0,m − 1). That means dim(X ∩M) = m − 1 and MKXt = 0. So we
assume that

X =
( m ν −m m ν −m
ξ α η β
A 0 0 0

)
1
m − 1 ,

where the rank of A is m − 1, (α, η, β) , 0, and Aηt = 0. Obviously, there exists T ∈ GLm−1(Fq) such that

TA =
(
I(k−1) 0 0

0 γt I(m−k)

)
.

Thus, there is T′ =
(
1

T

)
∈ GLm(Fq) such that

T′X =


k − 1 1 m − k ν −m m ν −m
ξ1 ξ2 ξ3 α η β
I 0 0 0 0 0
0 γt I 0 0 0

 1
k − 1
m − k

,

where ξ = (ξ1, ξ2, ξ3). It follows from MKXt = 0 that η = 0, and further by elementary rank transformations
of matrix, ξ = (ξ1, ξ2, ξ3) can be transformed into (0, b, 0), where b ∈ Fq, consequently X is of the form (3).

(2) By Theorem 2.5, the vertex set V(Γ2) =
⋃1

i=0 S(i,m − 2) ∪ S(1,m − 1). By using the proof technique
detailed as shown above, it is not hard to obtain the forms of vertices of V(Γ2). The details of the proof are
omitted here for brevity.
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Let Γ(k, γ) = {Γ(k, γ; b, α, β) : (b, α, β) ∈ F(2ν−2m+1)
q }, the vertex set is determined by k and γ. This provides

us with a partition of the vertices of V(Γ1) into disjoint sets.

Theorem 2.9. Γ is a (q2ν−2m+1
−q)(qm

−1)
(q−1)2 -regular graph.

Proof. The result follows directly from [13, Theorem 2.3].

Theorem 2.10. (1) Assume that X is any vertex of S(1,m − 1), then | Γ1(X) ∩ S(0,m − 1) |= q2(ν−m)
−q

q−1 ;

(2) Assume that X is any vertex of S(r, t), then | Γ1(X) ∩ S(r − 1, t + 1) |= (qr
−1)(qm−t−r

−1)
(q−1)2 , where r ≥ 1, r + t ≤ m.

In particular, if X ∈ S(r,m − r), where r ≥ 2, then | Γ1(X) ∩ S(r − 1,m − r + 1) |= 0;
(3) Assume that X is any vertex of S(0, t), then | Γ1(X) ∩ S(0, t + 1) |= ( qm−t

−1
q−1 )2, where 0 ≤ t ≤ m − 2.

Proof. (1) Supposed that X is a vertex of the form (4) in S(1,m − 1) and Y = Γ(k1, γ1; b1, α1, β1) is the vertex
adjacent to X in S(0,m − 1). If X ∼ Y, then k = k1, γ = γ1, and{

b1 + α1βt
− β1αt = 0,

(α1, β1) , 0.

Thus it can be seen that the number of the choices of Y is q2(ν−m)
−q

q−1 .

(2) Assume that

X =


m ν −m m ν −m
A 0 0 0
B1 B2 B3 B4
C1 C2 0 C3

 t
r
m − t − r

is any vertex of S(r, t), where r(A) = t, r(B3) = r. Clearly, the set Γ1(X) ∩ S(r − 1, t + 1) consists of vertices of
form

Y =


m ν −m m ν −m
A 0 0 0
α 0 0 0
B′1 B′2 B′3 B′4
C1 C2 0 C3


t
1
r − 1
m − t − r

,

where r
( A
α

)
= t + 1 and (B′1,B

′

2,B
′

3,B
′

4) is a subspace of (B1,B2,B3,B4) with dimension r − 1. It follows from
[16, Corollary 1.8] that (B′1,B

′

2,B
′

3,B
′

4) has qr
−1

q−1 choices. For convenience, we may assume that

(B1,B2,B3,B4) =
(
β1 β2 β3 β4
B′1 B′2 B′3 B′4

)
,

where (β1, β2, β3, β4) < Y. Since Y ∼ X and YKYt = 0, we have{
β3αt = 0,
B′3α

t = 0.

Note that r
(
β3
B′3

)
= r(B3) = r and α has m − t unknowns, thus α has qm−t−r

−1
q−1 choices. Hence it is easy to see

| S(r − 1, t + 1) ∩ Γ1(X) |=
qr
− 1

q − 1
·

qm−t−r
− 1

q − 1
.
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(3) Suppose that

X =
( m ν −m m ν −m

A 0 0 0
B1 B2 0 B3

)
t
m − t ∈ S(0, t),

where the rank of A is t. Then the vertices of Γ1(X) ∩ S(0, t + 1) have the form of

Y =


m ν −m m ν −m
A 0 0 0
α 0 0 0
B′1 B′2 0 B′3

 d
1
m − d − 1

,

where (B′1,B
′

2, 0,B
′

3) is a subspace of (B1,B2, 0,B3) of dimension m − t − 1. It is easy to check that both

(B′1,B
′

2, 0,B
′

3) and α have qm−t
−1

q−1 choices. Hence there are ( qm−t
−1

q−1 )2 vertices in Γ1(X) ∩ S(0, t + 1).

Lemma 2.11. (1) For any X ∈ V(Γ1), the common number of M and X is | Γ(M,X) |= q2ν−2m+qm+1
−q2
−q

q−1 ;

(2) For any X ∈ V(Γ2), | Γ(M,X) |= q2ν−2m
−q

q−1 , (q + 1)2 or 1.

Proof. (1) Assume that X = Γ(k, γ; b, α, β) ∈ V(Γ1) with the form (3). It is known that the set Γ(M,X) of
common neighbors of M and X is in V(Γ1) = S(0,m − 1), and the vertices adjacent to X in V(Γ1) are also
adjacent to M. Suppose that Y = Γ(k′, γ′; b′, α′, β′) such that Y ∈ S(0,m − 1) and X ∼ Y.

(i) Firstly, consider the case where k , k′ and assume that k > k′. Then we assume that

X =



k′ − 1 1 k − k′ − 1 1 m − k ν −m m ν −m
0 0 0 b 0 α 0 β
I 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 γ I 0 0 0

 ∈ Γ(k, γ),

Y =



k′ − 1 1 k − k′ − 1 1 m − k ν −m m ν −m
0 b′ 0 0 0 α′ 0 β′

I 0 0 0 0 0 0 0
0 γ1 I 0 0 0 0 0
0 c 0 1 0 0 0 0
0 γ2 0 0 I 0 0 0

 ∈ Γ(k
′, γ′),

where γ′ = (γ1, c, γ2). Let ξ(k)
X be the k-th row of the matrix X. Since X ∼ Y, we have that for any b′ ∈ Fq,

there exists a = b′ + bc ∈ Fq such that

ξ(1)
X + aξ(k′+1)

X = ξ(1)
Y + bξ(k)

Y .

Thus (α′, β′) = (α, β), this means that b′ can be any element of Fq. Therefore, | Γ1(X) ∩ Γ(k′, γ′) |= q for any
X ∈ Γ(k, γ).

(ii) Secondly, consider the case that k = k′ and γ , γ′. Then clearly (α′, β′) = (α, β) and the dimension of
X + Y is m + 1. This implies that dim(X ∩ Y) = m − 1. It is obvious that for any b′ ∈ Fq, we have XKYt = 0.
It turns out that | Γ1(X) ∩ Γ(k, γ′) |= q for any X of Γ(k, γ).

(iii) Finally, suppose that k = k′, γ = γ′. Then the elements α′ and β′ of Y need satisfy the following
conditions, {

β′αt
− α′βt = 0,

(α′, β′) , 0.
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It is follows that | Γ1(X) ∩ Γ(k, γ) |= q(q2ν−2m−1
−1)

q−1 .

Since V(Γ1) is divided into qm
−1

q−1 different sets of form Γ(k, γ),

| Γ(M,X) |= q(
qm
− 1

q − 1
− 1) +

q(q2ν−2m−1
− 1)

q − 1
=

q2ν−2m + qm+1
− q2
− q

q − 1
.

(2) If X is any element of S(1,m − 1), then by Theorem 2.10(1), | Γ1(X) ∩ S(0,m − 1) |= q2(ν−m)
−q

q−1 . If X is any
element of S(1,m − 2), then by Theorem 2.10(2), | Γ1(X) ∩ S(0,m − 1) |= 1. Finally, if X ∈ S(0,m − 2), then by
Theorem 2.10(3), | Γ1(X) ∩ S(0,m − 1) |= (q + 1)2.

It is clear that for any vertex of Γ such that dΓ(M,X) ≥ 3, Γ(M,X) = ∅. Since Γ is vertices-transitive, by
Lemma 2.2, Theorem 2.9 and Lemma 2.11, we have the following result.

Theorem 2.12. Γ is a 5-Deza graph with parameters (n, k, {λi, i = 1, . . . , 5}), where

n =

ν∏
i=ν−m+1

(q2i
−1)

m∏
i=1

(qi−1)
, k =

(q2ν−2m+1
− q)(qm

− 1)
(q − 1)2 ,

λ1 =
q2ν−2m+qm+1

−q2
−q

q−1 , λ2 =
q2ν−2m

− q
q − 1

, λ3 = (q + 1)2, λ4 = 1, λ5 = 0.

3. Results about subconstituents Γ1 and Γ2

We mainly discuss the structure of the first subconstituents Γ1 in this section, and we also give some
information about Γ2.

Lemma 3.1. Γ1 is a q2ν−2m+qm+1
−q2
−q

q−1 -regular graph.

Proof. Let X be any vertex of graph Γ1. Then it is easy to see from Lemma 2.11 the number of Γ(M,X) is the

number of the neighbors of X in Γ1. Therefore the degree of X is q2ν−2m+qm+1
−q2
−q

q−1 , and Γ1 is regular.

Lemma 3.2. (1) Let X and Y be the two adjacent vertices of V(Γ1) and Γ1(X,Y) be the common neighbors of vertices
X and Y in Γ1. Then

| Γ1(X,Y) |=
qm+1

− 3q + 2
q − 1

,
q2(ν−m)−1

− q
q − 1

or
q2(ν−m) + qm+1

− q2
− q

q − 1
.

(2) Let X and Y be the two nonadjacent vertices of V(Γ1). Then

| Γ1(X,Y) |=
q2(ν−m)−1

− q
q − 1

, 2q or 0.

Proof. (1) Let X = Γ(k, γ; b, α, β) and Y = Γ(k′, γ′; b′, α′, β′) such that X ∼ Y.
Firstly, consider the case γ , γ′. From the proof of Lemma 2.11, it can be concluded that (α, β) = (α′, β′)

and there exist the following q vertices

Γ(k, γ0; b0, α, β), b0 ∈ Fq

in Γ(k, γ0) adjacent to both X and Y, where Γ(k, γ0) , Γ(k, γ),Γ(k, γ0) , Γ(k′, γ′). In addition, | Γ1(X,Y) ∩

Γ(k, γ) |=| Γ1(X,Y) ∩ Γ(k′, γ′) |= q − 1. Hence | Γ1(X,Y) |= q( qm
−1

q−1 − 2) + 2(q − 1) = qm+1
−3q+2

q−1 .
And then, let k = k′, γ = γ′ and P be vertex of V(Γ1) adjacent to both X and Y. We only need to consider

the following different subcases.
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(a) If P = Γ(k, γ; x, ξ, η) ∈ Γ(k, γ) which is of the form (3), then we have
αηt
− βξt = 0,

α′ηt
− β′ξt = 0,

(ξ, η) , 0,

whereα′βt
−β′αt = 0. If r

(
α β
α′ β′

)
= 2, then | Γ1(X,Y)∩Γ(k, γ) |= q2(ν−m)−1

−q
q−1 . If r

(
α β
α′ β′

)
= 1, then | Γ1(X,Y)∩Γ(k, γ) |=

q2(ν−m)
−q

q−1 .
(b) Suppose that l , k and P = Γ(l, γ0; x, ξ, η) ∈ Γ(l, γ0). Clearly, γ , γ0. We can assume, without loss of

generality, that k > l, and

X =



l − 1 1 k − l − 1 1 m − k ν −m m ν −m
0 0 0 b 0 α 0 β
I 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 η I 0 0 0

 ∈ Γ(k, γ),

Y =



l − 1 1 k − l − 1 1 m − k ν −m m ν −m
0 0 0 b′ 0 α′ 0 β′

I 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 η I 0 0 0

 ∈ Γ(k, γ),

P =



l − 1 1 k − l − 1 1 m − k ν −m m ν −m
0 x 0 0 0 ξ 0 η
I 0 0 0 0 0 0 0
0 γ1 I 0 0 0 0 0
0 c 0 1 0 0 0 0
0 γ2 0 0 I 0 0 0

, γ0 = (γ1, c, γ2).

If r
(
α β
α′ β′

)
= 2, then there is no vertex P such that P ∼ X,P ∼ Y in Γ(l, γ0). Now assumet that r

(
α β
α′ β′

)
= 1.

Since P ∼ X and P ∼ Y, it follows that (ξ, η) = d(α, β), where d is any nonzero element of Fq. Meanwhile, x
is any element of Fq. Therefore, | Γ1(X,Y) ∩ Γ(l, η0) |= q(q−1)

q−1 = q.

(c) Suppose that P ∈ Γ(k, γ0), where γ0 , γ. Similarly, if r
(
α β
α′ β′

)
= 2, then there is no vertex P such that

P ∼ X,P ∼ Y in Γ(k, γ0), and there are q common neighbors of X and Y in Γ(k, γ0) for the case of r
(
α1 β1
α2 β2

)
= 1.

Above all, we obtain

| Γ1(X,Y) |=
qm+1

− 3q + 2
q − 1

,
q2ν−2m−1

− q
q − 1

or

q2ν−2m
− q

q − 1
+ (

qm
− 1

q − 1
− 1)q =

q2ν−2m + qm+1
− q2
− q

q − 1
.

(2) Let X = Γ(k, γ; b, α, β) and Y = Γ(k′, γ′; b′, α′, β′) be two nonadjacent vertices and P be a vertex of V(Γ1)
such that X ∼ P and Y ∼ P.

(a) Suppose that k = k′, γ = γ′ and P = Γ(k, γ; x, ξ, η) ∈ Γ(k, γ). Then it is easy to see from XKPt = YKPt = 0
and M ∩ P = m − 1 that P satisfies the following conditions,

αηt
− βξt = 0,

α′ηt
− β′ξt = 0,

(ξ, η) , 0.
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Since β′αt
−α′βt , 0, it is obvious that r

(
α β
α′ β′

)
= 2. It turns out that the number of the choices of P satisfying

above conditions is q2ν−2m−1
−q

q−1 . Now suppose that P ∈ Γ(l, γ0),where k , l. Then there is no vertex P such that
X ∼ P,Y ∼ P in Γ(k, η0). Thus,

| Γ1(X,Y) |=
q2ν−2m−1

− q
q − 1

.

(b) In the next part of the proof we assume that γ , γ′. If P = Γ(l, γ0; x, ξ, η) ∈ Γ(l, γ0), where γ0 , γ, γ′,
then it is concluded from P ∼ X that (ξ, η) = (α, β). Furthermore, by P ∼ Y, we have (ξ, η) = (α′, β′), which
implies that X ∼ Y, this contradicts X / Y. Thus there is no common neighbors of X and Y in Γ(l, γ0). If
P = Γ(k′, γ′; x, ξ, η) ∈ Γ(k′, γ′), then (ξ, η) = (α, β). Suppose that β′αt

−α′βt = 0. Then X and Y have q common
neighbors in Γ(k′, γ′) since x is any element of Fq. Meanwhile, there are also q common neighbors of X and
Y in Γ(k, γ). Suppose that β′αt

− α′βt , 0. Then it is clear that there is no such vertex P with the property
P ∼ X and P ∼ Y.

Thus, by (a) and (b), we see that | Γ1(X1,X2) |= q2ν−2m−1
−q

q−1 , 2q or 0.

By Lemma 3.1 and Lemma 3.2, it is immediately seen the following theorem.

Theorem 3.3. Γ1 is a 5-Deza graph with parameters (n, k, {λi, i = 1, . . . , 5}), where

n = (q2ν−2m+1
−1)(qm

−1)
(q−1)2 , k = q2ν−2m+qm+1

−q2
−q

q−1 , λ1 =
qm+1
−3q+2

q−1 ,

λ2 =
q2(ν−m)−1

−q
q−1 , λ3 =

q2(ν−m)+qm+1
−q2
−q

q−1 , λ4 = 2q, λ5 = 0.

Finally, we present some results for the second subconstituents of Γ. For simplicity, let Γ21,Γ22, and Γ23
be the subgraphs induced by S(1,m − 1),S(0,m − 2), and S(1,m − 2), respectively.

Theorem 3.4. (1) Let Γ21(k, γ) (see the form (4)) be the subset of S(1,m− 1) determined by k and γ. Then V(Γ21) can
be partitioned into qm

−1
q−1 connected components. Each graph induced by Γ21(k, γ) is a q2ν−2m-regular subgraph with

q2ν−2m+1 vertices. Moreover, the distance of Γ21 is at most 3.
(2) Let Γ22(k, l, γ1, γ2, γ3) (see the form (5)) be the subset of S(0,m−2) determined by (k, l, γ1, γ2, γ3). Then V(Γ22)

can be partitioned into q2m−1
−qm
−qm−1+1

(q−1)2(q+1) pairwise disjoint sets, and Γ22 is isomorphic to the generalized symplectic graph

Γ(K1, 2, 1, 0) based on F2(ν−m+1)
q , where

K1 =

(
0 I(ν−m+1)

−I(ν−m+1) 0

)
.

(3) Let Γ23(k, l, γ1, γ2, γ3) (see the form (6)) be the subset of S(1,m−2) determined by (k, l, γ1, γ2, γ3). Then V(Γ23)

can be partitioned into q2m−1
−qm
−qm−1+1

(q−1)2(q+1) connected components.

Proof. (1) Since Γ21(k, γ) is determined by k and γ, it is easy to see from the form (4) that 1 ≤ k ≤ m and η
has qm−k choices, which implies that V(Γ21) can be partitioned into qm

−1
q−1 different sets. Let X ∈ Γ21(k, γ) and

Y ∈ Γ21(k′, γ′). Note that γ , γ′ if Γ21(k, γ) , Γ21(k′, γ′). Consequently, it is clear that the dimension of X ∩ Y
is not m − 1, and hence there is no edge between different sets Γ21(k, γ) and Γ21(k′, γ′).

Obviously, there are q2ν−2m+1 vertices in each set Γ21(k, γ) since (b, α, β) ∈ F2ν−2m+1
q . Let X be any vertex of

form (4) in Γ21(k, γ) and P ∈ S(1,m − 1) such that P ∼ X, and clearly P ∈ Γ21(k, γ). Thus, let

P =


k − 1 1 m − k ν −m k − 1 1 m − k ν −m

0 b′ 0 α′ 0 1 γ β′

I 0 0 0 0 0 0 0
0 −γt I 0 0 0 0 0

.
It follows that

b − b′ − α′βt + β′αt = 0.
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This implies that the degree of X is q2ν−2m.
Now we consider the distance between any two vertices of Γ21(k, γ). Let

Xi =


k − 1 1 m − k ν −m k − 1 1 m − k ν −m

0 bi 0 αi 0 1 γ βi
I 0 0 0 0 0 0 0
0 −γt I 0 0 0 0 0

, i = 1, 2,

be any two vertices of Γ21(k, γ).
(a) If b1 − b2 + α1βt

2 − β1αt
2 = 0, then we obviously have that X1 ∼ X2 and dΓ(X1,X2) = 1.

(b) If b1 − b2 + α1βt
2 − β1αt

2 , 0 and (α1, β1) , (α2, β2), then X1 / X2, and it is evidently that the linear
equations {

−b1 + b − βαt
1 + αβ

t
1 = 0,

−b2 + b − βαt
2 + αβ

t
2 = 0,

with respect to (b, α, β) always have solution. Thus there always exists vertex X of form (4) such that X ∼ X1
and X ∼ X2, and so dΓ(X1,X2) = 2.

(c) Finally, we assume that b1 − b2 + α1βt
2 − β1αt

2 , 0 and (α1, β1) = (α2, β2). Let

X′i =


k − 1 1 m − k ν −m k − 1 1 m − k ν −m

0 b′i 0 α′i 0 1 η β′i
I 0 0 0 0 0 0 0
0 −ηt I 0 0 0 0 0

, i = 1, 2.

Obviously, the following equations 
−b′1 + b1 − α′1β

t
1 + β

′

1α
t
1 = 0,

b′2 − b2 − β′2α
t
2 + α

′

2β
t
2 = 0,

−b′1 + b′2 − β
′

2(α′1)t + α′2(β′1)t = 0,

with respect to (b′1, α
′

1, β
′

1, b
′

2, α
′

2, β
′

2) always have solution such that X′1 , X′2, and this implies that X1 ∼

X′1,X2 ∼ X′2, and X′1 ∼ X′2. Therefore the distance between X1 and X2 in Γ21(i, η) is 3.
(2) Since (γ1, γ2, γ3) has q2m−k−l−1 possibilities for given integers k and l, it is not hard to check that

there are Σm−1
k=1 Σ

m
l=2q2m−k−l−1 =

q2m−1
−qm
−qm−1+1

(q−1)2(q+1) sets of form Γ22(k, l, γ1, γ2, γ3). Clearly, there is a one-to-one
correspondence between vertices of Γ22(k, l, γ1, γ2, γ3) and vertices of Γ(K1, 2, 1, 0), and so Γ22 � Γ(K1, 2, 1, 0).

(3) Using an analogous argument as above we obtain that V(Γ23) can be partitioned into q2m−1
−qm
−qm−1+1

(q−1)2(q+1)
pairwise disjoint sets. Let X ∈ Γ23(k, l, γ1, γ2, γ3) and Y ∈ Γ23(k′, l′, γ′1, γ

′

2, γ
′

3). It is not hard to see that the
dimension of X ∩ Y is not m − 1 when Γ23(k, l, γ1, γ2, γ3) , Γ23(k′, l′, γ′1, γ

′

2, γ
′

3), and consequently X / Y.
Therefore, each subgraph induced by Γ23(k′, l′, γ′1, γ

′

2, γ
′

3) is a connected component of Γ23.
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