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Abstract. In this work, with the aid of the two parameter Gamma function, we define a new type of
the Gamma operator. We have proved Voronovskaya type theorem and rate of convergence. We establish
uniform convergence of a sequence of the new type Gamma operator via power series method. The power
series method is also used to analyze the rate of convergence of operators. Finally, numerical examples are
given to show the approximate properties of the new type Gamma operator.

1. Introduction

The use of positive linear operators to approximate functions is one of the fundamental topics of
approximation theory. This theory plays a central role in many fields of mathematics, such as measure
theory, harmonic analysis, functional analysis, partial differential equations and probability theory. The

Gamma operator is one of the most used operators within approximation theory. The sequence of Gamma
operator defined by Lupas and Miiller [12] is the following manner:

xn+1 00 _ n
G,,(g,x):mf0 e vg(;)dv,ne]N

for all x € (0, ) . The function g for which the integral is absolutely convergent and for all x € (0, c0). A lot
of researchers studied Gamma-type operators in the literature see e.g. [1, 4, 6, 10, 13, 15]. When assessing

Feynman integrals, one of the studies on Gamma operators is the k-Gamma function defined by Diaz and
Pariguan [5]. k-Gamma function is described by

00 Lk )
Fk(x)=f e* T dt
0

for k € C, Re(x) > 0. By using k-Gamma function, in 2022, Icoz and Demir [8] defined the following new
Gamma operator, for all x € (0,0), k>0, n € N,

xn+1+1/k 0 _xv kl’l+1/k n d
Tn(g’x)_m 0 o 9(5) )
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In 2017, Gehlot defined two parameter Gamma function as follows:

-k
Ty (%) = fo e 7t

k,p € R* and Re(x) > 0. Some properties of the classical Gamma function and k-Gamma function can be

generalized to the two parameter Gamma function such that ,I't(x) = I't(x) = I'x(x) as p = k and ,Ix(x) =
1, I'i(x) =I'(x) as p,k — 1. The properties of fundamental satisfied by the two parameter Gamma function,
Ty (x) are

P

L) = ik F(l),

k \k
i) =
Tk (x + pk)
Pk P
X = —,
p()p,k prk(x)
e+l = Frw, pen, )
p

see for detail [9].

In the remainder of this paper is structured as follows. The new type Gamma operators is presented,
using two parameter Gamma function and this operator is satisfied conditions of Korovkin theorem in
Section 2. The modified Gamma operator is shown Voronovskaya type theorem and rate of convergence
in Section 3. In Section 4, with help of the power series method, we prove approximation properties and
the rate of convergence of the new type Gamma operator. In addition, numerical results related to Gamma
operators are given.

2. A New Type of Gamma Operators

In this part, we shall introduce a new type of Gamma operators and some findings that we shall get.
Throughout this work, we get the statement a.(h) = h* and ¢.(h, x) = (h — x)* for x € (0, o) as polynomial
functions. This changed version of the classical Gamma operator, we define by

(xp)n+1+§

(gx) = —— efxvvwrf (Tl_+p) d @)
) = Tk + k + p) AN
0

where for all x € (0,0), k,p € R*, n € N,and v > 0, g € C,(0,0) = {g € C (0, ) : g(u) = O(u?), as u — oo}
for n > y, where C(0, o) is the set of continuous functions on (0, o).

Next, we will give the following lemma and will use in the main theorem.
Definition 2.1. C*(0, ) := {g € C(0, o) : lim g(x) is finite and exists}.
X—00

In this paper, we take the following norm

llgll = sup{lg(x)| : x € (0, 00)} for g € C(0, o0).
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Lemma 2.2. With x € (0, o), the following moment values are:

T,(a0(h);x) = ao(x),

)y = (n+pk
Tn(al( )/ x) - (nk + p) al(x)/

. N [(n + p)k]?
Tn(”Z(h)/ .X') - (T’lk + p)(nk T p — k) ﬂz(x),

. L [(n + p)k]®
@l =k p— ek v p =20

4

T ahy) = Ln + p) a4(x)

(nk + p)(nk + p — k)(nk + p — 2k)(nk + p — 3k)

In this case, this modified operator is clearly linear and positive. When the above moment values are
generalized, the following lemma is obtained.

Lemma 2.3. For x € (0, 00) and z € N, 7},(ap(h); x) = ag(x), we have

__(n+ply
z-1

[1(nk +p — ki)
i=0

T, (az(h); x) a(x), z=1,2,....

Lemma 2.4. Forany x € (0, o), by Lemma 2.2, we get

T(po(x, h);x) = 1

. v k-=1p
T, (p1(x, h);x) = kit p a1(x)

. o (+p?+2pk = (2p* + pk +p?

Tn(¢)2(x/ h)r X) = (le + p)(nk T p— k) ﬂ2(X)

X ' i (n+p)’K3 3(n + p)*k? 3(n+p)k
T(ga(xx) = ((nk+p)(nk+p—k)(nk+p—2k)  (nk + p)(nk +p —k) " nk+p 1)as(x)
s ) = (n +p)*k* 4 (n+p)’K

n A B (nk + p)(nk + p — k)(nk + p — 2k)(nk + p — 3k) (nk + p)(nk + p — k)(nk + p — 2k)

(n +p)’k* (n+p)k
-4 + 1| ag(x).

(nk + p)(nk +p —k) nk+p

From definition of 7;,(g; x), the following lemma is obtained.

Lemma 2.5. Let h € Cg(0, ). Therefore, we get

I (@I < llgll-

Proof. From Lemma 2.2, we can obtain

do

n+1+8
I (@)l < —2P)
,,F

—X0 n+¥
Wk +k+p) ¢ (k)T
0

221

0

(yp)n+1+§

< lgll—Z——— | e (k)™ F do
Hg”pl"k(nk+k+p) X (0k)
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= llgllTy(ao(9); ) = llgll.
The proof is done. O

Theorem 2.6. Let g € C*(0, 00). In uniformly each compact subset of (0, 00), we have
lim 7,(g;%) = g(x)-
Proof. From Lemma 2.2 and for z =0, 1,2, we get
lim 7, (@.(1; ) = 2.
for uniformly each compact subset of (0, ). Therefore, by Korovkin theorem in [2], we conclude that
lim 7,(g;%) = g(x). O
3. Rate of convergence of a New Type Gamma Operator

In this part, we shall offer the approximation properties of 7;,(g; x). Next, we shall give Voronovskaya
type theorem for (7},),>1.

Theorem 3.1. Let g € C*(0, ) such that g ,g" € C*(0,c0). The following limit is valid

k—1\ ,
lim n[7,(7; %) - ()] = (p . )xg (x) + %xZg (%)-

Proof. Using Taylor’s formula for the function g

) , g )k = 2 )
gth) = g(x) + g ()(h =) + ———— + (b, x)(h - x)°, (©)
where ¢(h,x) = w, 0 between x and & and, }llil; @(h,x) = 0. When (7},)5>1 is applied to (3), it results

in that

0530 = 900 + 5 @3 (01— 05 + TVt (0% 0) + 4l )0 975 ),

By multiplying both sides of the last inequality by #, we obtain the following formula

g9 (%)

5 (- x)%;.2) + n3,,(p(h, x)(h = )% x).

[, (9;%) = 9()] = g (I, ((h = x);x) +
In the limit case, this equation is

9 (%)
2

}}im n[t,(g;x) — g(x)] = g/ (x) }}gn nt, ((h —x);x) + Jim nth((h — x)%; x) + ’}gn nt, (ph, x)(h — x)%; x).

It is known that the values are

lim nt;((h—x);x) = lim n

—00

plk=1)]  plk=1)
[nk+p]x_ K

and
(n+p* +2p)k> = P> +pk+p*] ,

: 2 = T =
Him 1z, ((h = 2% x) ;}gﬁ‘on[ (nk + p)(nk + p — k) e
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from Lemma 2.4. So, we have

tm e g52) - 9001 = (P2 ) 0+ £ ¢ im0, 000, @

We get, by the Cauchy-Schwarz inequality,

1Tl )2 (1) < T3P0, 02 N2 (s () ). ©)
Then, by Theorem 2.6, we can deduce that

31_%10 T (@*(h, x); x) = *(x,x) = 0 (6)
since ¢?(x,x) = 0, ¢(-,x) € C*(0,c0) and in view of the fact that T},(¢4(h); x) = O(n~2). When equations (5)
and (6) are writen in equation (4), the proof is done. [

Next, we obtain the rates of convergence for (7}),>1. The modulus of continuity of g indicated by
wy, (g,0), for interval (0, xo], xp > 0, is defined as follows

Wy (g,0) = |hsulp lg(h) — g(x)|
—x|<0
X,IIE(O,Xo]

It is clear that the modulus of continuity wy, (g,0) = 0as 6 — 0 for g € Cp (0, o). Cp(0, o0) denotes the space
of all continous functions bounded on (0, ).

Theorem 3.2. Let xg > 0and g € Cg(0, 00). The following expression exists for the modulus of continuity wy,+1(g, 0)
in the finite interval (0, xo + 1] C (0, 00).

(n+p2 +2p)k2 - (2;72 +p) +p?
(nk + p)(nk +p —k)

I7u(g;2) = g ()] < 3N!7[ ﬂz(x)] x5 (1 + x0)?

(7)
+p2+2p) k2 — (2 + p) k + p?
200 |4, (n+p2+2p)k2 - 2p2+p)k+p2) ,
(nk + p)(nk + p — k) 0
where N, is a constant associated with g.
Proof. Let g € Cp(0,00), h > xp+1and 0 < x < xp. Therefore, we can conclude
lg() = 9| < lg()| + 1g()
<3N, (h = x)*(1 + x0)*
for h — x > 1. Also, the expression holds
1
90 = 90| < @ (g, = 31 < wap11(9,0) (1 + 51 - )
for h < xp + 1. Consequently, from last inequality we deduce from
1
J91) = 9] < 3Ny = 021 + 10 + waper(g, ) 1+ 511 = ] (8)

for 0 < x < xpand 0 < h < co. Applying the operator to (8) (1},),>1 and Cauchy-Schwarz inequality, we get
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[75(9:) — 9] < BN (2 = 2% 01+ X0)* + Wey1(9, 0) (1 n % N TEE x))

(n+p+2p)k*=2p* +p)k+p? 2 (n+p>+2p)k>=(2p +p)k+p?
< 3Ng( (1 + x0)” + 2wxy11 |9, ( (nk+p)(nk+p—k) X

(nk+p)(nk+p—k)

by choosing 6 = \/( (n+pz(;i,i)pk)2(;]((2+p;:rlg)k+l72 ) xé. Then, the proof is done. [
Definition 3.3. Let

C3(0,00) = {g € Cp(0,0) : g, 9" € C5(0, )},
with the norm

||g“CBZ(O,DO) = ||gHC3(0,00) 19 ey + 119 lleyom
also

||9“c3(o,oo) = Ssup |g(x)|

x€(0,00)

in[7].
Theorem 3.4. Let 7}, be the operator described in (2). Then, we have for any g € C%(O, 00),

1
|7:;(g;x) - g(x)| < 5 VX2 + Vx) Hgncg(o,oo) ’

where x is T;,(¢pa(x, h); x) in Lemma 2.4.

Proof. Let g € C3(0, o). Using formula of Taylor, we have the equality

' 1.
g(h) = g(x) + g (x)(h —x) + 57 (&) (h - x)?,
where & between x and }, from which it follows:
1
|g(h) = ()| < Nalh — x| + 5 Na(h = x)
where

N1 = sup |g' @) =119 lle, 0 < ll9l

C2(0,00)”
x€(0,00) B

N2 = sup 19" @) = 119 ey, < 911

2 (0,00)”
x€(0,00) 50

because of (10). So, we get

900 =960 < (1 =21+ 50 -7 .

Since

T (g(h) — g(x); )| < T(lg(h) — g(x)); %),

and 7 (Jh — x|; %) < T3((h — x)%;x)? = /X, we obtain

T (g;x) — g(x)| =

05 ~ 90| < (530 = xh0) + 3730 = x50l

2
Cg(0,0)

1
< X VX2 + \/)_()||!7||C§;<o,m>'

The desired result is achieved. O

3366

©)

(10)

(11)
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4. Rate of convergence by Power Series Method

In this part, we will study the convergence via the power series method for the a new type Gamma
operator (7},),,51 -
Let (qk) be a real sequence with qo > 0, g = 0 (k € N), and such that the corresponding power series

g(&) = Z qx&¥ has radius of convergence R with 0 < R < co. If the limit
k=0

o)

1 k
él—>R q(&) Z Xl =

exists then x = (xx) is convergent in the sense of power series method see [11, 14]. It is well-known that the
power series method is regular if and only if for each k € N

lim qkék
EoR™ 17(5)
holds see [3].

=0, (12)

Theorem 4.1. Let (7},) be a sequence of positive linear operator acting from C* (0, 00) into itself such that

1IN "
Jim =5 ZO (Th(e) =€) u ()

for every i € {1,2,3} where e; (x) = x' for any g € C* (0, 00) and x € [1,c] C (0, =)

=0, (13)

=0. (14)

1N y
lin o | 5@ - 990

Proof. 1t is clear that (14) follows the expression (13). Conversely, let g € C* (0, o0) . Therefore, there exists a
constant L > 0 such that )g (E)| < Lforall £ € (0,). So, it follows that

g (&) - g ()] <2L. (15)
Also, for every ¢ > 0, there exists 6 > 0 such that
lg©-g@)|<e, (16)

whenever | — x| < 6 for all £ € (0,00). Set P (&,x) = (&£ — x)2 If|E — x| > 6 therefore, we get
2K
7€) =g ()| < Z ). (17)

Now, from the expressions (15) and (17), we can write

lg@) - g@)| <e+ —¢<a,x> (18)

Since 7}, (1; x) is linear and monotone operator, we have

% (150 (-e - S9(E0) < 6 1) (0O - g W) < T (59 e+ 239 (€, 0)

which implies

—et;, (L x) — 62 w(é,x)’c (Lx) <t (g:x)—g(x) 1, (1;x) < 1}, (1;x) + n(lp &);x). (19)
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On the other hand, we can write

T (gx)—g(x) =71, (%) —g(x) T, (Lx) + g (x)[7, (L;x) — 1]. (20)

From the expressions (19) and (20), we get

T (7;%) — g (x) < &1, (1;x) + —’cn W(E&);x)+g@)[r, (Lx) -1]. (21)

Also, we get

G0 = T (E-%x)
= T ((52 —2&x + xz);x)

EZT; (1;x) — 2x7, (&; %) + T, (éz;x).

From (21) and the last equality, we attain

T (x)—gx) < et (1 x)+ {52[1 (Lx)-1] - 2x[T:,(£;x)—x]+[T:,(éz;x)—éz]}+g(x)[T;(1;x)—1]

= e+e[t,(Lx)-1]+g@) [t (Lx)-1]+ iij {52 [T, (%) = 1] = 2x[7}, (&%) — x] + [T; (Ez;x) - 52]}.

Therefore, by making some calculations we obtain

T (0 —g@)| < (e+l<+ ;f) —1|+Af3—12< T, (&%) — 2] + T:,(éz;x)—ézﬂ
and
n 2K 4KL ey o
q(é) TP =g )| < €+(€+K+ ) 7 | n(e0) —e0) gn (-)" 290 & a(e1) 61)4n()|l
2K 1
62 q(g (T (61) 61)% H

From the last inequality and (13) we conclude the expression (14). [

Now, we can study the rate of convergence of the power series method for the new type Gamma
Operator (7},),,51-

Theorem 4.2. Let wyy+1(g,0) be the modulus of continuity on the finite interval (0,x9 +1] € (0,00) for g €
Cg (0, 00). Let ¢ be a positive real function described on (0, R) . If wx,+1 (g,0) = O (qb) , then we have

we) —e)gn ()| = O((P), as & —> R™

where 1 : (0, R) = R is described as

s}
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Proof. Let g € Cp(0,00),0 < x <xp,and t > yo + 1. For any £ € (0, R) and 0 > 0, we have the following
< Z T (
n=0
s k _ x
< Z T (a)xg+l [g, %6];96) qn&"

n=0
| -]

fafio |

n=0

w E_ o)
< w1 (0,0) Y |7 [1 + (”5—;);96] gu&"
n=0

pICACEEFIENAOK
n=0

g (&) —g(x)

x) ghe”

}wxw (g, 6);X] gn&"

00 0 k 2
Xo+ 16 * E - y n
<00 (9.0 Y5 o @ 0gu87 + DS [< - ) ;x]q,,g
n=0

Xo+ /6 . k 2
=q(&) wx1(g,0) + a);—z(g) s&p {Tn ((; - x)

Xo+ ,0 2
= (O 0 (9,8) + L2200 sgp{rz ((5 -3) ]

By taking 6 = 1 and from the last expression we conclude that

(o)

Y @@ -9 3.

n=0

0<7®

S 2a)X()+1 (g, 6) .

Therefore, the proof is done. [J
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5. Numerical Examples

In this part, we shall establish some numerical examples to confirm the rates of convergence of 7;,(g; x)
in two dimensions (k = 1/3, p = 1/30 is fixed for all of Figures). In our experiments, we compare a new
type of the Gamma operator with by using k-Gamma function I¢6z and Demir [8] defined a new Gamma
operator.

In our firstexample, 7;,(g; x) and 7,,(g; x) are applied to the test functions g : [0, 10] — [0, o) such that g(x) =

X2,

(=== guo=a®
e 10[9 %)

7l8 1 %)
w7 (0 1 X)
=== .';U[g 1x)

e 70 (G %)

8 9 10

Figure 1: Comparasion of 7},(g; x) with g(x) = x2 (blue) for the value of n = 10, 20, 30, 50 and 100. T10(7; %) (black), 75 (7; x) (light green),
T5,(9; x) (magenta), 75 (g; x) (green), 7},,(7; x) (red).

120 120
F
/‘/ ;K
100 L 100 A
/’ ,//
# s
80 A 80 S
} .
A . e
< A o
60 - - 7 eor S e
o 2 @
40 $0 e’ 40
P < A
P pe) p
g - -
il - #
- -2 s
20t 5 o Toogmex® | 20+ o 9 gl
o e AT CEE)] ol Sk (@5 X)
,.«@:'11'@’/ G~ TG %) ,;@;‘f‘/‘@ -G — Tyl %)
o p o haka | | oc == | |
2 4 6 8 10 2 4 6 8 10
X X
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120 T T T 120 T T T T
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100 F A 100 &
7 Ve
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o Ea
/'/ " Ve /@
A a
A A
60 e 1 6ot e :
P s
L
A
40t 1 40t s :
.
o
T
g _2 = i@/ o 2
20} a=C | 20f o o=
S 7095 X) ,/-9"/@ S Te(g5%)
e
-G = Tg(05%) e - - T(9:%)
ot ot ? | |
4 6 8 10 2 4 6 8 10
X X
120 T T T
100 F i
‘
P
oo
o
80 #0
Pl
ke
e
o«
60 1 |
40t 1
20+ O g(x)=x?
= =T (9 %)
e =G = Tipol@ i %)
od P i L 100
2 4 8 10

3371

Figure 2: Comporasion of 7},(g; x) and 7,(g; x) with g(x) = ¥2 for the value of n = 10, 20, 30, 50, 100; test function (red), T,,(9;x) (blue),

Tu(g;x) (black) .

120

100

80

60

40

20

Figure 3: Comparasion of 7j,(g;x) with g(x) = x
T50(9; %) (light green), 73,(g; x) (magenta), 77,(g; x) (green), 7},,(7; %) (red).

=== g(x)=xzcosx
- 70(9 5 %)
T (G 7X)

-0

- 7005 %)
-0 - T(giX)

e 7 (9 X)

2

cos(x) (blue) for the value of n

8 9 10

= 10, 20, 30, 50 and 100. T}O(g;x) (black),
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Figure 4: Comporasion of 7;,(g; x) and 7,(g; x) with g(x) = x2cos(x) for the value of n = 10, 20, 30, 50, 100; test function (blue), T;(g; x)

(red), Tn(g; x) (yellow).
In Figure 1 and Figure 3 show convergence plots for our operator for n = 10, 20, 30, 50, 100. It is
clear that the observed increase in the convergence rate of approximations of the defined operators can be

attributed to increasing 7.



E. Altiparmak et al. / Filomat 38:10 (2024), 3361-3373 3373

In Figure 2, we plot the calculation result of 7,(g;x), T;(7;x) and g(x) = x%.

convergence behaviour than 7,(g; x) related to the g(x) = x2.

T;,(g; x) shows better

In Figure 4, we plot the calculation result of 7,(g; x), T;,(¢; x) and g(x) = x*cos(x). It is obvious that T},(g; x)
shows better convergence behaviour than 7,(g; x) related to the g(x) = x2cos(x).

6. Conclusion

In this work, we described a new type of Gamma Operator by two parameters Gamma function. We
present some approximation properties of this operator such as rate of convergence, Voronovksya type
theorem. We also research, by using the power series method, Korovkin approximation theorems and give
the rate of convergence of these operators. Lastly, we get the numerical examples to confirm its approach
properties . All of numerical examples have been written in MATLAB. The numerical results show that the
new type of Gamma operator exhibits good approximation behavior compared to the k-Gamma operator.

References

[1] T. Acar, M. Mursaleen, S. N. Deveci, Gamma operators reproducing exponential functions, Advances in Difference Equations,
2020 (2020) 1-13.
[2] E. Altomare, M. Campiti, Korovkin-type approximation theory and its applications, De Gruyter, Berlin, 1994.
[3] J. Boos, Classical and modern methods in summability, Clarendon Press, Oxford, 2000.
[4] Q.B.Cai, B. Cekim, G. i¢oz, Gamma generalization operators involving analytic functions, Mathematics 9 (2021) 1547.
[5] R.Diaz, E. Pariguan, On Hypergeometric Functions and Pochhammer k—symbol, Divulgaciones Matematicas 15 (2007) 179-192.
[6] S.N. Deveci, T. Acar, O. Alagoz, Approximation by Gamma type operators, Mathematical Methods in the Applied Sciences 43
(2020) 2772-2782 .
[7] R. A.DeVore, G. G. Lorentz, Constructive approximation, Springer Science & Business Media, 1993.
[8] G.licoz, S. Demir, Approximation Properties of a New Type of Gamma Operator Defined with the Help of k-Gamma Function,
Journal of Function Spaces 2022 (2022) 1-9.
[9] K.S. Gehlot, Two parameter gamma function and its properties, arXiv preprint arXiv:1701.01052 (2017).
[10] H. Karsli, On convergence of general Gamma type operators, Analysis in Theory and Applications 27 (2011) 288-300.
[11] W. Kratz, U. Stadtmiiller, Tauberian theorems for J,-summability, Journal of Mathematical Analysis and Applications 139 (1989)
362-371.
[12] A.Lupas, M. Miiller, Approximationseigenschaften der Gammaoperatoren, Mathematische Zeitschrift 98 (1967) 208-226.
[13] R.Ozcelik, E. E. Kara, F. Usta, J. K. Ansari, Approximation properties of a new family of Gamma operators and their applications,
Advances in Difference Equations 1 (2021) 1-13.
[14] U. Stadtmdiller, A. Tali, On certain families of generalized Nérlund methods and power series methods, Journal of mathematical
analysis and applications 238 (1999) 44-66.
[15] K.]. Singh, P. N. Agrawal, A. Kajla, Appoximation by modified g— Gamma type operators via A- statistical convergence and
power series method, Linear and Multilinear Algebra 70 (2022) 6548-6567.



