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function
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Abstract. Let C0[0,T] denote Wiener space. Define an infinite-dimensional random vector XE,∞ : C0[0,T]→
R∞ by XE,∞(x) = (⟨e1, x⟩, ⟨e2, x⟩, . . .) whereE = {en}

∞

n=1 is an orthonormal sequence in L2[0,T] and ⟨e, x⟩denotes
the Paley–Wiener–Zygmund (PWZ) stochastic integral. In this paper, we study a conditional Fourier–
Feynman transform (CFFT) and a conditional convolution product (CCP) for scale-invariant measurable
(SIM) functionals on C0[0,T] with the very general conditioning function XE,∞. In particular, we show that
the CFFT of the CCP is a product of CFFTs.

1. Introduction

The concepts of the CFFT and the CCP for functionals on the Wiener space C0[0,T] were introduced
by Park and Skoug in [20]. Many authors have provided various results between conditional transforms
and conditional convolutions for functionals on C0[0,T]. For instance, see [2, 4, 6, 10, 11, 14]. However
the conditioning functions defining the conditional transforms and the conditional convolutions studied
in [2, 4, 6, 10, 11, 14] are finite-dimensional vector-valued functions. In [19], Park and Skoug derived
an evaluation formula for the conditional Wiener integral given an infinite-dimensional vector-valued
conditioning function and established useful formulas to calculate their conditional Wiener integrals.

In this paper, using the evaluation formula [19] for the conditional Wiener integral given an infinite-
dimensional conditioning function, we study a relationship between a CFFT and a CCP associated with
infinite-dimensional conditioning functions on the Wiener space C0[0,T]. The conditioning function XE,∞ :
C0[0,T]→ R∞ used in this paper is given by XE,∞(x) = (⟨e1, x⟩, ⟨e2, x⟩, . . .) where E = {en} is an orthonormal
sequence of functions in L2[0,T] and ⟨e, x⟩ denotes the PWZ stochastic integral

∫ T

0 e(t)dx(t) [15, 16]. Both the
CFFT and the CCP in this paper are defined in terms of a conditional analytic Feynman integral.

In Section 4, we establish the relationship under existence conditions of the CFFT and the CCP for
functionals on C0[0,T]. We then in Section 5 provide a class of bounded cylinder functionals whose CFFT
and CCP exist. In Section 6, we confirm the relationship for the specific bounded cylinder functionals. In
Section 7, we provide a concluding remark for the topic related with the result in this paper.
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2. Preliminaries

In Section 3 below, we introduce the concepts of the CFFT and the CCP for functionals on the complete
Wiener measure space (C0[0,T],W(C0[0,T]),mw), where W(C0[0,T]) denotes the σ-field of all Wiener
measurable subsets. The definitions are based on the concept of the conditional Wiener integral associated
with an infinite-dimensional vector-valued conditioning function.

2.1. Conditional Wiener integral
We denote the Wiener integral of a Wiener integrable functional F by

E[F] ≡ Ex[F(x)] =
∫

C0[0,T]
F(x)dmw(x),

and for u ∈ L2[0,T] and x ∈ C0[0,T], we let ⟨u, x⟩ =
∫ T

0 u(t)dx(t) denote the PWZ stochastic integral. It is
known that

Ex[⟨u, x⟩⟨v, x⟩] = (u, v)2 (2.1)

where (·, ·)2 denotes the inner product on L2[0,T].
LetH be an infinite-dimensional subspace of L2[0,T] with a countable orthonormal basis E = {en}. For

notational conveniences, we let

γn(x) ≡ ⟨en, x⟩

and

βn(t) =
∫ t

0
en(s)ds, t ∈ [0,T],

respectively, for each n ∈N.
Let F be a Wiener integrable functional. Then we have the conditional Wiener integral from a well-

known probability theory: Let V be a real linear space with norm | · |. Clearly, the normed space V is
a topological vector space with respect to the uniform topology induced by | · |. Let B(V) be the σ-field
generated by the class of all open subsets of V. Then B(V) is known as the Borel σ-field on V. Let X be
a V-valued measurable function and Y a C-valued integrable functional on C0[0,T]. Let F (X) denote the
σ-field generated by X. Then by the definition, the conditional expectation of Y given F (X), written E(Y|X),
is any F (X)-measurable function on C0[0,T] such that∫

A
Y(x)dmw(x) =

∫
A

E(Y|X)(x)dmw(x) for A ∈ F (X).

It is well-known that there exists a Borel measurable and PX-integrable function ψ on (V,B(V),PX) such
that E(Y|X) = ψ ◦ X, where PX is the probability distribution of X defined by PX(U) = mw(X−1(U)) for
U ∈ B(V). The function ψ(η), η ∈ V, is unique up to Borel null sets in V. Following Tucker [21] and Yeh
[22], the function ψ(η), written E(Y|X = η), is called the conditional Wiener integral of Y given X.

Let XE,∞ : C0[0,T]→ R∞ be the function defined by

XE,∞(x) = (γ1(x), γ2(x), . . .). (2.2)

We note that the PWZ stochastic integrals γn(x), n ∈ N, form a set of independent standard Gaussian
random variables on C0[0,T]. Consider the projection map PH : L2[0,T]→H given by

PHh(t) =
∞∑

n=1

(h, en)2en(t). (2.3)
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Then it follows that ∥PHh∥2 ⪇ ∥h∥2 if H = Span{e1, e2, . . .} ⊊ L2[0,T]. For x ∈ C0[0,T] and ξ⃗ = (ξ1, ξ2, . . .) ∈
R∞, let

x∞(t) = ⟨PH I[0,t], x⟩ =
∞∑

n=1

γn(x)(I[0,t], en)2 =

∞∑
n=1

γn(x)βn(t)

and

ξ⃗∞(t) =
∞∑

n=1

ξn(I[0,t], en)2 =

∞∑
n=1

ξnβn(t)

where I[0,t] denotes the indicator function of the interval [0, t].
In [19], Park and Skoug proved the facts that the process {x(t)−x∞(t), 0 ≤ t ≤ T} and the Gaussian random

variable γn(x) are stochastically independent for each n ∈ N, and that the processes {x(t) − x∞(t), 0 ≤ t ≤ T}
and {x∞(t), 0 ≤ t ≤ T} are also stochastically independent. Using these basic results, Park and Skoug
established the following evaluation formula to express conditional Wiener integrals in terms of ordinary
Wiener integrals.

Theorem 2.1 ([19]). Let F ∈ L1(C0[0,T]). Then it follows that

E(F|XE,∞ = ξ⃗) = Ex

[
F
(
x − x∞ + ξ⃗∞

)]
= Ex

[
F
(
x −

∞∑
n=1

γn(x)βn +

∞∑
n=1

ξnβn

)]
(2.4)

for a.e. ξ⃗ ∈ R∞.

2.2. Cylinder functionals
A functional F on C0[0,T] is called a cylinder functional, if the functional F is represented by

F(x) = f (⟨v1, x⟩, . . . , ⟨vn, x⟩), (2.5)

where f : Rn
→ C is a Lebesgue measurable function, {v1, . . . , vn} is a linearly independent set of functions

in L2[0,T]. The functional F given by (2.5) is Wiener measurable if and only if f is Lebesgue measurable [7].
In order to simplify many expressions in this paper, we use the following conventions: for u⃗ =

(u1, . . . ,un) ∈ Rn and a set {11, . . . , 1n} of functions in L2[0,T], let

f (u⃗) ≡ f (u1, . . . ,un), ⟨1⃗, x⟩ ≡ (⟨11, x⟩, . . . , ⟨1n, x⟩), and f (⟨1⃗, x⟩) ≡ f (⟨11, x⟩, . . . , ⟨1n, x⟩).

Equation (2.6) below can be easily obtained by the change of variables theorem.

Lemma 2.2. Let G = {11, . . . , 1m} be an orthonormal set of functions in L2[0,T] and let f : Rm
→ C be a Lebesgue

measurable function. Then

Ex[ f (⟨1⃗, x⟩)] ∗= (2π)−m/2
∫
Rm

f (u⃗) exp
{
−

m∑
l=1

u2
l

2

}
du⃗, (2.6)

where by ∗
= we mean that if either side exists, both sides exist and equality holds.

The following integration formula also used in this paper:∫
R

exp{−av2 + bv}dv =
√
π
a

exp
{ b2

4a

}
(2.7)

for a, b ∈ C with Re(a) > 0.
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3. Definitions

In order to define a CFFT and a CCP, we need the concept of the scale-invariant measurability on Wiener
space C0[0,T]. A subset B of C0[0,T] is called an SIM set if ρB ∈ W(C0[0,T]) for all ρ > 0, and an SIM
set N is called a scale-invariant null set if mw(ρN) = 0 for all ρ > 0. A property which holds except on a
scale-invariant null set is said to hold scale-invariant almost everywhere (SI-a.e.). A functional F is said to
be SIM provided F is defined on an SIM set and F(ρ · ) isW(C0[0,T])-measurable for every ρ > 0. For more
detailed studies of the scale-invariant measurability, see [7, 12].

The definitions of the CFFT and the CCP are based on the conditional analytic Wiener integral [2, 6, 20].
In this paper, we shall use exclusively the conditioning function XE,∞ given by (2.2) to define our CFFT and
CCP on C0[0,T].

Let C+ = {λ ∈ C : Re(λ) > 0} and let C̃+ = {λ ∈ C \ {0} : Re(λ) ≥ 0}. Let XE,∞ : C0[0,T] → R∞ be given
by (2.2) and let F be a C-valued SIM functional such that the Wiener integral Ex[F(λ−1/2x)] exists as a finite
number for all λ > 0. For λ > 0 and ξ⃗ in R∞, let

JF(λ; ξ⃗) = E
(
F(λ−1/2

· )
∣∣∣XE,∞(λ−1/2

· ) = ξ⃗
)

denote the conditional Wiener integral of F(λ−1/2
· ) given XE,∞(λ−1/2

· ). If for a.e. ξ⃗ ∈ R∞, there exists a
function J∗F(λ; ξ⃗), analytic in λ on C+ such that J∗F(λ; ξ⃗) = JF(λ; ξ⃗) for all λ > 0, then J∗F(λ; · ) is defined to be
the conditional analytic Wiener integral of F given XE,∞ with parameter λ. For λ ∈ C+, we write

Eanwλ (F|XE,∞ = ξ⃗) = J∗F(λ; ξ⃗).

If for fixed real q ∈ R \ {0}, the limit

lim
λ→−iq
λ∈C+

Eanwλ (F|XE,∞ = ξ⃗)

exists for a.e. ξ⃗ ∈ R∞, then we denote the value of this limit by Ean fq (F|XE,∞ = ξ⃗), and we call it the
conditional analytic Feynman integral of F given XE,∞ with parameter q on C0[0,T].

Let F be a C-valued SIM functional on C0[0,T] such that the Wiener integral E[F(y + λ−1/2
· )] ≡ Ex[F(y +

λ−1/2x)] exists as a finite number for all λ > 0. Then one can easily see from (2.4) that for all λ > 0,

E(F(λ−1/2
· )|XE,∞(λ−1/2

· ) = ξ⃗) ≡ E(F(λ−1/2
· )|γn(λ−1/2

· ) = ξn, n = 1, 2, . . .)

= Ex

[
F
(
λ−1/2x − λ−1/2

∞∑
n=1

γn(x)βn +

∞∑
n=1

ξnβn

)]
.

(3.1)

Thus we have that

Eanwλ (F|XE,∞ = ξ⃗) = Eanwλ
x

[
F
(
x −

∞∑
n=1

γn(x)βn +

∞∑
n=1

ξnβn

)]
and

Ean fq (F|XE,∞ = ξ⃗) = Ean fq
x

[
F
(
x −

∞∑
n=1

γn(x)βn +

∞∑
n=1

ξnβn

)]
, (3.2)

where Eanwλ
x [F(x)] and Ean fq

x [F(x)] denote the analytic Wiener and the analytic Feynman integrals of func-
tionals F on C0[0,T], see [1, 12].

We are now ready to state the definitions of the CFFT and the CCP of functionals on C0[0,T].
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Definition 3.1. Let F : C0[0,T] → C be an SIM functional such that the Wiener integral E[F(y + λ−1/2
· )] exists

as a finite number for all λ > 0. Let XE,∞ : C0[0,T] → R∞ be given by (2.2). For λ ∈ C+ and y ∈ C0[0,T], let
Tλ(F|XE,∞)(y, ξ⃗) denote the conditional analytic Wiener integral of F(y + ·) given XE,∞, that is to say,

Tλ(F|XE,∞)(y, ξ⃗) = Eanwλ (F(y + · )|XE,∞ = ξ⃗) = Eanwλ
x

[
F
(
y + x −

∞∑
n=1

γn(x)βn +

∞∑
n=1

ξnβn

)]
. (3.3)

We define the L1 analytic CFFT T(1)
q (F|XE,∞)(y, ξ⃗) of F given XE,∞ by the formula

T(1)
q (F|XE,∞)(y, ξ⃗) = lim

λ→−iq
λ∈C+

Tλ(F|XE,∞)(y, ξ⃗) = Ean fq
x

[
F
(
y + x −

∞∑
n=1

γn(x)βn +

∞∑
n=1

ξnβn

)]
. (3.4)

We also define the CCP of SIM functionals F and G given XE,∞ by the formula

[(F ∗ G)λ|XE,∞](y, ξ⃗)

=


Eanwλ

(
F
( y + ·
√

2

)
G
( y − ·
√

2

)∣∣∣∣∣XE,∞ = ξ⃗), λ ∈ C+

Ean fq
(
F
( y + ·
√

2

)
G
( y − ·
√

2

)∣∣∣∣∣XE,∞ = ξ⃗), λ = −iq, q ∈ R \ {0}

=



Eanwλ
x

[
F
( y
√

2
+

1
√

2

(
x −

∞∑
n=1
γn(x)βn +

∞∑
n=1
ξnβn

))
×G
( y
√

2
−

1
√

2

(
x −

∞∑
n=1
γn(x)βn +

∞∑
n=1
ξnβn

))]
, λ ∈ C+

Ean fq
x

[
F
( y
√

2
+

1
√

2

(
x −

∞∑
n=1
γn(x)βn +

∞∑
n=1
ξnβn

))
×G
( y
√

2
−

1
√

2

(
x −

∞∑
n=1
γn(x)βn +

∞∑
n=1
ξnβn

))]
, λ = −iq, q ∈ R \ {0}.

(3.5)

4. Relationship between conditional Fourier–Feynman transform and conditional convolution product
given R∞-valued conditioning function

In this section, we establish a relationship between the CFFT and the CCP of general SIM functionals
on C0[0,T]. Theorem 4.2 below tells us that the CFFT of the CCP of SIM functionals F and G is a product of
the CFFTs of each functional. To ensure this result, we need the following lemma.

Lemma 4.1. Given an orthonormal sequence {en}
∞

n=1 of functions in L2[0,T], let Z1, Z2 : [0,T] × C0[0,T] ×
C0[0,T]→ R be given by

Z1(t; x1, x2) = x1(t) −
∞∑

n=1

γn(x1)βn(t) + x2(t) −
∞∑

n=1

γn(x2)βn(t)

and

Z2(t; x1, x2) = x1(t) −
∞∑

n=1

γn(x1)βn(t) − x2(t) +
∞∑

n=1

γn(x2)βn(t).

Then the processes {Z1(t; ·, ·) : t ∈ [0,T]} and {Z2(t; ·, ·) : t ∈ [0,T]} are stochastically independent.

Proof. We first note that for each t ∈ [0,T], x(t) =
∫ t

0 dx(s) = ⟨I[0,t], x⟩. Using this and equation (2.1), we
also see that E[x(t)γn(x)] = βn(t) for each t ∈ [0,T]. Using this fact and the facts that Ex[x(t)] = 0 and
Ex[x(s)x(t)] = min{s, t} for all s, t ∈ [0,T], it follows that

Ex1 [Ex2 [Z1(s; x1, x2)Z2(t; x1, x2)]] = 0 = Ex1 [Ex2 [Z1(s; x1, x2)]]Ex1 [Ex2 [Z2(t; x1, x2)]]

for s, t ∈ [0,T].
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In Theorem 4.2 below, we show that the CFFT of the CCP is a product of CFFTs.

Theorem 4.2. Let XE,∞ be given by equation (2.2). Let F and G be SIM functionals on C0[0,T]. Assume that
T(1)

q

(
[(F ∗ G)q|XE,∞]( · , η⃗1)

∣∣∣XE,∞)(·, η⃗2), T(1)
q (F|XE,∞)(·, η⃗), and T(1)

q (G|XE,∞)(·, η⃗), all exist at q ∈ R \ {0}. Then

T(1)
q

(
[(F ∗ G)q|XE,∞]( · , η⃗1)

∣∣∣XE,∞)(y, η⃗2) = T(1)
q (F|XE,∞)

( y
√

2
,
η⃗2 + η⃗1
√

2

)
T(1)

q (G|XE,∞)
( y
√

2
,
η⃗2 − η⃗1
√

2

)
(4.1)

for SI-a.e. y ∈ C0[0,T].

Proof. In view of (3.4), (3.3), and (3.1), it will suffice to show that

Tλ
(
[(F ∗ G)λ|XE,∞]( · , η⃗1)

∣∣∣XE,∞)(y, η⃗2) = Tλ(F|XE,∞)
( y
√

2
,
η⃗2 + η⃗1
√

2

)
Tλ(G|XE,∞)

( y
√

2
,
η⃗2 − η⃗1
√

2

)
for λ > 0. But using equations (3.1), (3.3), and (3.5), we observe that for all λ > 0,

Tλ
(
[(F ∗ G)λ|XE,∞]( · , η⃗1)

∣∣∣X)(y, η⃗2)

= Ex1

[
[(F ∗ G)λ|XE,∞]

(
y +

1
√
λ

{
x1 −

∞∑
n=1

γn(x1)βn

}
+

∞∑
n=1

η2nβn, η⃗1

)]
= Ex1

[
Ex2

[
F
( y
√

2
+

1
√

2λ

{
x1 −

∞∑
n=1

γn(x1)βn + x2 −

∞∑
n=1

γn(x2)βn

}
+

∞∑
n=1

η2n + η1n
√

2
βn

)
× G
( y
√

2
+

1
√

2λ

{
x1 −

∞∑
n=1

γn(x1)βn − x2 +

∞∑
n=1

γn(x2)βn

}
+

∞∑
n=1

η2n − η1n
√

2
βn

)]]
.

By Lemma 4.1 above,

(2λ)−1/2
(
x1 −

∞∑
n=1

γn(x1)βn + x2 −

∞∑
n=1

γn(x2)βn

)
and

(2λ)−1/2
(
x1 −

∞∑
n=1

γn(x1)βn − x2 +

∞∑
n=1

γn(x2)βn

)
are independent processes. Hence the expectation of FG equals the product of the expectations and so we
see that

Tλ
(
[(F ∗ G)λ|XE,∞]( · , η⃗1)

∣∣∣XE,∞)(y, η⃗2)

= Ex1

[
Ex2

[
F
( y
√

2
+

1
√
λ

{x1 + x2
√

2
−

∞∑
n=1

γn

(x1 + x2
√

2

)
βn

}
+

∞∑
n=1

η2n + η1n
√

2
βn

)]]
× Ex1

[
Ex2

[
G
( y
√

2
+

1
√
λ

{x1 − x2
√

2
−

∞∑
n=1

γn

(x1 − x2
√

2

)
βn

}
+

∞∑
n=1

η2n − η1n
√

2
βn

)]]
.

Now the processes (x1 + x2)/
√

2 and (x1 − x2)/
√

2 on C0[0,T]×C0[0,T] are equivalent to the Wiener process,
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x, on C0[0,T] by the rotation-invariant of the Wiener measure mw. Thus for λ > 0,

Tλ
(
[(F ∗ G)λ|XE,∞]( · , η⃗1)

∣∣∣XE,∞)(y, η⃗2)

= Ex

[
F
( y
√

2
+

1
√
λ

{
x −

∞∑
n=1

γn(x)βn

}
+

∞∑
n=1

η2n + η1n
√

2
βn

)]
× Ex

[
G
( y
√

2
+

1
√
λ

{
x −

∞∑
n=1

γn(x)βn

}
+

∞∑
n=1

η2n − η1n
√

2
βn

)]
= Tλ(F|XE,∞)

( y
√

2
,
η⃗2 + η⃗1
√

2

)
Tλ(G|XE,∞)

( y
√

2
,
η⃗2 − η⃗1
√

2

)
and the theorem is verified.

5. Conditional Fourier–Feynman transform and conditional convolution product of bounded cylinder
functionals

In order to establish equation (4.1) above, we assumed that the transforms appearing (4.1) all exists. In
this section, we present specific bounded cylinder functionals on C0[0,T] whose CFFT and CCP exist.

We introduce the class of bounded cylinder functionals on C0[0,T]. LetM(Rν) be the space of C-valued
Borel measures on B(Rν), the Borel class on Rν. It is known that a C-valued Borel measure µ has a finite
total variation ∥µ∥, and the classM(Rν) is a Banach algebra under the norm ∥ · ∥ and with convolution as
multiplication.

Given a complex measure µ inM(Rν), the Fourier–Stieltjes transform µ̂ of µ is a C-valued function on
Rν defined by

µ̂(u⃗) =
∫
Rν

exp
{
i
ν∑

j=1

u jv j

}
dµ(v⃗). (5.1)

Given an orthonormal set A = {α1, . . . , αν} of functions in L2[0,T], let T̂A be the class of functionals Fµ
on C0[0,T] defined by

Fµ(x) = µ̂(⟨α⃗, x⟩) =
∫
Rν

exp
{
i
ν∑

j=1

⟨α j, x⟩v j

}
dµ(v⃗) (5.2)

for SI-a.e. x ∈ C0[0,T]. Given any µ ∈ M(Rν), the function µ̂ corresponding to µ by (5.1) is bounded (and so
is Fµ), because |̂µ(u⃗)| ≤ ∥µ∥ < +∞ for every u⃗ ∈ Rν. Note that the functional Fµ having the form (5.2) is SIM
on C0[0,T].

Given an infinite-dimensional subspaceH of L2[0,T], let E = {en} be a countable orthonormal basis ofH
and let the projection map PH : L2[0,T]→ H be given by (2.3). Even ifA = {α1, . . . , αν} is an orthonormal
set of functions in L2[0,T], the set {α1 − PHα1, . . . , αν − PHαν} may not orthonormal. Let {11, . . . , 1m} be an
orthonormal basis of the subspace Span{α1 −PHα1, . . . , αν −PHαν}. Then we see that for each j ∈ {1, . . . , ν},

α j − PHα j =

m∑
l=1

(α j − PHα j, 1l)21l.

Lemma 5.1. Given a linearly independent subset {α1, . . . , αν} of L2[0,T], let G = {11, . . . , 1m} be an orthonormal
basis of the subspace Span{α1 − PHα1, . . . , αν − PHαν} of L2[0,T]. Then for any ρ ∈ R \ {0}, it follows that

Ex

[
exp
{
iρ

ν∑
j=1

〈
α j, x −

∞∑
n=1

γn(x)βn

〉
v j

}]
= exp

{
−
ρ2

2

m∑
l=1

( ν∑
j=1

(α j − PHα j, 1l)2v j

)2}
(5.3)

where the projection map PH : L2[0,T]→H is given by (2.3).
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Proof. Notice that for each j ∈ {1, . . . , ν},

〈
α j, x −

∞∑
n=1

γn(x)βn

〉
= ⟨α j, x⟩ −

∞∑
n=1

γn(x)⟨α j, βn⟩ =
〈
α j − PHα j, x

〉
=
〈 m∑

l=1

(α j − PHα j, 1l)21l, x
〉

=

m∑
l=1

(α j − PHα j, 1l)2⟨1l, x⟩.

(5.4)

Using (5.4), (2.6), the Fubini theorem, and (2.7), it follows that

Ex

[
exp
{
iρ

ν∑
j=1

〈
α j, x −

∞∑
n=1

γn(x)βn

〉
v j

}]
= Ex

[
exp
{
iρ

ν∑
j=1

( m∑
l=1

(α j − PHα j, 1l)2⟨1l, x⟩
)
v j

}]
= Ex

[
exp
{
iρ

m∑
l=1

( ν∑
j=1

(α j − PHα j, 1l)2v j

)
⟨1l, x⟩

}]
=

m∏
l=1

(
(2π)−1/2

∫
R

exp
{
iρ
( ν∑

j=1

(α j − PHα j, 1l)2v j

)
ul −

m∑
l=1

u2
l

2

}
dul

)
=

m∏
l=1

(
exp
{
−
ρ2

2

( ν∑
j=1

(α j − PHα j, 1l)2v j

)2})
.

From this we obtain equation (5.3).

In our first theorem of this section, we establish the existences of the CFFT T(1)
q (Fµ|XE,∞) of functionals

Fµ in the class T̂A.

Theorem 5.2. Let Fµ ∈ T̂A be given by equation (5.2), and let XE,∞ be given by equation (2.2). Then for a.e. ξ⃗ ∈ R∞,
it follows that

T(1)
q (F|XE,∞)(y, ξ⃗)

=

∫
Rν

exp
{
i
ν∑

j=1

⟨α j, y⟩v j −
i

2q

m∑
l=1

( ν∑
j=1

(α j − PHα j, 1l)2v j

)2
+ i

ν∑
j=1

∞∑
n=1

ξn(α j, en)2v j

}
dµ(v⃗)

(5.5)

for all q ∈ R \ {0} and SI-a.e. y ∈ C0[0,T].

Proof. Using (5.2), (3.1) with F replaced with Fµ(y + ·), the Fubini theorem, and (5.3) with ρ replaced with
λ−1/2, it follows that for (λ, ξ⃗) ∈ (0,+∞) ×R∞,

JFµ(y+·)(λ; ξ⃗) ≡ E
(
Fµ(y + λ−1/2

· )
∣∣∣XE,∞(λ−1/2

· ) = ξ⃗
)

= Ex

[
Fµ
(
y + λ−1/2x − λ−1/2

∞∑
n=1

γn(x)βn +

∞∑
n=1

ξnβn

)]
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=

∫
Rν

exp
{
i
ν∑

j=1

⟨α j, y⟩v j + i
ν∑

j=1

〈
α j,

∞∑
n=1

ξnβn

〉
v j

}
Ex

[
exp
{
iλ−1/2

ν∑
j=1

〈
α j, x −

∞∑
n=1

γn(x)βn

〉
v j

}]
dµ(v⃗)

=

∫
Rν

exp
{
i
ν∑

j=1

⟨α j, y⟩v j + i
ν∑

j=1

∞∑
n=1

ξn(α j, en)2v j −
1

2λ

m∑
l=1

( ν∑
j=1

(α j − PHα j, 1l)2v j

)2}
dµ(v⃗).

Let

J∗Fµ(y+·)(λ; ξ⃗) =
∫
Rν

exp
{
i
ν∑

j=1

⟨α j, y⟩v j + i
ν∑

j=1

∞∑
n=1

ξn(α j, en)2v j −
1

2λ

m∑
l=1

( ν∑
j=1

(α j −PHα j, 1l)2v j

)2}
dµ(v⃗) (5.6)

for λ ∈ C+. Since Re(λ) > 0 for all λ ∈ C+, it follows that∣∣∣J∗Fµ(y+·)(λ; ξ⃗)
∣∣∣ ≤ ∫

Rν

∣∣∣∣∣ exp
{
i
ν∑

j=1

⟨α j, y⟩v j + i
ν∑

j=1

∞∑
n=1

ξn(α j, en)2v j −
1

2λ

m∑
l=1

( ν∑
j=1

(α j − PHα j, 1l)2v j

)2}∣∣∣∣∣d|µ|(v⃗)

≤

∫
Rν

d|µ|(v⃗) = ∥µ∥ < +∞.

(5.7)

Hence, applying the dominated convergence theorem, we see that J∗F(y+·)(λ; ξ⃗) is a continuous function of

λ ∈ C̃+. Since

K(λ) ≡ exp
{
−

1
2λ

m∑
l=1

( ν∑
j=1

(α j − PHα j, 1l)2v j

)2}
is analytic on C+, using the Fubini theorem, it follows that∫

Γ

J∗Fµ(y+·)(λ; ξ⃗)dλ =
∫
Rν

exp
{
i
ν∑

j=1

⟨α j, y⟩v j + i
ν∑

j=1

∞∑
n=1

ξn(α j, en)2v j

}( ∫
Γ

K(λ)dλ
)
dµ(v⃗) = 0

for all rectifiable closed curves Γ lying in C+. Thus by the Morera theorem, J∗Fµ(y+·)(λ; ξ⃗) is analytic on C+.
Therefore, the conditional analytic Wiener integral

Tλ(Fµ|XE,∞)(y, ξ⃗) = Eanwλ (Fµ(y + ·)|XE,∞ = ξ⃗) = J∗Fµ(y+·)(λ; ξ⃗)

exists and is given by the right-hand side of (5.6). Finally, by the dominated convergence theorem (the use
of which is justified by (5.7)), the L1 analytic CFFT T(1)

q (Fµ|XE,∞ = ξ⃗) of Fµ exists and is given by (5.5).

From the definition of the conditional Feynman integral and the L1 analytic CFFT, it follows that
T(1)

q (F|XE,∞)(0, ξ⃗) = Ean fq (F|XE,∞ = ξ⃗). We thus have the following corollary.

Corollary 5.3. Let Fµ and XE,∞ be as in Theorem 5.2. Then the conditional analytic Feynman integral Ean fq (Fµ|XE,∞ =
ξ⃗) of Fµ exists for all q ∈ R \ {0} and a.e. ξ⃗ ∈ R∞, and is given by the formula

Ean fq (Fµ|XE,∞ = ξ⃗) =
∫
Rν

exp
{
−

i
2q

m∑
l=1

( ν∑
j=1

(α j − PHα j, 1l)2v j

)2
+ i

ν∑
j=1

∞∑
n=1

ξn(α j, en)2v j

}
dµ(v⃗).

Remark 5.4. Given a functional Fµ in T̂A with the corresponding measure µ ∈ M(Rν), and given a non-zero real
number q and a vector ξ⃗ ∈ R∞, define a set function µq,ξ⃗ : B(Rν)→ C by the formula

µq,ξ⃗(G) =
∫

G
exp
{
−

i
2q

m∑
l=1

( ν∑
j=1

(α j − PHα j, 1l)2v j

)2
+ i

ν∑
j=1

∞∑
n=1

ξn(α j, en)2v j

}
dµ(v⃗) (5.8)
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for each G in B(Rν), the Borel σ-field on Rν. Then µq,ξ⃗ is obviously a complex measure inM(Rν) and ∥µq,ξ⃗∥ = ∥µ∥

for any q ∈ R \ {0} and ξ⃗ ∈ R∞. Then equation (5.5) can be rewritten by

T(1)
q (Fµ|XE,∞)(y, ξ⃗) =

∫
Rν

exp
{
i
ν∑

j=1

⟨α j, y⟩v j

}
dµq,ξ⃗(v⃗) = µ̂q,ξ⃗(⟨α⃗, y⟩) (5.9)

for SI-a.e. y ∈ C0[0,T], and so the L1 analytic CFFT T(1)
q (Fµ|XE,∞)( · , ξ⃗) of Fµ with parameter q is an element of T̂A

for each ξ⃗ ∈ R∞.

In view of Theorem 5.2 and Remark 5.4, we easily obtain the following corollary.

Corollary 5.5. Let Fµ and XE,∞ be as in Theorem 5.2. Then, for any finite sequence {q1, . . . , qN} in R \ {0} which
satisfies the condition

1
q1
+ · · · +

1
qk
, 0 for each k ∈ {1, . . . ,N}, (5.10)

it follows that

T(1)
qN

(
T(1)

qN−1

(
· · ·T(1)

q1
(Fµ|XE,∞)( · , ξ⃗(1)) · · ·

∣∣∣∣XE,∞)( · , ξ⃗(N−1))
∣∣∣∣XE,∞)(y, ξ⃗(N)) = T(1)

αN
(Fµ|XE,∞)

(
y,

N∑
k=1

ξ⃗(k)
)

for SI-a.e. y ∈ C0[0,T] and a.e. (ξ⃗(1), . . . , ξ⃗(N)) in (R∞)N, the product of N copies of R∞, where

αN =
( 1

q1
+ · · · +

1
qN

)−1

. (5.11)

In our next theorem, we also establish the existence of the CCP of functionals Fµ1 and Fµ2 in the class
T̂A.

Theorem 5.6. Let Fµ1 and Fµ2 be the functionals in T̂A with corresponding Borel measures µ1 and µ2, respectively,
inM(Rν), and let XE,∞ be given by equation (2.2). Then for a.e. ξ⃗ ∈ R∞, it follows that

[(F ∗ G)q|XE,∞](y, ξ⃗) =
∫
Rn

∫
Rn

exp
{
i⟨α j, y⟩

(u j + v j)
√

2
−

i
4q

m∑
l=1

( ν∑
j=1

(α j − PHα j, 1l)2(u j − v j)
)2

+
i
√

2

ν∑
j=1

∞∑
n=1

ξn(α j, en)2(u j − v j)
}
dµ1(u⃗)dµ2(v⃗)

(5.12)

for all q ∈ R \ {0} and SI-a.e. y ∈ C0[0,T].

Proof. Using similar techniques as those in the proof of Theorem 5.2, it follows equation (5.12) immediately
by the definition of the CCP.

Remark 5.7. Given two functionals Fµ1 and Fµ2 in the class T̂A with the corresponding measures µ1 and µ2 in
M(Rν), and given a non-zero real q and a vector ξ⃗ ∈ R∞, define a set function φq,ξ⃗ : B(Rν

×Rν)→ C by the formula

φq,ξ⃗(H) =
"

H
exp
{
−

i
4q

m∑
l=1

( ν∑
j=1

(α j − PHα j, 1l)2(u j − v j)
)2
+

i
√

2

ν∑
j=1

∞∑
n=1

ξn(α j, en)2(u j − v j)
}
dµ1(u⃗)dµ2(v⃗)

(5.13)
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for each H in B(Rν
× Rν), the Borel σ-field on Rν

× Rν. Then φq,ξ⃗ is a complex measure on B(Rν
× Rν). Define a

function ϕ : Rν
× Rν

→ Rν by ϕ(u⃗, v⃗) = (u⃗ + v⃗)/
√

2. Then ϕ is a continuous function, and so it is B(Rν
× Rν)-

measurable. Thus the set function φq,ξ⃗ ◦ ϕ
−1 : B(Rν) → C is inM(Rν) obviously. Under these setting, equation

(5.12) can be rewritten by

[(Fµ1 ∗ Fµ2 )q|XE,∞](y, ξ⃗) =
∫
Rν

exp
{
i
ν∑

j=1

⟨α j, y⟩r j

}
dφq,ξ⃗ ◦ ϕ

−1 (⃗r) = ̂φq,ξ⃗ ◦ ϕ
−1(⟨α⃗, y⟩)

for SI-a.e. y ∈ C0[0,T]. Thus the CCP [(Fµ1 ∗ Fµ2 )q|XE,∞]( · , ξ⃗) of Fµ1 and Fµ2 is an element of T̂A for each ξ⃗ ∈ R∞.

6. Confirm the relationship

In this section, we confirm the relationship, equation (4.1), between the CFFTs and the CCPs for the
functionals Fµ1 and Fµ2 in the class T̂A, via direct calculations.

Theorem 6.1. Let Fµ1 , Fµ2 , and XE,∞ be as in Theorem 5.6. Then for all q ∈ R \ {0}, equation (4.1) with F and G
replaced with Fµ1 and Fµ2 respectively, holds true.

Proof. Using (5.9) with Fµ and µ replaced with [(Fµ1 ∗ Fµ2 )q|XE,∞] and φq,ξ⃗(1) ◦ ϕ−1 respectively, (5.8) with µ
replaced with φq,ξ⃗(1) ◦ ϕ−1, and (5.13), it follows that for SI-a.e. y ∈ C0[0,T],

T(1)
q

([
(Fµ1 ∗ Fµ2 )q

∣∣∣XE,∞]( · , ξ⃗(1))
∣∣∣∣XE,∞)(y, ξ⃗(2))

=

∫
Rν

exp
{
i
ν∑

j=1

⟨α j, y⟩r j

}
d(φq,ξ⃗(1) ◦ ϕ

−1)q,ξ⃗(2) (⃗r)

=

∫
Rν

∫
Rν

exp
{
i
ν∑

j=1

⟨α j, y⟩
u j + v j
√

2
−

i
2q

m∑
l=1

( ν∑
j=1

(α j − PHα j, 1l)2
u j + v j
√

2

)2
+ i

ν∑
j=1

∞∑
n=1

ξ(2)
n (α j, en)2

u j + v j
√

2

}
dφq,ξ⃗(1) (u⃗, v⃗)

=

∫
Rν

∫
Rν

exp
{
i
ν∑

j=1

⟨α j, y⟩
u j + v j
√

2

−
i

4q

m∑
l=1

[( ν∑
j=1

(α j − PHα j, 1l)2(u j + v j)
)2
+
( ν∑

j=1

(α j − PHα j, 1l)2(u j − v j)
)2]

+
i
√

2

ν∑
j=1

∞∑
n=1

(
ξ(2)

n (α j, en)2(u j + v j) + ξ
(1)
n (α j, en)2(u j − v j)

)}
dµ1(u⃗)dµ2(v⃗).

We note that( ν∑
j=1

(α j − PHα j, 1l)2(u j + v j)
)2
+
( ν∑

j=1

(α j − PHα j, 1l)2(u j − v j)
)2

= 2
ν∑

j=1

(α j − PHα j, 1l)2
2(u2

j + v2
j ) + 2

ν∑
j1, j2

(α j1 − PHα j1 , 1l)2(α j2 − PHα j2 , 1l)2

(
u j1 u j2 + v j1 v j2

)
= 2
( ν∑

j=1

(α j − PHα j, 1l)2u j

)2
+ 2
( ν∑

j=1

(α j − PHα j, 1l)2
2v j

)2
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and

ξ(2)
n (α j, en)2(u j + v j) + ξ

(1)
n (α j, en)2(u j − v j) = (ξ(2)

n + ξ
(1)
n )(α j, en)2u j + (ξ(2)

n − ξ
(1)
n )(α j, en)2v j.

Using these, the Fubini theorem, and (5.5), we conclude that for SI-a.e. y ∈ C0[0,T],

T(1)
q

([
(Fµ1 ∗ Fµ2 )q

∣∣∣XE,∞]( · , ξ⃗(1))
∣∣∣∣XE,∞)(y, ξ⃗(2))

=

∫
Rν

exp
{
i
ν∑

j=1

〈
α j,

y
√

2

〉
u j −

i
2q

m∑
l=1

( ν∑
j=1

(α j − PHα j, 1l)2u j

)2
+ i

ν∑
j=1

∞∑
n=1

ξ(2)
n + ξ

(1)
n

√
2

(α j, en)2u j

}
dµ1(u⃗)

×

∫
Rν

exp
{
i
ν∑

j=1

〈
α j,

y
√

2

〉
v j −

i
2q

m∑
l=1

( ν∑
j=1

(α j − PHα j, 1l)2v j

)2
+ i

ν∑
j=1

∞∑
n=1

ξ(2)
n − ξ

(1)
n

√
2

(α j, en)2v j

}
dµ2(v⃗)

= T(1)
q (Fµ1 |XE,∞)

( y
√

2
,
ξ⃗(2) + ξ⃗(1)

√
2

)
T(1)

q (Fµ2 |XE,∞)
( y
√

2
,
ξ⃗(2)
− ξ⃗(1)

√
2

)
as desired.

We finally provide a more general relationship involving the iterated CFFT for functionals in T̂A.

Corollary 6.2. Let Fµ1 , Fµ2 , and XE,∞ be as in Theorem 5.6. Then for any finite sequence {q1, . . . , qN} in R \ {0}
which satisfies the condition (5.10) above, it follows that

T(1)
qN

(
T(1)

qN−1

(
· · ·T(1)

q1

(
[(Fµ1 ∗ Fµ2 )αN |XE,∞]( · , η⃗)

∣∣∣∣XE,∞)( · , ξ⃗(1)) · · ·
∣∣∣∣XE,∞)( · , ξ⃗(N−1))

∣∣∣∣XE,∞)(y, ξ⃗(N))

= T(1)
αN

(
[(F ∗ G)αN |XE,∞]( · , η⃗)

∣∣∣∣XE,∞)(y, N∑
k=1

ξ⃗(k)
)

= T(1)
αN

(Fµ1 |XE,∞)
( y
√

2
,

1
√

2

N∑
k=1

ξ⃗(k) +
η⃗
√

2

)
T(1)
αN

(Fµ2 |XE,∞)
( y
√

2
,

1
√

2

N∑
k=1

ξ⃗(k)
−

η⃗
√

2

)
for SI-a.e. y ∈ C0[0,T], where αN is the real number given by (5.11).

7. Concluding remark

The definitions of the CFFT and the CCP based on the conditional Feynman integral. As mentioned
above, the conditioning functions defining the conditional transforms and the conditional convolutions
studied in [2, 4, 6, 10, 11, 14] are finite-dimensional vector-valued functions. But, Park and Skoug [19]
derived a simple formula to calculate conditional Wiener integrals associated with infinite-dimensional
vector-valued conditioning functions. In the celebrated papers [17, 18], Park and Skoug established simple
formulas in order to evaluate the conditional Wiener integral which can be used in heat and Schrödinger
equations.

The Feynman–Kac functionals are given by

F(x) = exp
{
−

∫ t

0
θ(s, x(s))dt

}
(7.1)

whereθ is a complex-valued potential on [0,T]×R. The conditional Feynman integrals of the Feynman–Kac
functionals are important in a branch of the study of the Schrödinger equation.

Many physical problems concerning the Schrödinger equation can be represented in terms of the con-
ditional Feynman integral Eanfq (F|Xt) of the Feynman–Kac functional F, where Xt(x) = x(t). The conditional
Feynman integral of the Feynman–Kac functionals given by (7.1) thus is important in the study of the
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Feynman integration theory [18]. Moreover, the conditional Feynman integral provides solutions of the
integral equations which are formally equivalent to the Schrödinger equation [8, 9, 13, 17, 18]. We are
obliged to point out that the conditional Feynman integral was defined in terms the conditional Wiener
integral. Based on this history, evaluation formulas for conditional Wiener integrals have been established
through the papers [17, 19, 22]. For a detailed survey of the conditional Wiener and Feynman integrals, see
[5].

As a first application of the evaluation formula (Theorem 2.1 above) for the conditional Wiener integrals
associated with infinite dimensional conditioning functions, we in this paper extended the ideas in [19, 20]
to the CFFT and the CCP for functionals on C0[0,T]. However, the fundamental concept of the conditional
Wiener integral given infinite dimensional conditioning functions would have been very useful to us in
establishing many of the results in [3, 8, 9, 17, 18]. We thus feel that the concept of CFFTs and CCPs
associated with infinite dimensional conditioning functions, as well as Theorem 2.1, will prove to be very
useful in future work by ourselves as well as other researchers in this area.

Acknowledgement

The author would like to express his gratitude to the editor and the referees for their valuable comments
and suggestions which have improved the original paper. The author dedicates this paper to the memory
of Professor David L. Skoug (1937–2021).

References

[1] R. H. Cameron, D. A. Storvick, Some Banach algebras of analytic Feynman integrable functions, in Analytic Functions (Kozubnik
1979), J. Ławrynowicz (ed.), Lecture Notes in Math. 798, Springer, Berlin, 1980, pp. 18–67.

[2] K. S. Chang, D. H. Cho, B. S. Kim, I. Yoo, Conditional Fourier–Feynman transform and convolution product over Wiener paths in abstract
Wiener space, Integral Transforms Spec. Funct 14 (2003) 217–235.

[3] S. J. Chang, C. Park, D. Skoug, Translation theorems for Fourier–Feynman transforms and conditional Fourier–Feynman transforms,
Rocky Mountain J. Math. 30 (2000) 477–496.

[4] D. H. Cho, Conditional integral transforms and conditional convolution products on a function space, Integral Transforms Special Funct
23 (2012) 405–420.

[5] J. G. Choi, S. K. Shim, Conditional Fourier–Feynman transform given infinite dimensional conditioning function on abstract wiener space,
Czechoslovak Math. J. 73 (2023) 849–868.

[6] J. G. Choi, D. Skoug, S. J. Chang, The behavior of conditional Wiener integrals on product Wiener space, Math. Nachr. 286 (2013)
1114–1128.

[7] D. M. Chung, Scale-invariant measurability in abstract Wiener space, Pacific J. Math. 130 (1987) 27–40.
[8] D. M. Chung, S. J. Kang, Conditional Wiener integrals and an integral equation, J. Korean Math. Soc. 25 (1988) 37–52.
[9] D. M. Chung, D. L. Skoug, Conditional analytic Feynman integrals and a related Schrödinger integral equation, SIAM J. Math. Anal. 20

(1989) 950–965.
[10] H. S. Chung, J. G. Choi, S. J. Chang, Conditional integral transforms with related topics on function space, Filomat 26 (2012) 1151–1162.
[11] H. S. Chung, I. Y. Lee, S. J. Chang, Conditional transforms with respect to the Gaussian process involving the conditional convolution

product and the first variation, Bull. Korean Math. Soc. 51 (2014) 1561–1577.
[12] G. W. Johnson, D. L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979) 157–176.
[13] G. W. Johnson, D. L. Skoug, Notes on the Feynman integral, III: Schroedinger equation, Pacific. J. Math. 105 (1983) 321–358.
[14] I. Y. Lee, H. S. Chung, S. J. Chang, Integration formulas for the conditional transform involving the first variation, Bull. Iranian Math.

Soc. 41 (2015) 771–783.
[15] R. E. A. C. Paley, N. Wiener, A. Zygmund, Notes on random functions, Math. Z. 37 (1933) 647–668.
[16] C. Park, D. Skoug, A note on Paley–Wiener–Zygmund stochastic integrals, Proc. Amer. Math. Soc. 103 (1988) 591–601.
[17] C. Park, D. Skoug, A simple formula for conditional Wiener integrals with applications, Pacific J. Math. 135 (1988) 381–394.
[18] C. Park, D. Skoug, A Kac–Feynman integral equation for conditional Wiener integrals, J. Integral Equations Appl. 3 (1991) 411–427.
[19] C. Park, D. Skoug, Conditional Wiener integrals II, Pacific J. Math. Soc. 167 (1995) 293–312.
[20] C. Park, D. Skoug, Conditional Fourier–Feynman transforms and conditional convolution products, J. Korean Math. Soc. 38 (2001) 61–76.
[21] H. G. Tucker, A Graduate Course in Probability, Academic Press, New York, 1967.
[22] J. Yeh, Inversion of conditional Wiener integrals, Pacific J. Math. 59 (1975) 623–638.


