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Derivation of conticrete Hermite-Hadamard-Jensen-Mercer
inequalities through k-Caputo fractional derivatives and majorization

Muhammad Adil Khan®*, Shah Faisal?®

?Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan

Abstract. The Hermite-Hadamard inequality stands out as one of the highly valuable inequalities due to
its exceptional role in research. Many mathematicians are working hard right now to create various im-
provements, generalizations and extensions of this inequality. This study develops the Hermite-Hadamard-
Jensen-Mercer inequalities in a conticrete framework through the application of k-Caputo fractional deriva-
tives and the concept of majorization. These inequalities are also presented in their weighted forms by
assuming certain monotonic tuples. Furthermore, the setting of bounds for the discrepancy of the terms of
our important inequalities is also accomplished on the basis of the two newly deduced identities. Also, as
particular cases, the previous inequalities are obtained by fixing some parameters in the main inequalities.

1. Introduction

Fractional calculus has become a prominent subject of study for researchers due to its broad uses in
several scientific domains. Its usefulness can be shown in a variety of fields, including economics [5],
biology [6], geophysics [23] and medicine [13]. Additionally, the references [21, 22, 37] offer some further
applications of this field. The fundamental principles in this discipline focus upon fractional derivatives
and integration. Notably, the idea of Riemann-Liouville fractional integrals has been crucial in the creation
of a large number of extended and generalized fractional operators. The operators Caputo [36], Atangana-
Baleanu [1], k-Caputo [17], Hadamard [40] and Katugampola [24] are well-known in this context.

It is crucial to provide some fundamental definitions of the field of fractional calculus because the main
goal of our study is to derive unified inequalities within its framework.

Definition 1.1. [36][Riemann-Liouville Fractional Integral Operators] The Riemann-Liouville fractional in-
tegrals of the left- and right-sides for a function W € L[91, 9] and order @ > 0, are respectively defined as:

]‘SDT\I/(r) = % f(r —u)* W(wydu, > 9
91
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and
9
w0 = % f (= P W (u)du, < 9,

where T() denotes the gamma function and W(r) = J3_W(r) = J5.W(r).
2 1

Definition 1.2. [36][Caputo Fractional Derivative Operators] The Caputo fractional derivative operators of the
left- and right-sides for a function V defined on [91,9,] such that ¥ € C"[941,9;] and having order @ > 0, are
respectively defined as:

1 T \P(n)(u)
‘DS, W(r) = du,
W VO= 00 Jy gomemt 7> %
and
D" (YW
cH@ —
DSE\I’(r) “Tri—a) ). oo du, 1<,

It is essential to note that the following is true for@ = 0and n =1,
W(r) = (ngg\p) (r) = (CDgI\I’) ).
Definition 1.3. [17, 47][k-Caputo Fractional Derivative Operators] The k-Caputo fractional derivative opera-

tors of the left- and right-sides for a function \V defined on [91, 9,] such that W € C"[91, 921, k 2 1, and having order
@ > 0, are respectively defined as :

1 TP (y)
Dokw)(r) = d 9
PO = i ), G 7

and

du, r<3d,,

ok (- 2 (y)
( D95 0 = kKhy(n =) Jr (u—r)t-n+

where T'y(+) refers to k-Gamma function satisfying I'(@ + k) = oI'k(®).

According to studies outlined in [8, 27, 29, 32, 42, 44], there has been a lot of research done on frac-
tional calculus and inequalities. A fractional form of the Hermite-Hadamard inequality was developed
by Sarikaya et al. [41] using Definition 1.1. This was accomplished by considering the convexity of the
function W over the interval [9, 9;]. It is given below:

\y(‘91+‘92)< Mo+1)

® ® 1
)< 2, w8 VO IRV} < 5 1V + ¥Ea). 1)

By taking into account Definition 1.2, a function W such that W € C"[34, 9;] and convexity of W gyver
[E1,&2] € [91, 92], Zhao et al. [48] developed the following inequality:

S+&\ 27T m—a+1) 1/
) < (D sumierscaimy ¥) 1+ 82— &)

2 (&2 = &)@
+(=1)" (CD‘D ),‘I/) %1+ 92— 52)]

\y(n) (\91 + \92 -

(O1+92-(&1+&2/2)
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1
< WO S) + W(3y) - = (W) + WO(E)). @)

Zhao et al. [47] continued this approach and established another inequality using Definition 1.3. This
inequality is expressed as follows:

n-2-1 _Q
. ; 52) = : (52r_k(gl)n—k‘£+ k [(

_1\n|c (D,k
+(-1) (D(91+Szf(<51+<52/2))7\y)

p) (31 +9,— cpok ‘1’) P1+92-4&1)

(O1+92—(&1+&2/2)
O1+9, - 52)]
1
< WO(S)) + W) — 5 (W& + W(E). ®

The result given in (3) reduces to result given in (2) for k = 1.

Mathematical inequalities allow us to compare and establish relationship between two quantities and
to state that whether one is less than, greater than, less than and equal to or greater than and equal to the
other [49, 53, 54]. Due to their wide number of applications, they are now considered fundamental part
of the fields like economics [30], engineering [7], information theory [43, 46] and mathematical statistics
[31]. They produce much important inequalities when studied in connection to the convex functions,
for instance, Fejér inequality [39], Hermite-Hadamard inequality [11], Jensen’s inequality [2], Ostrowski
inequality [25] and the Jensen-Mercer inequality [33].

The present-day research in the field of inequalities is being conducted in two subcategories of in-
equalities, i.e., discrete inequalities and continuous inequalities [38, 52]. Researchers, in both cases, try to
develop new generalized inequalities by means of applying generalized convexity or integral operators,
or sometimes they use both to fulfill the task [9, 50, 51]. However, there is a need to develop such an idea
that will enable the researchers to conduct research in continuous and discrete version simultaneously. The
concept of majorization is one such concept that meets this requirement and can be used to obtain a unified
form of discrete and continuous inequalities. Majorization defines a partial order relationship between two
tuples, demonstrating the degree of similarity or dispersion between elements in one tuple and those in the
other.With the help of majorization, one can convert difficult problems related to optimization into simple
ones, which are then easily solved [3, 20]. Recently, Faisal et al. [14] used the concept of majorization along
with the convex function and established a generalized inequality of the Hermite-Hadamard-Mercer type,
which simultaneously serves as both continuous and discrete inequality. This new inequality is named
conticrete inequality. The word “conticerete” stands for both continuous and discrete and has been adopted
using English-Language rules. This inequality is given below:

Theorem 1.4. [14] Let W be a function that exhibits convexity on the interval I and & = (&1,...,8q), T =
(t1,...,7Q), € = (€1,...,€q) be three tuples with &, 1,6 € T forall ¢’ =1,...,Q. Ift < &and e < §,
then

Q Q-1 Q Q-1 e
\p[z e-¥ (T)] Y-y o [ v

¢’'= ¢=1 ¢'= =1 <
= T Sy
¢’ ¢’
<) v - Y v (<) @
o= o=

To study more about the fractional form of the combined Hermite-Hadamard-Jensen-Mercer inequalities
using majorization, see [4, 15, 16].

The subsequent sections of this paper are structured as follows: Section 2 consists of some basic results
and definitions which will be used to obtain our desired inequalities. Section 3 contains the derivation
of the new type of Hermite-Hadamard-Jensen-Mercer inequalities for majorized tuples using k-Caputo
fractional operators. These new results have been expressed as Theorem 3.1 and Theorem 3.3. This section
also consists of two more results established by considering the lemmas stated in Section 2. Also, this
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section contains some remarks presented at the end of each theorem, showing that the results obtained in
this paper give rise to the existing results in the literature for some particular values. Section 4 presents the
investigation of two new identities, which have been further used to obtain bounds for the main results.
This section also possesses some remarks and corollaries which show that these results cover the previous
results in the literature. The last section presents the conclusion of the whole work.

2. Preliminaries

This section provides essential results and definitions which are directly needed in order to obtain the
main contents of this paper.

Hermite-Hadamard Inequality ([11]):
Let W be a function that exhibits convexity on [$1, 92]. Then

(5)

9 + 92) o1 92 W(9) + W(9,)

<
e B | Wl s ==

The inequality given above, can be obtained in reverse direction when the applied function is a concave
function. Researchers, have also obtained this inequality by using various classes of convex functions such
as n-convex [19], coordinate convex [10], strongly convex [34] and s-convex function [12].

Jensen-Mercer Inequality ([33]):
Let W be a function that exhibits convexity on [91, 9;] and B € [91,92], po = 0forall ¢’ =1,2,...,Q with
Z po = 1. Then

Q Q
v [81 =) Pcﬁa] < W) +W(S2) - ) pW(Bo). (6)
¢’=1 ¢’'=1

Majorization ([45]):

Given that two real tuples a = (a1,...,40) and b = (by, ..., bq) such that their components are arranged in
descending order, i.e., ajq) < ajo-1) < -+ < apy, by < bja-1) < -+ < byyy, we say that the tuple a majorizes
tuple b (in symbols b < a), if the conditions listed below are true:

Z”L Z bier 7)

fors=1,2,...,Q—1and

Zag/ = Zb (8)

|
Based on the concept of majoriation, the extended form of the Jensen-Mercer inequality is given as follows.

Theorem 2.1. [35] [Discrete Majorized Jensen-Mercer Inequality] Let \V be a function that exhibits convexity
on the interval I and (x;-) be a matrix of order n X Q with xijo € I foralli=1,2,...,n, ¢ =1,2,...,Q. Let

n
w = (w1,...,wq) be a tuple with w. € T for ¢’ =1,2,...,Qand 0 < p; fori =1,2,...,n with ), p; = 1. Also,
i=1

assume that w majorizes every row of (xicr), then

Z we - 2 2 pixic 2 W(we) - 2 2 P (xic). ©)

=1 i=1 ¢’'= ¢’=1i=1
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We also need lemmas mentioned below to get our new results [14].

Lemma 2.2. Let W be a function that exhibits convexity on the interval 1 and (x;.) be a matrix of order n x Q
withxio € I foralli=1,2,...,n,¢’ =1,2,...,Q. Let w = (w1,...,wq) and p = (p1, ..., pa) be two tuples such
that w. € Ipo > 0 with pg # 0,1 = pl—ofor all¢’ =1,...,Qand 0 < p; fori =1,2,...,nwith Y\ p; = 1.
Also, assume that a decreasing tuple (x;y, ..., Xic’) satisfies .00y poXic < Yooy powe (fors =1,2,...,Q—1) and
Z?’:l Powy = 2221 poXio foreachi=1,2,...,n, then

Q-1 n
[Z Mpewer = Z Z npi P;/ng'} < Z npe¥(we) Z Z npipe ¥ (xic:). (10)

¢’=1 i=1 ¢’=1 ¢'=1i=1

Lemma 2.3. Let W be a function that exhibits convexity on the interval I and (x;./) be a matrix of order n X Q
withxio € I foralli=1,2,...,n,¢' =1,2,...,Q. Let w = (w1,...,wq) and p = (p1, ..., pa) be two tuples such
that wo € I,po = 0 with pog # 0,1 = piufor all¢’ =1,...,Qand 0 < p; fori = 1,2,...,nwith Y.\ pi = 1.
Also, assume that for every i = 1,2,...,n, both xj and (w. — xic) behave the same monotonicity property and
28:1 Powo = 2221 poXic holds, then

[Z Npe@er = 2 Z, npipe X] < Z npeW(we) Z Z npipe ¥ (xic') (11)

¢’=1 ¢/=1 i=1 ¢'=1 i=1

3. Main Results

The novel findings of our work are discussed below within the context of k-Caputo fractional operators.

Theorem 3.1. Let WV be a function provided that W € C"(I) and W™ exhibits convexity on the interval I. Ad-
ditionally, let & = (&1,...,¢a), T = (11,...,7q) and &€ = (e1,...,€q) be three tuples with £, 1., € 1 for all
¢=1,...,Qand ® > 0,7q > €q. If T < Eand e < &, then

Zg,,—Z(TC + & )]
S S ey {Z - Z]

=%
M Eor— Y =1 7=1
(2 (o - )) s

=1
+H=D"|D* W [i 55,—02155,]
(Fe-fe) JUA

p)

21 T =1

T A

c’=1 1

< Z WOy - = [Z W (T,) + Z \y(n)(&,,)] (12)

=1

Proof. By using the fact that g € [0,1] and W is convex, we have

w(zé : —Z(T" ”")]

¢'=1
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- Q Q-1
[\PW [ (Z £ - Z w] +(1-0) [Z go-), sg/]]
’=1 ¢'=1 ¢’=1
Q Q-1
+Fpm [@ [Z & — Z Sc'] +(1-90) [Z & — Z T;’]] . (13)
¢’=1 ¢'=1 ¢'=1 ¢’=1
The aforementioned inequality is multiplied by ¢"~#~!, and then integrated with respect to ¢ to get
Q Q-1
1 Ter + Eqr
) o ( ¢ c
1 Q Q-1 Q Q-1
< 5 I:L @n_T_l\y(n) (@ Z & = Tc’] +(1-0) [Z Eor = 55’]] do
¢’=1 ¢’=1 ¢'=1 =1
1 Q Q-1 Q Q-1
+ f o [@ [Z Eor = 5;’] +(1-0) [Z Cor = Tc’}] d@l
0 ¢’'=1 ¢’=1 ¢’=1 ¢'=1
g Qil
1 z 55—/,_1 T )
- s T
Q1 Y b X e Q Q-1 "
2 Z (‘EC’ TC') =1 = (M - ( Z ég Z ég’))
¢’=1 =1 ¢’=1
Z —Z W) ()
+ f o r— dul. (14)
Z ‘Sg’_ Z £t Q-1
z & L o) -

We see that the required condition Z Eo— Z T > Z Eo— Z & for the applicability of fractional operator
¢’=1 ¢'=1 ¢'=1

can be easily established by taking into consideration 7 > €Q After this, the k-Caputo fractional operators
are utilized in (14) to get

kCi(n — )

Q Q-1
@,k
Q-1 - Dy an Y [Z Se _Z;Tg’]
(Z o -1 )) (z -1 e) et =
. .

Q 0-1
@,k .
+(_1)n CD)Q -1 ¥ [Z Eg/ B Z ég/] ’
(£e-Ex)

which gives

(15)
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K= 20 |l o [Z o Z ]
@ Q Q-1 W ¢ Te
)

Q-1 " ( Y e o= =
2(2(85_@) PRy o=l
¢'=1

H(=1)y Do [Z £ - Z ] (16)

(Z 5/—,21'[/) c’=1 =1

Consequently, we have derived the first portion of (12). Now, the the convexity of W is used to derive the
second portion of the inequality (12), as shown below:

1
5‘:’] (17)

Q Q-1
gC,J +(1- 9P [Z &=y, Tg,] : (18)
1

¢'=1 ¢'=1

By combining (17) and (18) and then utilizing Theorem 2.1 for n = 1 and p; = 1, we have

L

¢’=1 ¢'= ¢’=1 ¢’'=
Q-
+w® [Q{Z & = 2 éc’] +(1-0 (Z & = Z Tc']]
Q - Q-1 N Q g_(ll—l .
<y [Z Cor = Z TC'J +w [Z Cor = Z 5;’]
¢'=1 ¢'=1 ¢’'=1 ¢'=1

0O-1 Q-1
<2 Z W) — [Z W (g.) + Z \y<">(eg,)] . (19)
¢’'=1

=1

By multiplying the aforementioned inequality with ¢""#~! and then integrating the acquired inequality
with respect to g, we achieve the remaining portion of (12). O

Remark 3.2. (i) By setting k = 1 in (12), we arrive at the inequality (11) proved in [16].
(ii) By insertingn =1,k =1,Q =2and ® = 0in (12), we obtain the results mentioned in [28].
(iii) By insertingk =1,Q = 2,71 = 91 and &1 = 9, we attain the inequality (2.2) constructed in [18].

We provide another form of our finding in the following manner, following identical steps to that used in
the aforementioned theorem.
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Theorem 3.3. If the conditions stated in Theorem 3.1 hold true, then

o [Z - Z (&)]
B 2” FKT(n = ¢ +K) (-1y"[-D?* +))\I’ [ZQ: Eor = QZ_lfd]

n—¢ ( Ry
& o= o
(Z(fc'_T;')) z Z'l( ’ o o
¢'=1
0,k
ST )
[Fetl=) = =

Z\W (E) -5 {Z W () + Z\W (e»)l

¢'=1 =1

Proof. The convexity of W and 0 € [0, 1], allows us to write that

() 1o + &g 1 wm X 0 ~ 2 QQl
e
Q-1

e [ié —[ Ef@ +_ch m

The preceding inequality is multiplied by ¢"~#~!, and then integrated with respect to o to get

1 0 0 Q-1 2-0 Q-1
< E I:f Qn———l\y(ﬂ) (Z gg’ - [E To + T Z Eg/]]dg
0 c’=1 cr=1 o
1 Q Q-1 2%
+f g (Z & {g e + = TC,J]@}
0 ¢'=1 =1 o
Q Qe+
= L o ’=1( : ) W) (1) du
- Q-1 n—-g a o 5 o -
2 Z £ —Ty ,§1 ‘7:’_721 Ecr B Z E ~ Z
( 2 ) = ¢ u o SC/
=1 et &
£ et
=R W)
+ j:l B !;1 (u) — du
L1 (TL,;J ) Q Q-1 F-n+l
o (( Y éo— L T;’) - u)
<=1 ¢'=1

For applying the k-Caputo fractional operators in (22), the required necessary condition that

3396

(20)

(21)

(22)
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and
Q-1 Q-1
To + s;/
Z ég’ - Z < Z Eg/ - Z TC//
=1 =1 o'=1 =1

can be constructed by taking 7q > €q.
Now, (22) implies

e [Z . Z(Q ‘e )]

¢'=1 =1
2n———1k1—~ _ _ o) 01
B - k(n n_7 ( 1)n C v Q-1 T e 7\11 [Zég/_ZE;/J
(Z (e = Tg/)) (Z b= 2:1( 2 )) ¢'=1 o=1
¢'=1
Q Q-1
+ chD,k R - . /] ’
gy B X
which gives
(n) 2 = To + &
Ny
2R kT (n — ¢ +k 0 Q-1
< Qil k(n kn-_'-%) (=" foD/(’; _— p [Z 55,_2&,]
¢'=1
Q -1
+ D@k 4 & — T;,] . )
(£ =-E(=) [Z L

Thus, the first portion of (20) has been accomplished. We continue to demonstrate the second portion of
(20) by using Theorem 2.1 for n =2, p; = § and p, = 2%9, in the subsequent way:

=1 ¢’=1 ¢’=1
Q 0 -1 2 _ 0 Q-1
< Z{ \P(n)(ég’) - (5 Z{ \p(n)(Tg’) + T Zi ‘y(n)(fg’)] (24)
¢'= ¢'= ¢'=

and

Q -1 7 Q-1
< Z ‘I’(n)(ég/) _ [g ‘I’(”)(E;/) +- < \p(n)(Tg,)]. (25)
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Adding (24) and (25), we get

Q 1
<2 Z wi(E) - [Z wi(z,) + Z W (e, )J (26)
¢'=1

=1

By multiplying the aforementioned inequality with ¢"~%~! and then integrating the acquired inequality
with respect to g, we attain the remaining portion of (20). O

Remark 3.4. (i) By fixing k =1 in (20), we gain the inequality (25) established in [16].
(ii) By fixing Q) = 2 in (20), we acquire the inequality (8) derived in [47].
We derive the following additional result with the assistance of Lemma 2.2.

Theorem 3.5. Let W be a function provided that W € C"(I') and W™ exhibits convexity on the interval I. Addition-
ally, let &= (&1,...,8q), T=(11,...,70), €= (€1,...,€q) and p = (p1, ..., pq) be four tuples where £/, 1., e €1,
po 2 0withpg #0,n = ;%for alld’ =1,...,Q,and ® > 0, 1q > eq. If T and & are decreasing tuples with

¢’=1 ¢'=1 ¢’=1 ¢’=1
fors=1,...,Q—1and

Q Q Q Q

Zp;’éc’ = ch'T;’r ch’ég’ = Zp;’éc’l

=1 c'=1 =1 =1

kTi(n — 2 + k) o > &
: = || D7 -1 g Z Mperéer = Z Npe e
1 ) ¢’=1 ¢’=1

Q- "w (Z e &= Y, P
2 Zl(npaeg/ - TTP@'Tg'))
¢'=

Q Q-1
+(_1)n CDQ,E Q-1 )\y (Z UP@"E@’ - Z npe gg’]
¢’=1 ¢’'=1

( Y. nporée- ;1 nper T

[\W) [Z e Z - &,,] £ [Z npeer - Z e ]l

c'=1 c’=1 c'=1

1
< Z pe ¥ (E) = 5 [Z npe ¥ (te) + Z npgf‘l’(”)(sc/)] : (27)
¢'=1 ¢'=1

¢'=1

Proof. By using the fact that g € [0,1] and W is convex, we have

e
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Q-1
[\y(n)[ (Z Mt = ) pe Tf’] -0 [Z MPerée = Z ece ]]
=1

¢’=1

O-1
+y [Q [Z npeée — Z npe SC/J +(1-9 [Z Peéer Z et JH ~
=1 o=l

¢’=1

The aforementioned inequality is multiplied by ¢"~#~!, and then integrated with respect to g to get

fw) (Z P e - ’VZP (5= )]
1 1 Q -1
< 2 l;f(; ( {Z oo — Z ﬂP»/Tg/J +(1-p) [Z Npeée = Z T]Pa&g]]d@
¢’=1
Q Q-1
+ fol e () { [Z Nperée — Z npe ég’] +(1-9) [Z P& — Z npg»T;/]]d@l
; -~

1

@
k

Z (Mperec = TTPCTQ’))

Q-1

an é/—):r T

)
(u) 2 _pn+1 du
Zrm 5/‘2’””’&’ Q-1 :
( (Z Mpeée — 1 npg/sc'))
¢’=1
Zrm 5/—2 per T )
Z Mper Ecr = Z nper & Q-1 £
(( L Mpete = L et ) )
Q-1 Q Q-1
By assuming tq > €, we can easily establish that ): Npoée — Y, Mpoée < Y, Mpole — Y, npoto, after
¢'=1 =1 =1 ’

which k-Caputo fractional operators are utilized in (29) to obtain

(;npc & —UZPc (TC % )]
CDF" % | (angéc anﬂ»]

Y npe é/—Z nperecr c’=1

ka(n - %)

Q-1 n=
2( Zl (Mperec = UPC’TC’))
¢’'=

+(=1)"| DY v inzﬂ'é'—(f e
(Q 0-1 )’ ~ s g/ﬂ’?l’c [ | K4

Y. npoéo- Zl Nper T
<=1 =

)

which leads to

e
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2k Q Q-1
_ 2 1Er— Z Nper € !
2 (’,Z_ll (Mperec = UPC’TC’)) T

Q 0-1
+(_1)Vl CD(D,g]; Q-1 )\y [Z T]Pc’ég' - Z WP;’SQ’J . (30)
¢’'=1 ¢’=1

( ;1 Nper&er = ;1 Nper Ter

Consequently, we have determined the first portion of (27). Further, the convexity of W is employed to
determine the remaining portions of (27) as follows:

W)[ (angég ZT]PCTC]+(1 @)[Zm ¢ ZnP;E»]J
' Q-1

Q-1
<@‘I’”)[any , ang ,)+(1 @)‘I’(’”[an;éf Znn,ég} (31)

1
and

Q Q-1
e (@(Z perée Z nperee ] +(1-0) [Z Mperéer = Z nperte ]]

=1

< o¥™ (Z npeée — Z Npe € ] +(1- o™ [Z Nperée Z NPer Ter ] (32)

By combining (31) and (32) and then using Lemma 2.2 for p1 = 9, p» = 1 — pand n = 2, we gain

\Ij(Vl)( (Z Npoe — qug TC]+(1 0) [Z nperé Z‘UPS 1€ ]]
+ ) {Q [Z oo — Z r]pg/g;/] +(1-p) (Z npeée — Z UP@’TC’]]
<y [Z et — Z NperTer ] + W [Z Nperée — Z Npeéc ]

=1
<2 Z T?Pc"l’(”)(ég') - [Z npc'\y(n)(Tc’) + Z np;’\y(n)(gg')] .
¢'=1 =1 ¢’=1

By multiplying the aforementioned inequality with ¢""#~' and then integrating the acquired inequality
with respect to g, we attain the remaining portions of (27). I

The next result is deduced through the utilization of Lemma 2.3.

Theorem 3.6. Let \V be a function provided that W € C"(I') and W™ exhibits convexity on the interval I. Addition-
ally, let & =(&1,...,8q), T=(11,...,70), €= (€1,...,€q) and p = (p1, - .., pa) be four tuples where E/, 1., e €1,
po = 0withpg #0, 1 = piuforall ¢=1...,Qand ® >0, 17q > ¢eq. If§ -1, 1, &— €and & behave the same

monotonicity property and
Q

Q Q Q
ch’éc' = ZP;'TC’/ ZPC'EC' = ZP;’&
=1 =1 =1 ’
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hold, then
. PorTo +p €
‘P"[angég—nZ( - g)]
o=1 o=1
kl"k(n - — D 4 k)

Q-1
D(é e ) {ZUP:'@' anw]

Q-1 n=
2 (r,Zl(ﬂP;'&' - T)P;’T;'))

+(-1)" CDZ"% ) [an »f—ZnP J

Mperéer— L nporte
/=1 /=1

0 Q-1
< % [\II(") Z Nperée — 2 npe fw] + Wy [Z npoée — ; npg/’cg/]l

= =
Q-

Z npe\¥ n)(gc )—5 [Z MNPc % (T”) + Z np”\y(n (ec )] (33)

=1 =1

Proof. Lemma 2.3 and techniques identical to those outlined in the proof of Theorem 3.5 are used to
demonstrate (33). O

Remark 3.7. In a similar way, we may also derive the weighted versions of Theorem 3.3.

4. Bounds Associated with the Main Results

This section presents the derivation of two additional identities that will assist us in constructing bounds
for our major findings.

Lemma 4.1. Let WV be a differentiable function provided that W € C"*\(I) and & = (&1,...,&q), T = (11,...,7qQ),
and € = (e1,..., €q) be three tuples where £, T, e €1, forall¢’ =1,...,Q, 0€[0,1], @ > 0. If\If’“1 € L(I), then

el Sl t)

c’=1 ¢'=1

kTe(n — 2 + k) & =
_ k _ chD,f2 . )+\I] Z Eg’ — Ter
G

Q-1 n—% ( o5 — —
2( Z‘ (5;’ - TC')) ;’{‘1 - cél c =1 <=
¢'=1
Q Q-1
+-1" D%k W [Z o - zgg,]
(Z Eer— Z T/) c’=1 =1

Q-1
Z(ec/—m f o (1— gyt ) wirD [Zs Z(gw(l—@)eg/)Jd@- (34)
¢’=1

Proof. In order to determine our intended outcome, we begin by assuming that

1 Q Q-1
I= f (@”‘?—<1—@>”‘f)\lf<””>(2 Ec'—Z(QTc/+(1—Q)€c')]dQ
0 ¢'=1 ¢'=1
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=f ”k\I/("”)[ZEf—Z(QTg +(1- ch)]dQ

c’=1

- fo (1- g Fwiry [Z égf—Z(mw(l—@)e;/)Jd@
c'=1

7=1

=L -1

Assuming that

Fo-YeLe-Yo

c'=1 ¢’=1

and employing the integration by parts formula, we determine I; and I, in the following manner:

1 Q-1
I :f n—;\y (n+1) & — T+ (1 )E d
=, Z_; ‘ Z (ote 0)ec) |do
_ 1
i A ( Y & - Z (ote +(1- Q)Eg’))
_ ¢’=1 ¢’=1
B -1
Z (Eg/ — T
¢=l 0
no ¥ (n)
n—f—l n
_Q_l—fo v [Z&—Z(mg+(1— )gg)]
;1(5c’ - 7o) =1
Q Q-1
W(H)(Z &— X Tc’)
_ ¢’=1 ¢’=1
B 0-1
Y. (e —To)
¢'=
ka(n -2+k ilep Q Q-1
— o+1( 1) L(DI; o-1 ),\y {Z ég’ - Z Eg’ .
Likewise,
Q
L= f (1 - o) F @+ [Z o — Z (ot + (1 - o)ecr )]
¢'=1
1
1- Q)n—k\Il(n)(Z & — Z (ot + (1 - p)eos ))
¢’=1 ¢'=1
- Q-1
Y (€0 — 1)
¢’=1 0
n-2 Q Q-1
+ Q-1 L (1- Q)n 1\11(”)[ ég’ - Z (QTg' + (1 — Q)EC’)] d@
Y (e0 — 1) o=l o=

¢’=1

3402

(35)

(36)
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Q Q-1
w( Fe-% )
¢’=1 ¢’=1

Q-1

L (e — 1)
=1
kTi(n — 2 + k) ok &2 o
o] I VR I, )
cc'7 &t ¢’=1 c¢’=1
Y (e — T;’)) ("21‘, <=1 )
(c’=1

Q-1

Y (eo—10)
Now, substituting (36) and (37) in (35) and then multiplying both sides by ﬂT, we obtain (34). This
complete the proof. O

Remark 4.2. (i) By setting 11 = 91,k = 1, &1 = 97 and Q = 2, then equality (34) yields the equality (2.1)
established in [18].

(ii) By inserting Q =2,® =0,k =1,n=1,t1 = 91 and &1 = 9y, then equality (34) yields the equality (2.1) that
is derived in [11].

Lemma 4.1 is now used to generate the subsequent additional results:

Theorem 4.3. Let WV be a differentiable function provided that W € C"*Y(I) and |W"*| exhibits convexity on
the interval 1. Additionally, let & = (&1,...,8a), T = (11,...,Tq), and € = (&1,...,€q) be three tuples where
Eo,to, e €l foralld’ =1,...,Q,and @ >0, 1q > eq. If T < Eand e < &, then

Q Q-1 Q Q-1
‘I’(”)(Z o= L 5c’) + W ( Y éo— L TC')
¢’=1

¢’=1 =1 ¢’=1

2

K _2 4k Q Q-1
_ erk(i”l 2 +k) fDiD{; o )\y [Zég/—;fgl]

gl E';I_»gl T’ ¢'=1 ¢r=1
Q-1 1 Q-1 .
= N L |weD ()| + L (WD (e,)|
_— ,— a1 = D) g | _ €= s
= a1 Z leer =7 '(1 211—%) Z || 5 : (38)

¢'=1 ¢'=1

Proof. Lemma 4.1 is used first, followed by Theorem 2.1 for p1 = ¢, p» = 1 —p and n = 2 as a result of
convexity of [W("*1| to establish the following

Q Q-1 Q Q-1
‘I’W(Z Eo= Y sgl) +\I/(")(Z Eo =Y Tg/)
¢'=1

¢’=1 ¢/=1 ¢’=1 ka(n - % + k)

2 B Q-1 n-g
2( Y (ec = Tc’))
¢

r=1




M. Adil Khan, S. Faisal / Filomat 38:10 (2024), 3389-3413
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x |[c Dk Y [i & —Qz_l’tg/]+(—1)n <Dk R (i & —(ilec/]

Y &= L T
-1 =1

¢'=1
10—1 1
Sig/:llé*_”' 0 (% - (-0 ¥)
Q
[Z WD, >|—[ ZI‘I""”)(T >|+<1—@>Z|\P<"+”<s >|H
Q-1

1 3
== | ¢ = | 1 n—¢ — k |\I] I’H—l) CS |
> CZ‘=1 Eo =Ty [ f (( 0) o" {Z (o)
O-1 .
(o) WD)+ (1 - o) Z I\I’(””)(eg/)l]]} do + f; (% -1-0"%)
¢’=1 =1

2

Q-1

[ Q Q-1
x| Y D) - [@Z WD)+ (1-0) ) | |w<"+1><eg/>|m d@l
Lc'=1 ¢’=1 ¢’=1

1 Q-1
=5 lee — Tl + 1)
¢'=1

(39)
Now, we determine I; and I,, as follows:
1 Q Q-1 Q-1
= f(; ((1 _ Q)n—% _ Qn—%) [Z |\p(n+1)(5;,)| — (QZ ‘\I’(n+1)(,[g/)| +(1-0p) Z |\I/(n+1)(gg,)‘]} do
¢’'=1 =1 ¢’=1
Q % ; Q-1
= [ (& ][ fo (-0 % - @”—f)d@] — [Z [z
=1 ¢'=1
: o !
X fo o(A-9"F —¢"F)do+ 2 WD) f (-0 f-gF)a- @d@l
_E:Nmﬂkéﬂ(l 2z ) EZNM”NTﬂ[j\ (1-0) Fdo— j‘Q ”W@
0
+ Z (WD) [ f (1-0) **do~ fo (1- @)@"-fd@]l
Q-1
_ (n+1) (n+1)
Z [ woDe, >|( — 1) [Z WD)
1 2i—n—l Q-1 (n41) 1 2%—11—1
X((n—%+1)(n—%+2)_n—%+1)+;_1|\y (Eg/)|(n—%+2_n—%+l) 40

and

) Q Q-1 Q-1
L= [ (e -a-or) [Z [ ) (@Z WD) + (-0 ) |‘I’W)(&/)’]l "
z c'=1 ¢'=1 =1
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Q 1
= [Z |\y(n+1)(5g/))] [jl‘ ( -(1- Q)nf— d@) Z |\y(n+1 (. )|

¢’=1 2
1 O-1

X f o0 - -9 F)do+ ) [WDeo)| f ot -(1-9m )= @)d@l
2 ¢'=1

= o 1-2f" pntl) ( n—%+1d _ ! 1— n_zzd]
;| ( ) {ZJ (T)|f 0 L@( o) *do
0O-1

+2“1’("”)(5c')|( j: (1- 00" Fdo~ ﬁ (1—9)"‘?“01@)]

¢’=1
1) 1-2%" Q] (n41) 1 ~ 2¢-n-1
Z|‘I’n+ (& )|( ) LZ_1|\IIH+ (Tg’)| n—%+2 n—%+1
(n+1) 1 _ o 2F
+;‘W+ (&C)l((n 2+ )n-2+2) n-2+1J (41)

By substituting (40) and (41) in (39), we obtain (38). This ends the proof. [

Remark 4.4. When we substitute 3 =2,k = 1,11 = 91, &1 = 9y, then inequality (38) gives

WS + WSy T(n-o+1)

[CD@ W(8y) + (-1)"°D2 \P(Sl)]

2 2(87 — 9y
92— 9 ( 1 ) (WD ()] + [P (9,)]
< 1- ,
n-—-o+1 2n-® 2

which is mentioned in [18].

Theorem 4.5. Let \V be a differentiable function provided that W € C™*1(I) and [W"*V|7 (g > 1) exhibits convexity

on the interval 1. Additionally, let & = (&1,...,8q), T = (11,...,7q), and &€ = (&1,...,€q) be three tuples where
Eo,to,ec €L forallc’ =1,...,Q,and @ >0, 1q > €. If 1 < &, € < &, then

ka(n - % + k)

" o= } 2 (Qzl (Sc’ - TC’))H_;{

¢’=1 ¢’=1
¢’=1
Q Q-1 [0) Q-1
X cDm,k R\ & — /] + (_1)n cD(D,k RV [ ég’ _ X /]
Q-1 Q-1 i
1 Q-1 1 Q Z; |‘I/(”+1)(Tg,))q + ; )\y(n+1)(€g,)|’4
Shoeii Y lee =l (1= 5 )| X o) - == T RCE)

¢'=1 ¢'=1
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Proof. Lemma 4.1 is used first, followed by power mean inequality, to establish the following

¢’=1

&l H kTi(n — 2 +K)
(%

R e

Q-1 Q Q-1
CD(D,k v , — , -1)" CD‘D'k ¥ ;) — ’
X (glé—oill Sg/) [Z & Z T J +(=1) (E éa—jil T) (; & L &c ]

1= 1 . .
EZ _TSI(\fo 7% - -0 k1d@) (fo |0 F — -0y F|
9\
\I/(n+1>[25 Z‘(grg +(1-0)eo )] ]
¢’'=1
10—1 ) " D m
ZEZ'EC"M[f ((1_ o't _@nk)dQ"‘j: (Q"iﬁ?—(l—g)”’?)d@
¢'=1 1

1 Q Q-1 q
x ( fo |7 % = (1 = oy F| @D [2 o= ) (oo +(1- Q)gc’)] d@] - (43)
¢'=1 ¢'=

Through the utilization of Theorem 2.1 for p; = g, p» = 1 — g and n = 2 in (43) as a result of convexity of

_1
1’?

Nl \,-‘

[EyT.

[\W"+1|7, we have

Q 1 1
Zkf Ter [f ((1 ot —Q”_f)dg+ﬁl(g" f-(1-0" k)dg]

2

><( fo [t )“)(Z (W )W—[ Z;'\P(M)(T ol

_1
1‘7

1

Q-1
+1-9) |w<”+”(egf)|q] d@]
¢'=1

Q-1 1 )
) %Z o m[f (S f)d9+j: (¢ -a- @)”“E)dQ)

¢'=1

1
1‘7

% Q Q-1
X [ fo (A-pt - F) (Z (WD ENT — [@Z (WD ()|
¢’=1 ¢’=1
Q-1 1 Q
+H1-0)) |w<n+“<egf>w]]d@ * f (¢ F-(-9"F) [Z [N (E )
=1 2 ¢’=1

Q-1 %
(44)

O-1
- [@Z WD) +(1-0) ) |w<"“><sgr>|q]] do
=1 ¢'=1

Thus, the completion of (42) is reached after computing the integrals mentioned in (44)
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To get more outcomes, we introduce the following lemma.

Lemma 4.6. Let \V be a differentiable function provided that ¥V € C””(I) and & = (&1,...,8a), T = (11,--.,7Q),
and € = (€1, ..., €q) be three tuples where &yt e €1, forall ¢ =1,...,Q,0€[0,1], @ > 0. If W™+ € L(I), then

28 kT(n — 2 +k)
Q-1 n—g
( Y (e — TC’))

TR

=1

¢’'=1
Q Q-1 Q Q1 e
+(=1)" cDrD,kQ N y [Z & — eg/J —_ym [Z So— ( < : )]
(fe-f(==) &= & c= R~
Q 0 Q-1 o Q-1
7, n—2\yy(n+1) , _ -, s ,
Z(é ) =T, {f A [Z{ & (—2 L T+ 2g1=155 ]]d@

_f S [Zg,—(z @Zgg Z ]]d@}. (45)

Proof. We demonstrate (45) by using techniques identical to those outlined in the proof of Lemma 4.1. [

Remark 4.7. When we insert Q =2,k =1, 11 = 91 and 1 = 9, in (45), then we acquire the equality (3.1) that is
established in [26].

The subsequent results are now derived using Lemma 4.6.

Theorem 4.8. Let WV be a differentiable function provided that W € C"*Y(I) and |W"*| exhibits convexity on
the interval 1. Additionally, let & = (&1,...,8a), T = (11,...,7Tq), and € = (&1,...,€q) be three tuples where
Eo,to,ec € forallc’ =1,...,Q,and @ > 0t > eq. If T < &, € < &, then

2= kT (n — 2 + k) 0 a1
Q-1 : k”_% D((Dkz 3 _Qzl (1 e ))+\I] [Z ég’ - Z TC/]
( Zl(eg/ — Tg’)) 4 2 =1 cr=1
=

=1

Q-1 O-1
+(=1)" D(D; () (Z &—Zegf] \W[Z E—Z(u)]

=1 ¢r=1
1 Q-1 1 [ Q-1
- , — T, (m+)(c Y - = (n+1) . M+ (e,
< T Z{ e 7. |[):'1 WO (EN - 5 [Z{ WO ()] + ); WO e )|H. (46)
Proof. Lemma 4.6 is used first, followed by Theorem 2.1 for p; = =%, n = 2, and p, = £ to establish the
following

28 kT(n — 2 +k)

Q-1
CD(D,k +\I’ , ,
T e

T n_% - ¢'= =

¢’=1
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+(—1)n CD(D’k v i o — Qz_l e 1= \II(”) i & — Qz_l (TC' + 5;')
( E 5:'*Qi1 (TC/+£§/ ))’ ¢ ¢ ¢ )
/=1 =1

2 ¢'=1 ¢’=1 ¢’=1 ¢’=1

Q- 1 Q
1 _@ n n
A8k [ i[5 [ 2o S 28w
-0 Ny
n—2 (n+1) _ (n+1) s (n+1)
f [Z D) [ Z e )+ Z e, )|]] d@}
_ Q- QO-1
! Zl [WED(E) Zl [P ()| Z [P (7)| Zl [P+ (e
s = & =
‘4@"5g R " n-2+1 | 2n-2+2)  2m-2+2)

_;1 WOE) T e T W) T )

¢'=1 ¢'=1 ¢’=1

+ p—
n-¢+1 n-¢+1 2(n—- ¢ +2) 2(n - ¢ +2)

Q-1
= 53 +1)2|eg T [Z WD EN - 5 [Z WD)+ Y e )IH

o=1 =1 = =1
Consequently, the desired proof is accomplished. O

Corollary 4.9. We gain the following inequality that is derived in [11], by fixing® = 0,n =1, Q =2,k =1,
1 = 191, and &1 = \92 in (46).

1 o+ 80\ (182 = Sa)(19/(S0)] + W/ (82)])
s ), Wdu - f(Z52) < - .

Theorem 4.10. Let WV a differentiable function provided that W € C"*Y(I) and [W"*D|7 exhibits convexity on the
interval I such that g > 1, % + % = 1. Additionally, let & = (&1,...,&q), T = (11,...,7Tq), and € = (&1,...,¢€q) be
three tuples where &, Tt e € 1, forallc’ =1,...,Q, and @ > 0, 1 > eq. If T < &, € < &, then

2= 2 40| ” [Zgg Z]

Q-1 n—% ( - 5 ” pran
( Z (55/ — Tg/)) félg Z-l( =1 c 7
¢’=1

n| ek n - v T + &
A ] 3B 8 R S e

=1

/=1

1% 4 v 4t WD) 3141 il )
_62 A '(T) 3 ;| €= (37 +1) [ Y w0 ()]

¢'=1

>—\ |

Q-

(WD (e )I]l (47)
1

’—

¢



M. Adil Khan, S. Faisal / Filomat 38:10 (2024), 3389-3413 3409

Proof. Lemma 4.6 is used first, followed by Holder inequality to obtain the below inequality:

2tk (- 2+ k) || 2 ==
k k(n - D(vg . Dzl(wﬂa ))JI/ [Z & —chgr]
(£ - ) )R

=

1

O-1
= i;l‘gg’ —’Cg»I(f(;l (n—2 )de) [fl
+[f01 W<n+1>(iég,_[ QZ&» ZZTQJ] ]q . (48)

Now, settingn =2, p1 = %, p2 = g to utilize Theorem 2.1 in (48), we obtain

Q-1 1 %
=4Z|€” TC( p+1)
—0 Q-1 0 O-1
X (L [;21 |\y<n+1)(ég’)|q - (T ;21 |\I](n+1)(77<;')|q + E ; |\P(n+1)(€;’)|q)] d@]
+ f (Z |\I_,(n+1 (5 |q _[ —0 Z |\I](”+1)(& )lq + = (.0 Z |\I](n+1)(,[ )|q]] ]

f;_l

1

¢'=1 ¢’=1

x [i WD, )W——( D\If("“’u >|q+2|w<"+”<e )W}

Q-1 Q-1

+»i O = 3(3 Y e+ Y e e, >|ﬂ)l

/=1 o'=1 =1
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Minkwoski’s inequality is utilized to get

4q zzl\y(nﬂ)(é )l_ 3[7 +1 (ZN/(HH ()|

o'=1 o'=1

This concludes the proof. [
Remark 4.11. We get inequality (36) mentioned in [48] by fixing QO = 2 and k = 1 in (47).
Theorem 4.12. Let W be a differentiable function provided that W € C™(I') and W+ V|7 (g > 1) exhibits convexity

on the interval 1. Additionally, let & = (&1,...,8q), T = (11,...,7q), and € = (&1,...,€q) be three tuples where
Eo,to,ec € forall’ =1,...,Q,and @ > 0,1 > eq. If T <&, £ <&, then

28 kT(n — 2 +k)

0 0-1
CD@’S o ))*\p [Z o~ Z Tc’J

Q-1 ”_? ( fm lT:/+éCI £ Yo
=1
< Ol - & o+ e
0k ) 5 c
+(=1)"| D" k N 'Y [Z & - ég,] —_ (Z & - (T)]
(21 6:’_»21( K )) ¢=1 ¢=1 ¢’=1 ¢’=1

10—1 1 1-7
< - ;=T | ——— \y(n+1) q
<7 )l - (n_%ﬂ) [[n__+12| &)l

c’=1
1

n-2+3 Q] 1 Q-1
\I/(n+1) AL \I/(n+1) )9
|2m-2 +1)(n—%+2)_Z‘| (o) +2(n—%+2);| (ec)

n—-2+3 o=
WD g\ — k WD (g
k+1§ | (&) (( —%+1)(n—%’+2);:1| (e2)l

=1

+
HH

1

Q-1
1
— \Ij(n+1) |9 . 49
2(n_%+2);| (u)l]] (49)

Proof. Lemma 4.6 is utilized first, followed by power mean inequality, to obtain

2w%%nm——+m

B
¢'=1

Q O-1
cDr(Dﬁ S ))+\If [Z & — Z T,;r]

-1
L e-x (4
= 1
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1 0-1 1 -7 1 Q 2-0 Q-1 0 0-1 q %
<3 lec — T (f Q”‘kd@) (f ok (wlrh) (Z o — [T T+ o Z égr]] dQ]
¢'=1 0 0 ¢’=1 ¢’=1 ¢'=1
1 1-1 1 Q 5 Q-1 Q-1 q i
_a - Y
AL (et o
0 0 ;1 2 ¢'=1 2 ¢'=1
1 0-1 1—}7
T4 lgg/_TC,(n—%+1)
¢'=1
(1 Q o, Q0 Q-1 N
X [f Qn_% o) [Z & — {TQ T + g 5;’]] d@]
0 ¢’=1 ¢’=1 ¢'=1
2- Ty
+ f n=% [\t [Z & _[ % Z o+ Z ]] dQ} ) (50)

Now, applying Theorem 2.1 for the values n = 2, p; = 5 and p, = % in (50), as a result of convex nature of
[W+D|7, we have

Q-
]
x U | [ZQ: WeDEN ~ [;Qoii‘l’(””)ﬁ f>|q+g(f"y(nm(&')w]]dp]q
=1 2 ¢'=1 i 25':1 5
:

Q

1 . 7_ Q-1 Q-1
+ f ot [Z (WD ()T — [TQ Z (WD (e )T + gz (e )0 || do
0 ¢’=1 ¢'=1

¢’=1

%IH

10_1 1 1—%
=7 r =T ) q
DM Tgl(n_%ﬂ) [[ _@+1;| ()
1

n—2+3 Q-1 1 Q-1
\I](I’H—l) D \I,(n+1) ) q)
(2(n——+1)(n—Q+2)Z| (7o)l 2(,1_%4_2);' (e)l

@ Q-1
© +3

(n+1) _ _ (n+1)( .
[ g+1 Z R el (2(n e+Dn-¢+2) ;ll‘l’ el

: m Z RN W))

O

Thus, the proof comes to an end.
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Corollary 4.13. The below given inequality is obtained by fixingn =1,k =1, ® = 0 and Q = 2 in (49).

S1+9-1
! f ‘I’(u)du—‘l’(31+92—T1+€1) <
9

ler — T [(I‘I”(Sl)l + W' (9l

€17 T J91+9-6 2 2? 2
1 1
C2[W ()l + |‘I"(€1)|q)q N (|‘V'(31)| + W (S)l  2W (el + |‘P'(T1)|q)”
2 2 2 '

Remark 4.14. Similar procedures can be used to establish the weighted forms of the results found in this section.

5. Conclusion

At present, special attention is being given to produce such ideas, which are further used to connect
various fields of science. Motivated by this fact, we developed a unified form of the Hermite-Hadamard-
Jensen-Mercer type inequalities in a discrete and continuous sense. The idea which became the basis for
this new work is known as the theory of majorization. First of all, the desired inequalities were derived by
using convexity of the function, three majorized tuples and k—Caputo fractional derivative operators. These
inequalities generalized the existing inequalities in literature which can be verified from the remarks given
at the end of each result. The new derived inequalities were also presented in weighted forms by using
Lemma 2.2 and Lemma 2.3. Furthermore, two new identities were discovered which enabled us to derive
bounds for the discrepancy of terms of the main inequalities. One can observe that the concepts of fractional
calculus added more beauty to the results of the Hermite-Hadamard-Jensen-Mercer type inequalities when
used along with the majorization concept. This work can be recognized as the application of the majorization
theory and can be used with other fractional operators such as Katugampola, Hadamard and conformable
fractional operators to obtain further results in conticrete form.
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