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Abstract. Fractional integral operators have been studied extensively in the last few decades, and many
different types of fractional integral operators have been introduced by various mathematicians. In 1967
Michele Caputo introduced Caputo fractional derivatives, which defined one of these fractional operators,
the Caputo Fabrizio fractional integral operator. The main aim of this article is to established the new
integral equalities related to Caputo-Fabrizio fractional integral operator. By incorporating this identity
and convexity theory to obtained a novel class of Simpson type inequality. In this paper, we present a
novel generalization of Simpson type inequality via s-convex and quasi-convex functions. Then, utilizing
this identity the bounds of classical Simpson type inequality is improved. Finally, we discussed some
applications to Simpson's quadrature rule.

1. Introduction

Mathematics provides a framework for understanding and analyzing the patterns and structures that
underlie the natural world and human-made systems. It allows us to develop and test theories, make
predictions and design and optimize solutions to real-world problems. Similarly, concepts in geometry
and algebra are related through various properties and theorems, which allow mathematicians to make
deductions and prove mathematical statements. In recent years fractional analysis has been around for
awhile, but recently it has received a lot of interest in the fields of pure and applied mathematics. The
adventure thatbeginning with the issue of whether a solution exists for fractional order differential equations
is established with various kinds of derivative and integral operators. By defining the derivative and integral
operators in fractional order the scholars who aimed to suggest more efficient approaches to the analysis
of physical phenomena. The basic concepts of fractional calculus have also been used by several authors
to obtain new bounds. Some of the most commonly studied fractional integral operators include the
Riemann-Liouville, Caputo Fabrizio, Atangana-Baleanu, and the Grunwald-Letnikov fractional integral.

Now a days inequalities like the trapezoid, mind-point and Simpson have recently attracted the interest
of scholars. Several scholars acknowledge the expansion and generalization of these integral inequalities.
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For instance some authors presented distinct error estimates for the trapezoidal formula and investigate
trapezoidal and fractional trapezoidal-type rules, determine explicit bounds and studied bounded variation
functions in [1]-[4], [6]-[7] and [9]. Sarikaya established some new inequalities of the Simpson and trapezoid
kinds for functions whose second derivative in absolute value is convex [5]. Kirmaci established midpoint-
type inequality for differentiable convex functions [8]. One of the most important and widely requested
inequalities is that of Simpson which can be stated as follows:

Suppose 7 : [@1, @2] — Ris a four-times continuously differentiable mapping on (@1, @;) and

g~(4)“OQ = sup |gV(4) (§)| < oo,

5e(@1,@2)

then the following inequality holds:

f:g@)d@_@2;6@[_,7(@1)+4g(@1;@2)+g(@2)] (1)
(@ — @)

<(4)
< e 1Y

Some Simpson’s type inequalities for functions whose n-th derivative, n € {0,1,2,3} is of bounded
variation were established by Pecari’c and Varosanec in [10]. The following inequalities as follows:

Theorem 1.1. Let n € {0,1,2,3} and let § be a real function on [®1, ®z] such that 57(") is function of bounded
variation, then the following inequality holds:

[Fr0m- 222 [0 +4g(252) 4 g @)

6
< Cul@r— @)™ v (47), 2
where
1 1 1 1
Co= §,C1 = ﬂlcz = ﬁ,cs = 1152

and Vv (57(’”) is the total variation of §™ on the interval [@1, ®,] .

It is crucial to remember that Dragomir [11] proved the inequality (2) for n = 0 in literature. Ghizzetti
and Ossicini [12] further proved that the inequality (2) with n = 3 holds, then ¢’ is an absolutely continuous
mapping with total variation Vg* (§). Recently, some researchers worked on fractional integrals [13]-[18]
and [22].

Hudzik et al. [19] considered the class of s-convex functions in the second sense.

Definition 1.2. A function § : I SR — Ry = [0, 00) is said to be s-convex functions if:
JXo1 + (1 -V) @) < Yg(@1) + (1 =Y) g (@2),

s € (0,1], where @1, @ € Iand Y € [0,1].
The notion of quasi-convex is the generalization of convex function.

Definition 1.3. [20] A function § : I — R is said to be quasi-convex functions:
g(Yor + (1 =Y)@2) < sup{f(@1),J(@2)},

ifall @,@, € land Y € [0,1].
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Definition 1.4. [21] Let H' (@1, @,) be the Sobolev space of order one defined as
H' (@01,@) = {g € L2 (@1,@2) : ¢’ € [* (@1, @)},

where

1

L2 (@1, @;) = {g(z) : (fJZ 92 (z)dz)2 < oo}.

Let g e H' (@1, ®,), @1 < @, and a € [0, 1], the nth notion of left derivative in the sense of Caputo-Fabrizio is
defined as:

0( (G
) V, —a 67‘! d'Y'

(CF D Da A) —

@1

$ > a and the associated integral operator is
§
5(04 p (a) o

where f(a) > 0 is the normalization function satisfying f(0) = (1) = 1. For a = 0,a = 1, the left derivative is
defined as follows, respectively

(CFDDO )(S) = 4@
(CFDDl )(s) = 4@ —-g(@).

For the right derivative operator

(Sir9) ) = )m +—— | §(0dv,

v A ) o (v(“[ 3%
(FPprg) @ = 2 f (0B g,

§ < @y and the associated integral operator is

(“12.9)® = 15(_—0(0)‘9“@) + o f " sonar.

Motivated by ongoing studies, we establish novel fractional version of the Simpson type inequality
utilizing the Caputo-Fabrizio integral operator. In this paper, to obtain more advanced results, then
utilizing this identity the bound of classical Simpson type inequality is improved. Furthermore, obtained
novel fractional integral bounds can be much better than some recent acquire bounds. Finally, we discussed
some applications to Simpson’s quadrature rule.

2. Main results

In this section, we deal with identity, which is necessary to attain our main result.

Lemma 2.1. Let § : [@1, @2] — R be four times differentiable mapping on (@1, @2) and 57(4) € L[@1, @], then the
following equality holds:

[9(w1)+4g( ‘DZ)W(@Z)]
_% (&) G+ (F1,9) 00) + 2(;(;)0()9“(10



and

Y Y Y Y
u=wl—+@2(1—5),v=@2—+w1(1——).

Proof. Let
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(@ — @1)*

1
2304 fo Y2 (4 -30)[49 ) + 4 (@] dY

2 2 2

f Y3 (4-37) g (@% + @ (1 - g)) dy

f Y3 (4 - 3T)g4)(02;£+w1( ))anr

I + Ip.

Integration by parts, we have

1
Ilzf Y3(4—3T)g(4)(w1;£+w2(1—g))dT
0

-2 (o + (Dz) 24 f‘l s 3 . ( T ( ))
1244 ’Y‘ ’Y‘ s _ 1 I d"Y‘
LDz—chg ( 2 +LDZ_(D1 0 ( )g (D12+(D2

-2, (®1 +ch) 24 -2 2 3 u,,( Y ( T))
+ Y -7 —+ 1-—=
(Dz—(D1g ( 2 0y — 1 [@2—@1( )!] @12 2 2

2 1(2T—3Y2)“"((DY+¢D(1——))dY
@ — @1 Jy g 12 2

-2 u,,,(cal +@2) 48 fl o\ o ( T ( Y))
+ 2Y - 3Y D1— + |1 - =]]dY
(Dz—(Dlg 2 (ch—(D1)2 0 ( >g 2 2 2
Y

-2, (o1 +ch) 48 -2 5 V,( Y ( ))
2Y - 3Y — 1-—
0 — @1 ( 2 +(®2—®1)2[@2—CD1< 3 )g @12+c02 2

ot [fe-eng(atvou(i- 3]

-2 V,,,(cD1+ch)+ 96 v,(a)1+<z)2)
@2 = @1 2 (@ -a)*” \ 2

1
Y Y
+L3f (2—6Y)g“’( 1—+(D2(1——))dY
(@2 —@1)” Jo
-2 v///(cal + (DZ) " 96 o ((D1 + (Dz)+ 96

@ — @ 2 (@2 — @1)° 2 (@2 — @1)°

1

0

1

0

1

o - onaforg veu1-3))

12 1 T
0y — 1 L g((DlE +CD2(1 - _))dT]

-2 o1 + 96 o1 + 768 + o
u///( 1 CDZ)+ u/( 1 CDZ)+ V(CDl 2)

0

Dy — @ 2 (02 — @1)3 2 (@2 — @1)4 2
384 1152 1 T
+—g(@2)——f g((D1—+(Dz( ))dY
((Dz - @1)4 ((DZ - (Dl)4 0 2

3418
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-2 D1+ @ 96
— u///( 1 2)+ u,((Dl +@2)+ 768 v(®1+(D2)

@ — @1 2 (@ — @)° 2 (@ — @) 2
384 2304 @
+——— (@) - ——— f g (u)du.
(@2 — @1) (@2 — @1)° Jo

Similarly, we get
1
L= f Y% (4 -37) g® (mzz + @ (1 -~ I))dT
0 2 2
B 2 (o @2) 24 L g v,,,( Y ( ))
= (Dz—(Dlg ( 5 (Dz_cal‘f(;(Y T)g 6022+6011 ay

_ 2  [O1 + @2 48 2\ i Y
- ( : )+ zf(zwr 31%) g (@25+@1(1——))dY

(@2 — @1)
_ 2 U,,,(ml +c02)_ 96 u,(ml +@2)
@2~ @1 2 ) @-a)” \ 2
96 fl Y
% [emeny (oL vonf1- D)o
(@2—01)3 ; ( ) g 22 1
_ 2 v,,,(cal +(Dz)_ 96 V,(cal +c02)_ 96
@ — @1 2 (@ — @1)° 2 (@ — @)’
2 (.Y T\
X[(Dz— ) (2—6T)g(®2§+®1(1—§))0
12 Lo
— (Dz_wl\fo‘ g(CDZE +CD1(1——))dY]
2 oy [ @1+ @2 96 ., (@1 + @2 768 (@1 + @2
- (*52)- o () o ()
Dy — @1 2 (02 — @) 2 (@2 — @1) 2
384 1152
+—49“((Dl) - > f (@1— + @y (1 - —))dY
(@2 — @1) (@2 = 601)

— 2 gv///((D1+CD2) ( 1+CD2) 768 V(CD1+LD2)
@2 — @1 2 (@2 = 601) (@7 — w1)4g 2

384 2304 =
+—— (@) - —5f g (u)du.
(@2 — @1)” Jan

By adding the equality (3) and (4), we get

L+1

-2 u,,,(cal+wz)+ 96 u,((vl +ch) 768 “(ol+oz)
@2 — @1 2 (@2 - @1)3 2 (@2 - 601)4 2
384 o1 + @z) 96 » (cal + mz)

@2 — @1 (@2 — @1)
2
g”(u)du+f gj(u)du)
(Dl'HDZ
-

@1+@9

+ 768 v((pl+mz)+ 384 7 (@) - 2304 f‘z
J 2 7o ((Dz—(Dl)S @

(@2 — @1)
1536 (@1 + @ 384 . 384
L), B,
(@2 — @1) (@2 — @1) (@2 — 1

2304 @2
_—(@2 . f g (u)du.
@1

)J (@2)

3419
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2(1-a)
Bla)

a(@-a1)°
23045(a)

Multiplyin by (5) and subtractin, j (k) on both sides, we get
plyng y g 9 g

a(@-a) 2(1-a)
23048 (a) B(a)
1536 (@1 + @\ a (@ — @) 384 _ al@m-a)
— (252) (@)

(I +I)

g (k)

25048 @ " (@1 — o) 23048 (@)

384 al@m-o) a2 2(1-a)
s P S, 10 S 90

(@2 — @1)
2a (@2 —@1)  la(or — @1) la (@2 — @1) .
Tep@ §(@2)

= + g(o1) +
k o)) 1-—
_(L () du — ) +$fk g(u)du—( “)g(k)

3p (@) 6/3( )
pla) Jo, ﬁ( a B (a)

_ Za(mz—w1)+a(®z @) (@) +

3p(a) 6 (@)
- (Er9) G+ (T15.9) ®)-

Thus, we have
1 o1+ @
E[ﬁ(®1)+4ﬁ( ! 2)+!7(£D2)]

- PO (cFrg) 40+ (P12, ) 0) +

a (@ — @1)

a (@ — @1)

6 (a)

§(@2)

21-a),

B (@)
. 4
_ ((Dzzsmil) fo Y2 (@4 -30) 49 @) + 4 (0] av.

This completes the proof. [J

g (k)

@3], for some fixed s € (0,1], then

the following inequality holds:

01 + @07

& [r@)+49(252) + 5@

B(a) " - 2(1 ,
_a(T(i@l)«gfI )(k)+(CFI 2g)(k)) @

o)

3 x 2575 (5 - 22 45 + 22455

o2l ) @
G+1)E+2)(5+3)(5+4)(+5) ][|g4 (@1)] + ] (@2)”

<
- 2304

Proof. By using the Lemma 2.1 and since j is s-convexity, we have

[g (@) +47( 252 )+ !7(602)]
(a) . v 2(1—a)
‘—a@ia@)((“f 7) 0+ (F13,9) () + [S(zx)a 9(")’

. @-o) [j(;W(AL—SY)g“(4)(@1§+@2(1—§))‘d1f

2304
@ (@2% + @ (1 - I))‘ dY]

1
34 _
+fOY(4 3Y)
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(@2 —a)' | [ TV, TV
) WUO v (4‘”)((5) @]+ (1-5) 7 (®2)|)dT
1 T s v s
+\£'f%4—3vw(5)wﬂwmay+@-5)g@w@godr]
(@ — @) [ 27°(s+8) (@)
< 7304 [(s+4)(s+5) |g4 (@1)‘
275 (432 + 3 X 27 (s — 1) + 25 — 5957 X 145° — 5*) 25 (54 8)
54) 5(4)
G+1)(5+2)(5+3)(s+4)(s+5) 7% (@)] + GrdGrs (@2)|
z” (432 +3X 275 (s = 1) + 25 — 59s% x 14s° — 54) e
i G+D6+26+3)G+4)E+5) |7 @)
(@ — ) 3x 25 (5 -2 45+ 22+Ss) " @
2304 [5+1)(5+2)(s+3)(5+4)(s+5) (179 @] + 7% @]

This completes the proof. [J

Corollary 2.3. If we put s = 1 in Theorem 2.2, then we have

e (25} o)

@ il
s (109 00+ (P12.0) ) + o )

4
< (@2 — @) [
5760

79 @1)] + 99 (@2)]].
Remark 2.4. We note that the error bounds in (1) and (2) have improved.

Theorem 2.5. Under the assumption of Lemma 2.1. If )57(4)| is s-convex on [@1, ®,], for some fixed s € (0,1] and
q > 1, then the following inequality holds:

01 + @07

HIZESEl

ﬁ( ) Fra s Fra s
—LO () 0+ (Frzg) w) +

. (@- o)t (%)1‘3 275 (s +8)
- 2304 5 (s+4)(s+5)
275 (432 + 3% 27* (s — 1) + 25 — 595> x 145° - s4)

5(4) 9
GiDG+2G+3)G+4)(E+5) |!74(c02)|]
+(M

)+ g2
2(1-a)
F@

70|

7 (@)’

1

+

croeeg 0@l

1

275 (432 + 3 X 27 (s — 1) + 25 — 5957 X 145° — 5*) d
<(4) q
@) |-

* G+1)GE+2)(5+3)c+4)(5+5)
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Proof. By using the Lemma 2.1, we have

HASSWEEE
B (@)

Ta@a o) @ 70)

@%igquwmsm¢%@§+@@‘g»

1
+f 3 (4-37)g¥ (@2I + @ (1—I))]dY
o 2 2

1-1

J+d(@)]

(Srg) @+ (F12.0) 0 + 25

(@2—601)4 ! ! ! <(4) T Y q%
S %o (fo Y3(4—3Y)) (fo Y8 (4 -37) |44 (@1§+@2(1—5)) ) ay
1 1-1 1 1
304 _ ! 3 (4 — 37y | 6@ (0 L W
+(f0Y 4 3Y)) (fOY (4-3Y) |y (w22+cal(1 2)) ay
4 pl -4
< %(I T3(4—3Y)) x
0
1 Y S . Y S . q %
(fo T3(4—3Y)((E) g +(1—5) J )dY)
1 TS TS %
([ ra-an((3) o et + (-3 @]
. (@-ay! (g)l-?; 27(s+8)
= 2304 \5 (s+4)(s+5)
27¢ (432+3><27+S (s—1)+2s—59s2><14s3—s4) ] g
- ( 4 ()|
s+1)(s+2)(s+3)(s+4)(s+5)
275(S+8) u(4) q
((s T 4)(s+5) (@2)]
275 (432 + 3 X 27 (s — 1) + 25 — 5957 X 145” — 5*) o g
- GrDG+)G+3)6E+4)(6+5) |7 @)

This completes the proof. [

Theorem 2.6. Under the assumption of Lemma 2.1. If | g“(4)( is quasi-convex on [@1, @3], then the following inequality
holds:

5 7@ +10(252) 4 5@
p (@) as o s 21-a),
-aa%QWW)®+FI)®> )
j].

< O
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Proof. By using the Lemma 2.1 and since ¢ is quasi-convex, we have

70+ 99(P 52 gt
e () @+ (M122) ) + 2550

4 1

—(“722;0‘21) [( fo Y3 (4 - 37) |5 (@% + @ (1 - g))‘)cﬁ
! . Y Y

+ (fo Y3 (4-37) |g@ (@25 + @ (1 - 5))'51?)]

4 1
. U T (4= 30)sup {5 @), 5 @2}
+ ( f 1 Y (4= 3Y) sup {[#9 (@2), |5¥ (cDQ\}dY)]

0
4
< 228 up {l5 @), 1 @]

This completes the proof. [J

IA

7

Lemma 2.7. Let § : [@1, @2] — R be four times differentiable mapping on (@1, @2) and 9“(4) € L[@1, @], then the
following equality holds:

_(@2— @) ; 1) [g“ (@1) + 4;7((01 Z CDZ) + g“(caz)]

2(1-

1
= (caz—cal)Sfp(Y)g“(‘*’(chﬁ(l—Y)coz)dY
0

L9 (b pog) o+ (F1m,) ) +

and

L (r-32) Teloi]

p(Y) = /
Lor-1(r-1),  re(L1]

where B () > 0 is a normalization function.
Proof. The required identity can be easily obtained by using changing of variable in Lemma 2.1. O

Theorem 2.8. Under the assumption of Lemma 2.7. If | 57(4)) is quasi-convex on [@1, @], then the following inequality
holds:
2(1—-a)

W!](k)
_(@2—@) . 1) [g (@) + 4g(®1 - ‘DZ) + g“(ch)]

v(4) ®1+C02)
-’7( 2

\%?%Wﬁ®+@%ﬁ®h

_ 5
< g e {l @

(3]

} ©

7

7

+sup{
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Proof. By using the Lemma 2.7 and since ¢ is quasi-convex, we have

YR

21-a). . (@
TTBW@

= (02— @1)5

+ @7

g (k) -

(Dl) [9(601) +49( )+ﬁ(®2)]

1
f p(V)§¥ (Yo, + (1 - Y) @) dT‘

2\[ .
< (@ - @) f’MW —g)‘|g<4>(m1+(1—r)@2)|dr
+ (T 1) ')9(4 (Yor +(1 - Y)@2)|dY]
ol [F1L 3( _%) { v<4)(m
< (@ —@1) ‘f()"MY Y 3)|supP |g g )

2

(e

L
1|24
2

(@7 — 601)5 [su {
5760 p

V(4) ((D] + (Dz)
2

o
}

j ((Dl))

o[22 o el

ve) (M)
2

+sup {
This completes the proof. [J

Corollary 2.9. If § is decreasing, then we have

PO i e

_(@2 - @) = 1) [g (@) +4g(

< g

21 -a)
B (@)

) +4d (602)]

I

g (k)

01 + @02

7 (@) + g

)(601 +ch)
2

Corollary 2.10. If ¢ is increasing, then we have

‘M CPIav 2(1-a),
a

B (@)
_(@2— @) ; 1) [!7 (1) + 457(®1 * wz) + g“(mz)]

< O o (5 ool

9) () + (15,9) (1)) + 7 (k)

Corollary 2.11.
the inequality (6) reduced to (1).

Remark 2.12. We note that the error bounds in (1) and (2) are improved.

| (602)|}€W]

3424

(8)

= sup§€((Dl,a7z) |g(4) (§)| < o, then
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3. Application to Simpson’s Formula

Let d is the partition of the interval [@1, @2],d : @1 =8y <51 <& < ..... < 8,1 <8, =, h = 77 and
let the Simpson formula
5(g,4)
n-1
(8 +4g (S + hy) + §(8i41) )
Z / J 16 ASL (Siv1 — S0 )
i=0
If the mapping § : [@1, @2] — Risa differentiable such that §* (3) exists on (@1, @,) and M =SUP;c (5, ) ( 7Y (3)
oo, then
I:f g6 ds=S5(g,d)+Es(4,4d), (10)
@1

where the approximation error Eg (¢, d) of the interval I by Simpson Formula S (¢, d) satisfies:

—_

M ¢
|Eu (9,d)| < 2830

i

(811 = 8)°. (11)

Iy
o

Proposition 3.1. Under the assumption of Lemma 2.1. If } g“(4)| is s-convex on [@1, @3], for some fixed s € (0, 1], then
the following inequality holds:

n-1

|Es (4,4)| < ﬁ (i1 = 8)* X [[7% )] + |9 Si00)] ]
i=0

Proof. Applying the corollary 2.3 on the subinterval [§;,5; + 1], (i = 0,1,2,3....n — 1) of the division d and
a=1,8(0)=p()=1,wehave

19 |y ag (52 )|

n-1
< gy 2, G =90 [ @]+ @]
i=0

Summing over i from 0 to n — 1 and let that | g”(4)( is s-convex, by the triangle inequality, we deduce that

(s)ds—S(g,cD‘_ 57602<sz+1—s> (159 @] + |59 @] -

This completes the proof. O

Proposition 3.2. Under the assumption of Lemma 2.1. If )g“(4)| is quasi-convex on [@1,®;], then the following
inequality holds:

<(4) (Si + Six1 )
2

-1
|E5(g“,d)| < %Z (i1 — 8)° [sup{|g4)(s)|

S; + Sl o R
(151 o |

+ sup{

<
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Proof. Applying the Theorem 2.8 on the subinterval [§;,8; + 1], (i = 0,1,2,3....n — 1) of the division d and
a=1,6(0)=p(1) =1, wehave

j:H 56 ds - (Sz+16 5) [ﬁ(gi)+4ﬁ((§i+12_ SAi))_l_g(SAiH)]

-1
1 8 +8;
5760 Z Sie1 — 8)° [sup {|§ v(4)( : 5 - )}
§+4 R
g9 (22l )]

Summing over i from 0 to n — 1 and let that ) 57(4)| is quasi-convex, by the triangle inequality, we deduce

IN

+ sup{

that

j‘q@%—ﬂzﬁ
@1
1 n-1
< 5760 Z (i1 = &) [sup {|ﬁ
=0

@ (S + 8 <(4) /a
S|

<(4) (§i + §i+1)
2

}

+ sup{

This completes the proof. [

4. Conclusion

Fractional calculus is a fascinating subject with many applications in the modelling of natural problems.

Using news techniques, and operators of fractional calculus, several scholar have generalized a variety
of inequalities. In this article, we established the Simpson type inequality using the caputo fabrizio
fractional operator. Then, utilizing this identity the bound of classical Simpson type inequality is improved.
Furthermore, obtained novel fractional integral bounds can be much better than some recent acquire bounds.
Finally, we discussed some applications to Simpson’s quadrature rule. In the future, scholars may explore
inequalities of the Simpson-Mercer type, Jensen-Mercer type, and Hermite-Hadamard-Mercer type with
modified Caputo-Fabrizio fractional operators and modified A-B fractional operators.
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