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Abstract. In the present paper, some new inequalities are proved for sector matrices. Among many other
results, we show that if A,B ∈ Sα satisfying 0 < m ≤ ℜA,ℜB ≤M. Then
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where ψ 1
2
(h) = 1 +

√
2(h−1)2

4(h+1)
3
2

and Sα(0 ≤ α < π
2 ) is considered as the set of all sector matrices. In end, some

inequalities for singular values or norms are presented.

1. introduction

Let M and m be scalars and I be the identity operator. LetB(H) denote C∗−algebra of all bounded linear
operators on a complex Hilbert spaceH . We say A ∈ B(H) is self-adjoint, if it satisfies A = A∗. An operator
A is said to be positive and is denoted by A ≥ 0 if ⟨Ax, x⟩ ≥ 0 for all x ∈ H , and A is said to be strictly
positive and is denoted by A > 0, if ⟨Ax, x⟩ > 0 for all x ∈ H . For two self-adjoint operators A and B, A ≥ B
means A − B ≥ 0. We say linear map Φ : B(H) → B(H) is positive if Φ(A) ≥ 0 whenever A ≥ 0. It is said
to be unital if Φ(I) = I. For A,B ∈ B(H) such that A,B > 0 and 0 ≤ ν ≤ 1, we use the notations A♯νB, A∇νB
and A!νB to define the geometric mean, the arithmetic mean and the harmonic mean, respectively, and are
defined in the following form:

A♯νB = A
1
2 (A−

1
2 BA−

1
2 )νA

1
2 , A∇νB = (1 − ν)A + νB

and
A!νB = ((1 − ν)A−1 + νB−1)−1.

The noncommutative AM-GM-HM inequalities for two strictly positive operators A and B and 0 ≤ ν ≤ 1
have been proved by Bhatia [1] in following form:

A!νB ≤ A♯νB ≤ A∇νB, (1)
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where the second inequality is famous as the operator Young inequality. For special case, when ν = 1
2 , we

have the following inequality:(
A−1 + B−1

2

)−1

≤ A♯B ≤
A + B

2
. (2)

LetMn denote the set of all n×n complex matrices. For every A ∈Mn,we can write a cartesian decomposition
A =ℜA+ iℑA,whereℜA = A+A∗

2 and ℑA = A−A∗
2i are the real and imaginary parts of A, respectively( see [2,

p. 6] and [7, p. 7]). A matrix A ∈Mn is called accretive, ifℜA is positive definite. Also, a matrix A ∈Mn
is called accretive-disipative, if both ℜA and ℑA are positive definite. Here, we recall that the numerical
range of A ∈Mn is defined by

W(A) = {x∗Ax : x ∈ Cn, x∗x = 1}.

For 0 ≤ α < π
2 , we define a sector as follows:

Sα = {z ∈ C :ℜz > 0, |ℑz| ≤ (ℜz) tanα}.

We say a matrix A ∈Mn is a sector matrix and write A ∈ Sα, if whose numerical range is contained in sector
Sα, i.e. W(A) ⊂ Sα. Since W(A) ⊂ Sα implies that W(X∗AX) ⊂ Sα for any nonzero n × m matrix X, thus
W(A−1) ⊂ Sα, that is, inverse of every sector matrix is a sector matrix. Clearly, a sector matrix is accretive
with extra information about the angle α. For more information on sector matrices, the interested reader
can refer to [4, 9–11, 13, 18].
Liu et. al [9] and Lin [11] extended the inequalities (2) to sector matrices as follows:

cos4 αℜ

(
A−1 + B−1

2

)−1

≤ ℜ(A♯B) ≤ sec2 αℜ
(A + B

2

)
. (3)

Main aim of this paper is to give the new double inequalities for two sector matrices A,B satisfying the
condition 0 < m ≤ ℜA,ℜB ≤ M. These inequalities which refine the inequalities (3) will give in Section 2.
In Section 3, we will present a few application corresponding to the obtained results in Section 2. Finally,
we will extend the relative entropy and the Kantorovich inequality for sector matrices.

2. AM-GM-HM inequality for sector matrices

Furuichi and Moradi in [5, Eq.(2.6)], based on the well-known Hermite-Hadamard inequality, proved
the following inequality for 0 ≤ α ≤ 1 and 0 < x ≤ 1

ψα(x)xα ≤ (1 − α) + αx,

where ψα(x) = 1 + 2αα(1−α)(x−1)2

(x+1)α+1 . By putting α = 1
2 , we get

ψ 1
2
(x)x

1
2 ≤

x + 1
2

, (4)

where ψ 1
2
(x) = 1 +

√
2(x−1)2

4(x+1)
3
2

.

Now, using functional calculus, we obtain an analogue of [5, Theorem A] as follows:

Lemma 2.1. Let A,B ∈ B(H) be two strictly positive operators under this condition that 0 < sA ≤ B ≤ tA for
positive real numbers 0 < s ≤ t. Then

min
{
ψ 1

2
(s), ψ 1

2
(t)

}
A♯B ≤

A + B
2

. (5)
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Proof. Utilizing the inequality (4), for every strictly positive operator X, we have the following inequality:

min
s≤x≤t

ψ 1
2
(x)X

1
2 ≤

X + 1
2

. (6)

It is clear that
s ≤ A−

1
2 BA−

1
2 ≤ t.

By applying the monotonic property of operator functions for the inequality (6) and the operator A−
1
2 BA−

1
2 ,

we have the following inequality:

min
s≤x≤t

ψ 1
2
(x)

(
A−

1
2 BA−

1
2

) 1
2
≤

A−
1
2 BA−

1
2 + I

2
, (7)

By multiplying the both sides of the inequality (7) by A
1
2 , we get to the desired result.

Remark 2.2. Let A,B ∈ B(H) be two strictly positive operators under this condition that 0 < m ≤ A,B ≤ M. An
simple computation shows that 0 < m

M A ≤ B ≤ M
m A. Letting s = m

M and t = M
m in Lemma 2.1, we have

ψ 1
2
(h)A♯B ≤

A + B
2

, (8)

where h = m
M .

Remark 2.3. It is clear that ψ 1
2
(h) ≥ 1. Therefore, (8) is a refinement of (2).

Now, we are ready to present our main result applying (8). To do it, we need the following Lemmas:

Lemma 2.4. ([10, 11]) Let A ∈ Mn with A ∈ Sα. Then we have ℜ(A−1) ≤ ℜ−1(A) ≤ sec2(α)ℜ(A−1). The first
inequality holds for an accretive matrix A ∈Mn.

Lemma 2.5. ([14]) If A,B ∈Mn be accretive and 0 < λ < 1. Then

ℜA♯λℜB ≤ ℜ(A♯λB).

Theorem 2.6. Let A,B ∈ Sα be such that 0 < m ≤ ℜA,ℜB ≤M. Then

cos4 αψ 1
2
(h)ℜ

(
A−1 + B−1

2

)−1

≤ ℜ(A♯B) ≤ sec2 αψ−1
1
2

(h)ℜ
(A + B

2

)
. (9)

Proof. By [16, Lemma 5], for λ = 1
2 , we have

ℜ(A♯B) ≤ sec2 αℜ(A)♯ℜ(B).

On the other hand, applying (8) forℜ(A) andℜ(B), we get

ℜ(A)♯ℜ(B) ≤ ψ−1
1
2

(h)ℜ
(A + B

2

)
,

where h = m
M . From two inequalities above, we obtain the second inequality of (9) as claimed.

If we first apply Lemma 2.5 for special case λ = 1
2 and for A−1 and B−1 replacement A and B and then use

the second inequality of (9), we obtain

ℜ(A−1)♯ℜ(B−1) ≤ ℜ(A−1♯B−1) ≤ sec2 αψ−1
1
2

(h)ℜ
(

A−1 + B−1

2

)
,
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therefore

ℜ(A−1)♯ℜ(B−1) ≤ sec2 αψ−1
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)
.

If we take reverse on the both sides of the relation above, it follows that
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Compute

ℜ

(
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2

)−1

≤ ℜ
−1

(
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2

)
(by Lemma 2.4)

≤ sec2 αψ−1
1
2

(h)(ℜ(A−1)♯ℜ(B−1))−1(by (10))

= sec2 αψ−1
1
2

(h)(ℜ−1(A−1)♯ℜ−1(B−1))

≤ sec4 αψ−1
1
2

(h)(ℜA♯ℜB) (by Lemma 2.4)

≤ sec4 αψ−1
1
2

(h)ℜ(A♯B) (by Lemma 2.5), (11)

where the third inequality follows by the property of geometric mean. This proves the first inequality of
(9).

Remark 2.7. From ψ−1
1
2

(h) ≤ 1(ψ 1
2
(h) ≥ 1), it is clear that the upper and lower bounds in (9) are tigher than ones in

(3).

3. Applications

Here, we present some applications of the inequality (9) such as unitarily invariant norm. A norm ∥ · ∥u
is called an unitarily invariant norm if ∥X∥u = ∥UXV∥u for any unitary matrices U,V and any X ∈Mn. We
use the symbols λ j(X) and s j(X) as the j-th largest eigen value and singular value of X, respectively. The
following lemmas are known.

Lemma 3.1. ([4, 17]) Let A ∈ Sα. Then

λ j(ℜA) ≤ s j(A) ≤ sec2 αλ j(ℜA), j = 1, · · · ,n.

Lemma 3.2. ([18]) Let A ∈ Sα. Then

∥ℜ(A)∥u ≤ ∥A∥u ≤ secα∥ℜ(A)∥u.

It is trivial that if A ≥ 0( i. e. A ∈ S0), then ω(A) = ∥A∥. So, we have ω(ℜA) = ∥ℜA∥. For A ∈ Sα, Bedrani
et al. [3] showed that

ω(ℜA) ≤ ω(A) ≤ secαω(ℜA). (12)
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Theorem 3.3. Let A,B ∈ Sα be such that 0 < m ≤ ℜA,ℜB ≤M. Then, the following inequalities hold:

cos6 αψ 1
2
(h)s j

(
A−1 + B−1

2

)−1

≤ s j(A♯B) ≤ sec2 αψ−1
1
2

(h)s j

(A + B
2

)
. (13)

Proof. By simple computations

s j

(
A−1 + B−1

2

)−1

≤ sec2 αs j

ℜ (
A−1 + B−1

2

)−1 (by Lemma 3.1)

≤ sec6 αψ−1
1
2

(h)s j(ℜ(A♯B))(by (9) )

≤ sec6 αψ−1
1
2

(h)s j(A♯B)(by Lemma 3.1 ).

This proves the left-hand side of the inequality (13). Similarly, to prove the right-hand side of the inequality
(13), we have

s j(A♯B) ≤ sec2 αs j(ℜ(A♯B))(by Lemma 3.1 )

≤ sec4 αψ−1
1
2

(h)s j

(
ℜ

(A + B
2

))
(by (9) )

≤ sec4 αψ−1
1
2

(h)s j

(A + B
2

)
(by Lemma 3.1 ).

This complete the proof of the inequality (13).

Remark 3.4. Again since ψ 1
2
(h) ≥ 1 or equivalently ψ−1

1
2

(h) ≤ 1, thus the first inequality and the second inequality

in (13), respectively, refine [9, Eq. (3.5)] and [11, Eq. (13)] .

For the special case, when A is accretive-dissipative ( i.e. bothℜA andℑA are positive), we have e−i π4 A ∈ S π
4
.

As an immediate result we have the following corollary:

Corollary 3.5. Let A,B ∈Mn be accretive-dissipative satisfying 0 < m ≤ ℜA,ℜB ≤M. Then
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2
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)
.

The next Theorem is a norm version of (9) for unitarily invariant norms.

Theorem 3.6. Let A,B ∈ Sα be such that 0 < m ≤ ℜA,ℜB ≤ M. Then for any unitarily invariant norm ∥.∥u, the
following inequalities hold:
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Proof. By Lemma 3.2, with the left-side of the inequality (9), we have∥∥∥∥∥∥∥
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)−1
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Analogously, Lemma 3.2 with the right-side of the inequality (9) follow that

∥A♯B∥u ≤ secα∥ℜ(A♯B)∥u

≤ sec3 αψ−1
1
2

(h)
∥∥∥∥∥ℜ (A + B

2

)∥∥∥∥∥
u

≤ sec3 αψ−1
1
2

(h)
∥∥∥∥∥A + B

2

∥∥∥∥∥
u
.

Remark 3.7. It is obvious that ψ 1
2
(h) ≥ 1. That is, the inequality (14) implies [9, Eq. (3.6)] and [11, Eq. (14)].

Corollary 3.8. Let A,B ∈Mn be accretive-dissipative such that 0 < m ≤ ℜA,ℜB ≤M. Then

4
√

2ψ 1
2
(h)

∥∥∥∥∥∥∥
(

A−1 + B−1

2

)−1
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u

≤ ∥A♯B∥u ≤ 2
√

2ψ−1
1
2

(h)
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2

∥∥∥∥∥
u
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We finish this section by presenting the other application of the inequality (9). The neat lemma is needed
to prove it.

Lemma 3.9. ([7, 10]) If A ∈ Sα. Then

det(ℜA) ≤ |det A| ≤ secn αdet(ℜA).

The first inequality is known as the Ostrowski-Taussky inequality.

Theorem 3.10. Let A,B ∈ Sα with 0 < m ≤ ℜA,ℜB ≤M. Then,

cos4n αψ 1
2
(h) det

ℜ (
A−1 + B−1

2

)−1 ≤ |det(A♯B)|

≤ sec3n αψ−1
1
2

(h) det
(
ℜ

(A + B
2

))
. (15)

Proof. By Lemma 3.9,

|det(A♯B)| ≤ secn αdet(ℜ(A♯B)).

On the other hand, by taking determinan from the right-side of the inequality (9) and making use the
property of determinan, we derive

det(ℜ(A♯B)) ≤ sec2n αψ−1
1
2

(h) det
(
ℜ

(A + B
2

))
.

Combining two latter relations, we obtain

|det(A♯B)| ≤ sec3n αψ−1
1
2

(h) det
(
ℜ

(A + B
2

))
.

The inequality above yields the right-side of the desired inequality.
Based on Lemma 3.9,

|det(A♯B)| ≥ det
(
ℜ(A♯B)

)
.

With help of the left-side of the inequality (9),

det
(
ℜ(A♯B)

)
≥ det

ℜ (
A−1 + B−1

2

)−1 sec4n αψ 1
2
(h).

From two inequalities above, we result the first inequality of (15).

Remark 3.11. A standard argument like that Remark 3.7 follows that the double inequalities (15) refine [15, Theorem
3.3], for λ = 1

2 .
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4. Relative operator entropy and operator Kantorovich inequality

For two strictly positive operators A and B, the relative operator entropy is defined by Fujii et. al [8]

S(A|B) := A
1
2 log(A−

1
2 BA−

1
2 )A

1
2 .

Raissouli et. al [14] recently extended the definition above and defined the relative operator entropy of two
accretive operators A and B via the following formula:

S(A|B) =
∫ 1

0

A!tB − A
t

dt.

In the same time, they obtain following remarkable property about the relative operator entropy of two
accretive operators:

ℜ(S(A|B)) ≥ S(ℜA|ℜB). (16)

The next Lemma give a reverse of (16).

Theorem 4.1. Let A,B ∈ Sα. Then

ℜ(S(A|B)) ≤ sec2 αS(ℜA|ℜB). (17)

Proof. By the first inequality of Lemma 2.4,

ℜ(tA−1 + (1 − t)B−1)−1
≤ ℜ

−1(tA−1 + (1 − t)B−1) = (tℜA−1 + (1 − t)ℜB−1))−1. (18)

Now, the second inequality of Lemma 2.4 ensure us that

tℜ−1(A) + (1 − t)ℜ−1(B) ≤ sec2 α(tℜA−1 + (1 − t)ℜB−1).

Taking reverse from the latter inequality, we get

(tℜA−1 + (1 − t)ℜB−1)−1
≤ sec2 α(tℜ−1A + (1 − t)ℜ−1B)−1. (19)

Applying (18), together with (19), we have

ℜ(tA−1 + (1 − t)B−1)−1
≤ sec2 α(tℜ−1A + (1 − t)ℜ−1B)−1. (20)

Making use definition of the relative operator entropy of two accretive operators and using (20), it follows
that

ℜ(S(A|B)) =
∫ 1

0

ℜ(tA−1 + (1 − t)B−1)−1
−ℜA

t
dt

≤

∫ 1

0
sec2 α

(tℜ−1A + (1 − t)ℜ−1B)−1
−ℜA

t
dt

= sec2 αS(ℜA|ℜB).

This complete the proof.

It is well known that for two positive operators A and B, the informational monotonicity property of relative
operator entropy satisfies Φ(S(A|B)) ≤ S(Φ(A)|Φ(B)) for all unital positive linear maps Φ. Aplying (17), a
sectorial operator version of the previous inequality stands below. Throughout of this section, Φ is a unital
positive linear map.
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Theorem 4.2. Let A,B ∈ Sα. Then

ℜ(Φ(S(A|B))) ≤ sec2 αℜS(Φ(A)|Φ(B)).

Proof. We have the following chain of inequalities

ℜ(Φ(S(A|B))) = Φ(ℜ(S(A|B)))
≤ sec2 αΦ(S(ℜA|ℜB))(by(17))
≤ sec2 αS(Φ(ℜA)|Φ(ℜB))
= sec2 αS(ℜΦ(A)|ℜΦ(B))
≤ sec2 αℜS(Φ(A)|Φ(B)).

Corollary 4.3. Let A,B ∈ Sα. Then

ω(Φ(S(A|B))) ≤ sec3 αω(S(Φ(A)|Φ(B))).

Proof. We compute

ω(Φ(S(A|B))) ≤ secαω(ℜΦ(S(A|B)))(by(12))
= secα∥ℜΦ(S(A|B))∥
≤ sec3 α∥ℜS(Φ(A)|Φ(B))∥(by Theorem 4.2)
= sec3 αω(ℜS(Φ(A)|Φ(B)))
≤ sec3 αω(S(Φ(A)|Φ(B))).(by(12))

Corollary 4.4. Let A,B ∈Mn be accretive-dissipative. Then

ω(Φ(S(A|B))) ≤ 2
√

2ω(S(Φ(A)|Φ(B))).

Corollary 4.5. Let A,B ∈ Sα. Then

∥Φ(S(A|B))∥u ≤ sec3 α∥S(Φ(A)|Φ(B))∥u.

Proof. We estimate

∥Φ(S(A|B))∥u ≤ secα∥ℜΦ(S(A|B))∥u(by Lemma 3.2)
≤ sec3 α∥ℜS(Φ(A)|Φ(B))∥u(by Theorem 4.2)
≤ sec3 α∥S(Φ(A)|Φ(B))∥u.(by Lemma 3.2)

Corollary 4.6. Let A,B ∈Mn be accretive-dissipative. Then

∥Φ(S(A|B))∥u ≤ 2
√

2∥S(Φ(A)|Φ(B))∥u.

Throughout of this section, K(h) = (M+m)2

4Mm with h = M
m is Kantorovich constant, where M,m are positive real

numbers. For A ∈Mn such that 0 < m ≤ A ≤M, Marshall and Olkin [12] obtained an operator Kantorovich
inequality as follows:

Φ(A−1) ≤ K(h)Φ−1(A),

whereΦ is a positive unital linear map. The next Lemma is an extension of Kantorovich operator inequality.
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Theorem 4.7. Let A ∈ Sα be such that 0 < m ≤ ℜA ≤M. Then

ℜΦ(A−1) ≤ K(h) sec2 αℜΦ−1(A).

Proof. The desired inequality concludes by the computation of the following chain of the inequalities:

ℜΦ(A−1) = Φ(ℜA−1)(by [16, Lemma 1])

≤ Φ(ℜ−1A)(by the first inequality of Lemma 2.4)

≤ K(h)Φ−1(ℜA)(by the Kantorovich inequality )

= K(h)ℜ−1Φ(A)

≤ K(h) sec2
ℜΦ−1(A)(by the second inequality of Lemma 2.4).

Corollary 4.8. Let A ∈ Sα be such that m ≤ ℜA ≤M. Then∥∥∥Φ(A−1)
∥∥∥

u ≤ K(h) sec3 α
∥∥∥Φ−1(A)

∥∥∥
u .

Proof. By applying an simple computation, we obtain∥∥∥Φ(A−1)
∥∥∥

u ≤ secα
∥∥∥ℜΦ(A−1)

∥∥∥
u (by 12)

≤ K(h) sec3 α
∥∥∥ℜΦ−1(A)

∥∥∥
u (by Lemma 4.7)

≤ K(h) sec3 α
∥∥∥Φ−1(A)

∥∥∥
u .(by 12)

Corollary 4.9. Let A ∈Mn be accretive-dissipative with 0 < m ≤ ℜA ≤M. Then

∥Φ(A−1)∥ ≤ 2
√

2K(h)∥Φ−1(A)∥.

Corollary 4.10. Let A ∈ Sα be such that m ≤ ℜA ≤M. Then

ω(Φ(A−1)) ≤ K(h) sec3 αω(Φ−1(A)).

Proof. We have

ω(Φ(A−1)) ≤ secαω(ℜΦ(A−1))(by 12)

= secα
∥∥∥ℜΦ(A−1)

∥∥∥
≤ K(h) sec3(θ)

∥∥∥ℜΦ−1(A)
∥∥∥ (by Lemma 4.7)

= K(h) sec3(θ)ω(ℜΦ−1(A))

≤ K(h) sec3(θ)ω(Φ−1(A)).(by 12)
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