The AM-GM-HM inequality and the Kantorovich inequality for sector matrices

Leila Nasiri ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics and computer science, Faculty of science, University of Lorestan, Khorramabad, Iran

Abstract

In the present paper, some new inequalities are proved for sector matrices. Among many other results, we show that if $A, B \in S_{\alpha}$ satisfying $0<m \leq \mathfrak{R} A, \mathfrak{R} B \leq M$. Then

$\cos ^{4} \alpha \psi_{\frac{1}{2}}(h) \mathfrak{R}\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1} \leq \mathfrak{R}(A \sharp B) \leq \sec ^{2} \alpha \psi_{\frac{1}{2}}^{-1}(h) \mathfrak{R}\left(\frac{A+B}{2}\right)$,
where $\psi_{\frac{1}{2}}(h)=1+\frac{\sqrt{2}(h-1)^{2}}{4(h+1)^{\frac{3}{2}}}$ and $S_{\alpha}\left(0 \leq \alpha<\frac{\pi}{2}\right)$ is considered as the set of all sector matrices. In end, some inequalities for singular values or norms are presented.

1. introduction

Let M and m be scalars and I be the identity operator. Let $\mathbb{B}(\mathcal{H})$ denote C^{*}-algebra of all bounded linear operators on a complex Hilbert space \mathcal{H}. We say $A \in \mathbb{B}(\mathcal{H})$ is self-adjoint, if it satisfies $A=A^{*}$. An operator A is said to be positive and is denoted by $A \geq 0$ if $\langle A x, x\rangle \geq 0$ for all $x \in \mathcal{H}$, and A is said to be strictly positive and is denoted by $A>0$, if $\langle A x, x\rangle>0$ for all $x \in \mathcal{H}$. For two self-adjoint operators A and $B, A \geq B$ means $A-B \geq 0$. We say linear map $\Phi: \mathbb{B}(\mathcal{H}) \rightarrow \mathbb{B}(\mathcal{H})$ is positive if $\Phi(A) \geq 0$ whenever $A \geq 0$. It is said to be unital if $\Phi(I)=I$. For $A, B \in \mathbb{B}(\mathcal{H})$ such that $A, B>0$ and $0 \leq v \leq 1$, we use the notations $A \nVdash_{v} B, A \nabla_{v} B$ and $A!_{\nu} B$ to define the geometric mean, the arithmetic mean and the harmonic mean, respectively, and are defined in the following form:

$$
A \nVdash_{v} B=A^{\frac{1}{2}}\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{v} A^{\frac{1}{2}}, \quad A \nabla_{v} B=(1-v) A+v B
$$

and

$$
A!_{v} B=\left((1-v) A^{-1}+v B^{-1}\right)^{-1}
$$

The noncommutative AM-GM-HM inequalities for two strictly positive operators A and B and $0 \leq v \leq 1$ have been proved by Bhatia [1] in following form:

$$
\begin{equation*}
A!_{v} B \leq A \nVdash_{v} B \leq A \nabla_{v} B \tag{1}
\end{equation*}
$$

[^0]where the second inequality is famous as the operator Young inequality. For special case, when $v=\frac{1}{2}$, we have the following inequality:
\[

$$
\begin{equation*}
\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1} \leq A \sharp B \leq \frac{A+B}{2} . \tag{2}
\end{equation*}
$$

\]

Let \mathbb{M}_{n} denote the set of all $n \times n$ complex matrices. For every $A \in \mathbb{M}_{n}$, we can write a cartesian decomposition $A=\mathfrak{R} A+i \mathfrak{J} A$, where $\mathfrak{R} A=\frac{A+A^{*}}{2}$ and $\mathfrak{J} A=\frac{A-A^{*}}{2 i}$ are the real and imaginary parts of A, respectively (see [2, p. 6] and [7, p. 7]). A matrix $A \in \mathbb{M}_{n}$ is called accretive, if $\mathfrak{R} A$ is positive definite. Also, a matrix $A \in \mathbb{M}_{n}$ is called accretive-disipative, if both $\mathfrak{R} A$ and $\mathfrak{J} A$ are positive definite. Here, we recall that the numerical range of $A \in \mathbb{M}_{n}$ is defined by

$$
W(A)=\left\{x^{*} A x: x \in \mathbb{C}^{n}, x^{*} x=1\right\}
$$

For $0 \leq \alpha<\frac{\pi}{2}$, we define a sector as follows:

$$
\mathcal{S}_{\alpha}=\{z \in \mathbb{C}: \mathfrak{R} z>0,|\mathfrak{J} z| \leq(\mathfrak{R} z) \tan \alpha\} .
$$

We say a matrix $A \in \mathbb{M}_{n}$ is a sector matrix and write $A \in S_{\alpha}$, if whose numerical range is contained in sector \mathcal{S}_{α}, i.e. $W(A) \subset \mathcal{S}_{\alpha}$. Since $W(A) \subset \mathcal{S}_{\alpha}$ implies that $W\left(X^{*} A X\right) \subset \mathcal{S}_{\alpha}$ for any nonzero $n \times m$ matrix X, thus $W\left(A^{-1}\right) \subset \mathcal{S}_{\alpha}$, that is, inverse of every sector matrix is a sector matrix. Clearly, a sector matrix is accretive with extra information about the angle α. For more information on sector matrices, the interested reader can refer to [4, 9-11, 13, 18].
Liu et. al [9] and Lin [11] extended the inequalities (2) to sector matrices as follows:

$$
\begin{equation*}
\cos ^{4} \alpha \mathfrak{R}\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1} \leq \mathfrak{R}(A \sharp B) \leq \sec ^{2} \alpha \mathfrak{R}\left(\frac{A+B}{2}\right) . \tag{3}
\end{equation*}
$$

Main aim of this paper is to give the new double inequalities for two sector matrices A, B satisfying the condition $0<m \leq \mathfrak{R} A, \mathfrak{R} B \leq M$. These inequalities which refine the inequalities (3) will give in Section 2 . In Section 3, we will present a few application corresponding to the obtained results in Section 2. Finally, we will extend the relative entropy and the Kantorovich inequality for sector matrices.

2. AM-GM-HM inequality for sector matrices

Furuichi and Moradi in [5, Eq.(2.6)], based on the well-known Hermite-Hadamard inequality, proved the following inequality for $0 \leq \alpha \leq 1$ and $0<x \leq 1$

$$
\psi_{\alpha}(x) x^{\alpha} \leq(1-\alpha)+\alpha x
$$

where $\psi_{\alpha}(x)=1+\frac{2^{\alpha} \alpha(1-\alpha)(x-1)^{2}}{(x+1)^{\alpha+1}}$. By putting $\alpha=\frac{1}{2}$, we get

$$
\begin{equation*}
\psi_{\frac{1}{2}}(x) x^{\frac{1}{2}} \leq \frac{x+1}{2} \tag{4}
\end{equation*}
$$

where $\psi_{\frac{1}{2}}(x)=1+\frac{\sqrt{2}(x-1)^{2}}{4(x+1)^{\frac{3}{2}}}$.
Now, using functional calculus, we obtain an analogue of [5, Theorem A] as follows:
Lemma 2.1. Let $A, B \in \mathbb{B}(\mathcal{H})$ be two strictly positive operators under this condition that $0<s A \leq B \leq t A$ for positive real numbers $0<s \leq t$. Then

$$
\begin{equation*}
\min \left\{\psi_{\frac{1}{2}}(s), \psi_{\frac{1}{2}}(t)\right\} A \sharp B \leq \frac{A+B}{2} . \tag{5}
\end{equation*}
$$

Proof. Utilizing the inequality (4), for every strictly positive operator X, we have the following inequality:

$$
\begin{equation*}
\min _{s \leq x \leq t} \psi_{\frac{1}{2}}(x) X^{\frac{1}{2}} \leq \frac{X+1}{2} \tag{6}
\end{equation*}
$$

It is clear that

$$
s \leq A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \leq t
$$

By applying the monotonic property of operator functions for the inequality (6) and the operator $A^{-\frac{1}{2}} B A^{-\frac{1}{2}}$, we have the following inequality:

$$
\begin{equation*}
\min _{s \leq x \leq t} \psi_{\frac{1}{2}}(x)\left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right)^{\frac{1}{2}} \leq \frac{A^{-\frac{1}{2}} B A^{-\frac{1}{2}}+I}{2} \tag{7}
\end{equation*}
$$

By multiplying the both sides of the inequality (7) by $A^{\frac{1}{2}}$, we get to the desired result.
Remark 2.2. Let $A, B \in \mathbb{B}(\mathcal{H})$ be two strictly positive operators under this condition that $0<m \leq A, B \leq M$. An simple computation shows that $0<\frac{m}{M} A \leq B \leq \frac{M}{m} A$. Letting $s=\frac{m}{M}$ and $t=\frac{M}{m}$ in Lemma 2.1, we have

$$
\begin{equation*}
\psi_{\frac{1}{2}}(h) A \sharp B \leq \frac{A+B}{2}, \tag{8}
\end{equation*}
$$

where $h=\frac{m}{M}$.
Remark 2.3. It is clear that $\psi_{\frac{1}{2}}(h) \geq 1$. Therefore, (8) is a refinement of (2).
Now, we are ready to present our main result applying (8). To do it, we need the following Lemmas:
Lemma 2.4. ($[10,11]$) Let $A \in M_{n}$ with $A \in S_{\alpha}$. Then we have $\mathfrak{R}\left(A^{-1}\right) \leq \mathfrak{R}^{-1}(A) \leq \sec ^{2}(\alpha) \mathfrak{R}\left(A^{-1}\right)$. The first inequality holds for an accretive matrix $A \in \mathbb{M}_{n}$.

Lemma 2.5. ([14]) If $A, B \in \mathbb{M}_{n}$ be accretive and $0<\lambda<1$. Then

$$
\mathfrak{R} A \sharp_{\lambda} \Re B \leq \mathfrak{R}\left(A \sharp_{\lambda} B\right) .
$$

Theorem 2.6. Let $A, B \in S_{\alpha}$ be such that $0<m \leq \mathfrak{R} A, \mathfrak{R} B \leq M$. Then

$$
\begin{equation*}
\cos ^{4} \alpha \psi_{\frac{1}{2}}(h) \Re\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1} \leq \mathfrak{R}(A \sharp B) \leq \sec ^{2} \alpha \psi_{\frac{1}{2}}^{-1}(h) \Re\left(\frac{A+B}{2}\right) . \tag{9}
\end{equation*}
$$

Proof. By [16, Lemma 5], for $\lambda=\frac{1}{2}$, we have

$$
\mathfrak{R}(A \sharp B) \leq \sec ^{2} \alpha \mathfrak{R}(A) \sharp \Re(B) .
$$

On the other hand, applying (8) for $\mathfrak{R}(A)$ and $\mathfrak{R}(B)$, we get

$$
\mathfrak{R}(A) \sharp \Re(B) \leq \psi_{\frac{1}{2}}^{-1}(h) \Re\left(\frac{A+B}{2}\right),
$$

where $h=\frac{m}{M}$. From two inequalities above, we obtain the second inequality of (9) as claimed.
If we first apply Lemma 2.5 for special case $\lambda=\frac{1}{2}$ and for A^{-1} and B^{-1} replacement A and B and then use the second inequality of (9), we obtain

$$
\mathfrak{R}\left(A^{-1}\right) \sharp \mathfrak{R}\left(B^{-1}\right) \leq \mathfrak{R}\left(A^{-1} \sharp B^{-1}\right) \leq \sec ^{2} \alpha \psi_{\frac{1}{2}}^{-1}(h) \mathfrak{R}\left(\frac{A^{-1}+B^{-1}}{2}\right),
$$

therefore

$$
\mathfrak{R}\left(A^{-1}\right) \sharp \mathfrak{R}\left(B^{-1}\right) \leq \sec ^{2} \alpha \psi_{\frac{1}{2}}^{-1}(h) \mathfrak{R}\left(\frac{A^{-1}+B^{-1}}{2}\right) .
$$

If we take reverse on the both sides of the relation above, it follows that

$$
\left(\mathfrak{R}\left(A^{-1}\right) \sharp \mathfrak{R}\left(B^{-1}\right)\right)^{-1} \geq \cos ^{2} \alpha \psi_{\frac{1}{2}}(h) \mathfrak{R}^{-1}\left(\frac{A^{-1}+B^{-1}}{2}\right),
$$

which is equivalent to

$$
\begin{equation*}
\sec ^{2} \alpha \psi_{\frac{1}{2}}^{-1}(h)\left(\mathfrak{R}\left(A^{-1}\right) \sharp \Re\left(B^{-1}\right)\right)^{-1} \geq \mathfrak{R}^{-1}\left(\frac{A^{-1}+B^{-1}}{2}\right) . \tag{10}
\end{equation*}
$$

Compute

$$
\begin{align*}
\mathfrak{R}\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1} & \leq \mathfrak{R}^{-1}\left(\frac{A^{-1}+B^{-1}}{2}\right)(\text { by Lemma 2.4) } \\
& \leq \sec ^{2} \alpha \psi_{\frac{1}{2}}^{-1}(h)\left(\mathfrak{R}\left(A^{-1}\right) \sharp \Re\left(B^{-1}\right)\right)^{-1}(\text { by }(10)) \\
& =\sec ^{2} \alpha \psi_{\frac{1}{2}}^{-1}(h)\left(\mathfrak{R}^{-1}\left(A^{-1}\right) \sharp \mathfrak{R}^{-1}\left(B^{-1}\right)\right) \\
& \leq \sec ^{4} \alpha \psi_{\frac{1}{2}}^{-1}(h)(\Re A \sharp \Re B)(\text { by Lemma } 2.4) \\
& \leq \sec ^{4} \alpha \psi_{\frac{1}{2}}^{-1}(h) \Re(A \sharp B)(\text { by Lemma } 2.5), \tag{11}
\end{align*}
$$

where the third inequality follows by the property of geometric mean. This proves the first inequality of (9).

Remark 2.7. From $\psi_{\frac{1}{2}}^{-1}(h) \leq 1\left(\psi_{\frac{1}{2}}(h) \geq 1\right)$, it is clear that the upper and lower bounds in (9) are tigher than ones in (3).

3. Applications

Here, we present some applications of the inequality (9) such as unitarily invariant norm. A norm $\|\cdot\|_{u}$ is called an unitarily invariant norm if $\|X\|_{u}=\|U X V\|_{u}$ for any unitary matrices U, V and any $X \in \mathbb{M}_{n}$. We use the symbols $\lambda_{j}(X)$ and $s_{j}(X)$ as the j-th largest eigen value and singular value of X, respectively. The following lemmas are known.

Lemma 3.1. $([4,17])$ Let $A \in S_{\alpha}$. Then

$$
\lambda_{j}(\Re A) \leq s_{j}(A) \leq \sec ^{2} \alpha \lambda_{j}(\Re A), \quad j=1, \cdots, n .
$$

Lemma 3.2. ([18]) Let $A \in S_{\alpha}$. Then

$$
\|\mathfrak{R}(A)\|_{u} \leq\|A\|_{u} \leq \sec \alpha\|\mathfrak{R}(A)\|_{u} .
$$

It is trivial that if $A \geq 0$ (i. e. $A \in S_{0}$), then $\omega(A)=\|A\|$. So, we have $\omega(\Re A)=\|\Re A A\|$. For $A \in S_{\alpha}$, Bedrani et al. [3] showed that

$$
\begin{equation*}
\omega(\mathfrak{R} A) \leq \omega(A) \leq \sec \alpha \omega(\mathfrak{R} A) \tag{12}
\end{equation*}
$$

Theorem 3.3. Let $A, B \in S_{\alpha}$ be such that $0<m \leq \mathfrak{R} A, \mathfrak{R} B \leq M$. Then, the following inequalities hold:

$$
\begin{equation*}
\cos ^{6} \alpha \psi_{\frac{1}{2}}(h) s_{j}\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1} \leq s_{j}(A \sharp B) \leq \sec ^{2} \alpha \psi_{\frac{1}{2}}^{-1}(h) s_{j}\left(\frac{A+B}{2}\right) . \tag{13}
\end{equation*}
$$

Proof. By simple computations

$$
\begin{aligned}
s_{j}\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1} & \leq \sec ^{2} \alpha s_{j}\left(\mathfrak{R}\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1}\right)(\text { by Lemma 3.1) } \\
& \leq \sec ^{6} \alpha \psi_{\frac{1}{2}}^{-1}(h) s_{j}(\mathfrak{R}(A \sharp B))(\text { by }(9)) \\
& \leq \sec ^{6} \alpha \psi_{\frac{1}{2}}^{-1}(h) s_{j}(A \sharp B)(\text { by Lemma } 3.1) .
\end{aligned}
$$

This proves the left-hand side of the inequality (13). Similarly, to prove the right-hand side of the inequality (13), we have

$$
\begin{aligned}
s_{j}(A \sharp B) & \leq \sec ^{2} \alpha s_{j}(\Re(A \sharp B))(\text { by Lemma } 3.1) \\
& \leq \sec ^{4} \alpha \psi_{\frac{1}{2}}^{-1}(h) s_{j}\left(\Re\left(\frac{A+B}{2}\right)\right)(\text { by }(9)) \\
& \leq \sec ^{4} \alpha \psi_{\frac{1}{2}}^{-1}(h) s_{j}\left(\frac{A+B}{2}\right)(\text { by Lemma 3.1 }) .
\end{aligned}
$$

This complete the proof of the inequality (13).
Remark 3.4. Again since $\psi_{\frac{1}{2}}(h) \geq 1$ or equivalently $\psi_{\frac{1}{2}}^{-1}(h) \leq 1$, thus the first inequality and the second inequality in (13), respectively, refine [9, Eq. (3.5)] and [11, Eq. (13)] .
For the special case, when A is accretive-dissipative (i.e. both $\mathfrak{R} A$ and $\mathfrak{J} A$ are positive), we have $e^{-i \frac{\pi}{4}} A \in S_{\frac{\pi}{4}}$. As an immediate result we have the following corollary:
Corollary 3.5. Let $A, B \in \mathbb{M}_{n}$ be accretive-dissipative satisfying $0<m \leq \mathfrak{R} A, \mathfrak{R} B \leq M$. Then

$$
8 \psi_{\frac{1}{2}}(h) s_{j}\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1} \leq s_{j}(A \sharp B) \leq 2 \psi_{\frac{1}{2}}^{-1}(h) s_{j}\left(\frac{A+B}{2}\right) .
$$

The next Theorem is a norm version of (9) for unitarily invariant norms.
Theorem 3.6. Let $A, B \in \mathbb{S}_{\alpha}$ be such that $0<m \leq \mathfrak{R} A, \mathfrak{R} B \leq M$. Then for any unitarily invariant norm $\|\cdot\|_{u}$, the following inequalities hold:

$$
\begin{equation*}
\cos ^{5} \alpha \psi_{\frac{1}{2}}(h)\left\|\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1}\right\|_{u} \leq\|A \sharp B\|_{u} \leq \sec ^{3} \alpha \psi_{\frac{1}{2}}^{-1}(h)\left\|\frac{A+B}{2}\right\|_{u} \tag{14}
\end{equation*}
$$

Proof. By Lemma 3.2, with the left-side of the inequality (9), we have

$$
\begin{aligned}
\left\|\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1}\right\|_{u} & \leq \sec \alpha\left\|\mathfrak{R}\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1}\right\|_{u} \\
& \leq \sec ^{5} \alpha \psi_{\frac{1}{2}}^{-1}(h)\|\mathfrak{R}(A \nRightarrow B)\|_{u} \\
& \leq \sec ^{5} \alpha \psi_{\frac{1}{2}}^{-1}(h)\|A \notin B\|_{u} .
\end{aligned}
$$

Analogously, Lemma 3.2 with the right-side of the inequality (9) follow that

$$
\begin{aligned}
\|A \sharp B\|_{u} & \leq \sec \alpha\|\Re(A \sharp B)\|_{u} \\
& \leq \sec ^{3} \alpha \psi_{\frac{1}{2}}^{-1}(h)\left\|\mathfrak{R}\left(\frac{A+B}{2}\right)\right\|_{u} \\
& \leq \sec ^{3} \alpha \psi_{\frac{1}{2}}^{-1}(h)\left\|\frac{A+B}{2}\right\|_{u} .
\end{aligned}
$$

Remark 3.7. It is obvious that $\psi_{\frac{1}{2}}(h) \geq 1$. That is, the inequality (14) implies [9, Eq. (3.6)] and [11, Eq. (14)].
Corollary 3.8. Let $A, B \in \mathbb{M}_{n}$ be accretive-dissipative such that $0<m \leq \mathfrak{R} A, \mathfrak{R} B \leq M$. Then

$$
4 \sqrt{2} \psi_{\frac{1}{2}}(h)\left\|\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1}\right\|_{u} \leq\|A \sharp B\|_{u} \leq 2 \sqrt{2} \psi_{\frac{1}{2}}^{-1}(h)\left\|\frac{A+B}{2}\right\|_{u}
$$

We finish this section by presenting the other application of the inequality (9). The neat lemma is needed to prove it.

Lemma 3.9. ($[7,10]$) If $A \in S_{\alpha}$. Then

$$
\operatorname{det}(\Re A) \leq|\operatorname{det} A| \leq \sec ^{n} \alpha \operatorname{det}(\Re A)
$$

The first inequality is known as the Ostrowski-Taussky inequality.
Theorem 3.10. Let $A, B \in S_{\alpha}$ with $0<m \leq \mathfrak{R} A, \mathfrak{R} B \leq M$. Then,

$$
\begin{align*}
\cos ^{4 n} \alpha \psi_{\frac{1}{2}}(h) \operatorname{det}\left(\Re\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1}\right) & \leq|\operatorname{det}(A \sharp B)| \\
& \leq \sec ^{3 n} \alpha \psi_{\frac{1}{2}}^{-1}(h) \operatorname{det}\left(\Re\left(\frac{A+B}{2}\right)\right) \tag{15}
\end{align*}
$$

Proof. By Lemma 3.9,

$$
|\operatorname{det}(A \sharp B)| \leq \sec ^{n} \alpha \operatorname{det}(\Re(A \sharp B)) .
$$

On the other hand, by taking determinan from the right-side of the inequality (9) and making use the property of determinan, we derive

$$
\operatorname{det}(\Re(A \sharp B)) \leq \sec ^{2 n} \alpha \psi_{\frac{1}{2}}^{-1}(h) \operatorname{det}\left(\Re\left(\frac{A+B}{2}\right)\right) .
$$

Combining two latter relations, we obtain

$$
|\operatorname{det}(A \sharp B)| \leq \sec ^{3 n} \alpha \psi_{\frac{1}{2}}^{-1}(h) \operatorname{det}\left(\Re\left(\frac{A+B}{2}\right)\right) .
$$

The inequality above yields the right-side of the desired inequality.
Based on Lemma 3.9,

$$
|\operatorname{det}(A \sharp B)| \geq \operatorname{det}(\Re(A \sharp B)) .
$$

With help of the left-side of the inequality (9),

$$
\operatorname{det}(\Re(A \sharp B)) \geq \operatorname{det}\left(\Re\left(\frac{A^{-1}+B^{-1}}{2}\right)^{-1}\right) \sec ^{4 n} \alpha \psi_{\frac{1}{2}}(h) .
$$

From two inequalities above, we result the first inequality of (15).
Remark 3.11. A standard argument like that Remark 3.7 follows that the double inequalities (15) refine [15, Theorem 3.3], for $\lambda=\frac{1}{2}$.

4. Relative operator entropy and operator Kantorovich inequality

For two strictly positive operators A and B, the relative operator entropy is defined by Fujii et. al [8]

$$
\mathcal{S}(A \mid B):=A^{\frac{1}{2}} \log \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}
$$

Raissouli et. al [14] recently extended the definition above and defined the relative operator entropy of two accretive operators A and B via the following formula:

$$
\mathcal{S}(A \mid B)=\int_{0}^{1} \frac{A!_{t} B-A}{t} d t
$$

In the same time, they obtain following remarkable property about the relative operator entropy of two accretive operators:

$$
\begin{equation*}
\mathfrak{R}(\mathcal{S}(A \mid B)) \geq \mathcal{S}(\Re A \mid \mathfrak{R} B) \tag{16}
\end{equation*}
$$

The next Lemma give a reverse of (16).
Theorem 4.1. Let $A, B \in S_{\alpha}$. Then

$$
\begin{equation*}
\mathfrak{R}(\mathcal{S}(A \mid B)) \leq \sec ^{2} \alpha \mathcal{S}(\Re A \mid \Re B) \tag{17}
\end{equation*}
$$

Proof. By the first inequality of Lemma 2.4,

$$
\begin{equation*}
\left.\mathfrak{R}\left(t A^{-1}+(1-t) B^{-1}\right)^{-1} \leq \mathfrak{R}^{-1}\left(t A^{-1}+(1-t) B^{-1}\right)=\left(t \mathfrak{R} A^{-1}+(1-t) \mathfrak{R} B^{-1}\right)\right)^{-1} . \tag{18}
\end{equation*}
$$

Now, the second inequality of Lemma 2.4 ensure us that

$$
t \mathfrak{R}^{-1}(A)+(1-t) \mathfrak{R}^{-1}(B) \leq \sec ^{2} \alpha\left(t \Re A^{-1}+(1-t) \mathfrak{R} B^{-1}\right) .
$$

Taking reverse from the latter inequality, we get

$$
\begin{equation*}
\left(t \mathfrak{R} A^{-1}+(1-t) \mathfrak{R} B^{-1}\right)^{-1} \leq \sec ^{2} \alpha\left(t \mathfrak{R}{ }^{-1} A+(1-t) \mathfrak{R}^{-1} B\right)^{-1} \tag{19}
\end{equation*}
$$

Applying (18), together with (19), we have

$$
\begin{equation*}
\mathfrak{R}\left(t A^{-1}+(1-t) B^{-1}\right)^{-1} \leq \sec ^{2} \alpha\left(t \mathfrak{R}^{-1} A+(1-t) \mathfrak{R}^{-1} B\right)^{-1} . \tag{20}
\end{equation*}
$$

Making use definition of the relative operator entropy of two accretive operators and using (20), it follows that

$$
\begin{aligned}
\mathfrak{R}(\mathcal{S}(A \mid B)) & =\int_{0}^{1} \frac{\mathfrak{R}\left(t A^{-1}+(1-t) B^{-1}\right)^{-1}-\mathfrak{R} A}{t} d t \\
& \leq \int_{0}^{1} \sec ^{2} \alpha \frac{\left(t \mathfrak{R}^{-1} A+(1-t) \mathfrak{R}^{-1} B\right)^{-1}-\mathfrak{R} A}{t} d t \\
& =\sec ^{2} \alpha \mathcal{S}(\mathfrak{R} A \mid \mathfrak{R} B) .
\end{aligned}
$$

This complete the proof.
It is well known that for two positive operators A and B, the informational monotonicity property of relative operator entropy satisfies $\Phi(S(A \mid B)) \leq S(\Phi(A) \mid \Phi(B))$ for all unital positive linear maps Φ. Aplying (17), a sectorial operator version of the previous inequality stands below. Throughout of this section, Φ is a unital positive linear map.

Theorem 4.2. Let $A, B \in S_{\alpha}$. Then

$$
\mathfrak{R}(\Phi(S(A \mid B))) \leq \sec ^{2} \alpha \Re S(\Phi(A) \mid \Phi(B))
$$

Proof. We have the following chain of inequalities

$$
\begin{aligned}
\mathfrak{R}(\Phi(S(A \mid B))) & =\Phi(\mathfrak{R}(S(A \mid B))) \\
& \leq \sec ^{2} \alpha \Phi(S(\mathfrak{R} A \mid \mathfrak{R} B))(\mathrm{by}(17)) \\
& \leq \sec ^{2} \alpha S(\Phi(\mathfrak{R} A) \mid \Phi(\mathfrak{R} B)) \\
& =\sec ^{2} \alpha S(\Re \Phi(A) \mid \mathfrak{R} \Phi(B)) \\
& \leq \sec ^{2} \alpha \mathfrak{R} S(\Phi(A) \mid \Phi(B)) .
\end{aligned}
$$

Corollary 4.3. Let $A, B \in S_{\alpha}$. Then

$$
\omega(\Phi(S(A \mid B))) \leq \sec ^{3} \alpha \omega(S(\Phi(A) \mid \Phi(B)))
$$

Proof. We compute

$$
\begin{aligned}
\omega(\Phi(S(A \mid B))) & \leq \sec \alpha \omega(\mathfrak{R} \Phi(S(A \mid B)))(\text { by }(12)) \\
& =\sec \alpha\|\mathfrak{R} \Phi(S(A \mid B))\| \\
& \leq \sec ^{3} \alpha\|\mathfrak{R} S(\Phi(A) \mid \Phi(B))\|(\text { by Theorem } 4.2) \\
& =\sec ^{3} \alpha \omega(\mathfrak{R} S(\Phi(A) \mid \Phi(B))) \\
& \leq \sec ^{3} \alpha \omega(S(\Phi(A) \mid \Phi(B))) \cdot(\text { by }(12))
\end{aligned}
$$

Corollary 4.4. Let $A, B \in \mathbb{M}_{n}$ be accretive-dissipative. Then

$$
\omega(\Phi(S(A \mid B))) \leq 2 \sqrt{2} \omega(S(\Phi(A) \mid \Phi(B)))
$$

Corollary 4.5. Let $A, B \in S_{\alpha}$. Then
$\|\Phi(S(A \mid B))\|_{u} \leq \sec ^{3} \alpha\|S(\Phi(A) \mid \Phi(B))\|_{u}$.
Proof. We estimate

$$
\begin{aligned}
\|\Phi(S(A \mid B))\|_{u} & \leq \sec \alpha\|\Re \Phi(S(A \mid B))\|_{u}(\text { by Lemma } 3.2) \\
& \leq \sec ^{3} \alpha\|\Re S(\Phi(A) \mid \Phi(B))\|_{u}(\text { by Theorem 4.2) } \\
& \leq \sec ^{3} \alpha\|S(\Phi(A) \mid \Phi(B))\|_{u} .(\text { by Lemma } 3.2)
\end{aligned}
$$

Corollary 4.6. Let $A, B \in \mathbb{M}_{n}$ be accretive-dissipative. Then
$\|\Phi(S(A \mid B))\|_{u} \leq 2 \sqrt{2}\|S(\Phi(A) \mid \Phi(B))\|_{u}$.
Throughout of this section, $K(h)=\frac{(M+m)^{2}}{4 M m}$ with $h=\frac{M}{m}$ is Kantorovich constant, where M, m are positive real numbers. For $A \in \mathbb{M}_{n}$ such that $0<m \leq A \leq M$, Marshall and Olkin [12] obtained an operator Kantorovich inequality as follows:

$$
\Phi\left(A^{-1}\right) \leq K(h) \Phi^{-1}(A)
$$

where Φ is a positive unital linear map. The next Lemma is an extension of Kantorovich operator inequality.

Theorem 4.7. Let $A \in S_{\alpha}$ be such that $0<m \leq \Re A \leq M$. Then

$$
\mathfrak{R} \Phi\left(A^{-1}\right) \leq K(h) \sec ^{2} \alpha \Re \Phi^{-1}(A)
$$

Proof. The desired inequality concludes by the computation of the following chain of the inequalities:

$$
\begin{aligned}
\mathfrak{R} \Phi\left(A^{-1}\right) & =\Phi\left(\mathfrak{R} A^{-1}\right)(\text { by }[16, \text { Lemma } 1]) \\
& \leq \Phi\left(\mathfrak{R}^{-1} A\right)(\text { by the first inequality of Lemma } 2.4) \\
& \leq K(h) \Phi^{-1}(\mathfrak{R} A)(\text { by the Kantorovich inequality }) \\
& =K(h) \mathfrak{R}^{-1} \Phi(A) \\
& \leq K(h) \sec ^{2} \mathfrak{R} \Phi^{-1}(A)(\text { by the second inequality of Lemma } 2.4) .
\end{aligned}
$$

Corollary 4.8. Let $A \in S_{\alpha}$ be such that $m \leq \Re A \leq M$. Then

$$
\left\|\Phi\left(A^{-1}\right)\right\|_{u} \leq K(h) \sec ^{3} \alpha\left\|\Phi^{-1}(A)\right\|_{u} .
$$

Proof. By applying an simple computation, we obtain

$$
\begin{aligned}
\left\|\Phi\left(A^{-1}\right)\right\|_{u} & \leq \sec \alpha\left\|\mathfrak{R} \Phi\left(A^{-1}\right)\right\|_{u}(\text { by } 12) \\
& \leq K(h) \sec ^{3} \alpha\left\|\mathfrak{R} \Phi^{-1}(A)\right\|_{u}(\text { by Lemma } 4.7) \\
& \leq K(h) \sec ^{3} \alpha\left\|\Phi^{-1}(A)\right\|_{u} .(\text { by } 12)
\end{aligned}
$$

Corollary 4.9. Let $A \in \mathbb{M}_{n}$ be accretive-dissipative with $0<m \leq \Re A \leq M$. Then

$$
\left\|\Phi\left(A^{-1}\right)\right\| \leq 2 \sqrt{2} K(h)\left\|\Phi^{-1}(A)\right\| .
$$

Corollary 4.10. Let $A \in S_{\alpha}$ be such that $m \leq \Re A \leq M$. Then

$$
\omega\left(\Phi\left(A^{-1}\right)\right) \leq K(h) \sec ^{3} \alpha \omega\left(\Phi^{-1}(A)\right) .
$$

Proof. We have

$$
\begin{aligned}
\omega\left(\Phi\left(A^{-1}\right)\right) & \leq \sec \alpha \omega\left(\Re \Phi\left(A^{-1}\right)\right)(\text { by } 12) \\
& =\sec \alpha\left\|\mathfrak{R} \Phi\left(A^{-1}\right)\right\| \\
& \leq K(h) \sec ^{3}(\theta)\left\|\mathfrak{R} \Phi^{-1}(A)\right\|(\text { by Lemma 4.7) } \\
& =K(h) \sec ^{3}(\theta) \omega\left(\mathfrak{R} \Phi^{-1}(A)\right) \\
& \leq K(h) \sec ^{3}(\theta) \omega\left(\Phi^{-1}(A)\right) \cdot(\text { by } 12)
\end{aligned}
$$

References

[1] R. Bhatia, Positive definite matrices, Princeton University Press. Princeton, 2007.
[2] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1997.
[3] Y. Bedrani, F. Kittaneh and M. Sababeh, From positive to accretive matrice, Positivity, 25(2021), 1601-1629
[4] S. Drury and M. Lin, Singular value inequalities for matrices with numerical ranges in a sector, Oper. Matrices, 8 (2014), $1143-1148$.
[5] S. Furuichi and H. Moradi, Some refinements of classical inequalities, Rocky Mountain J. Math. 48 (2018), n. 7, 2289-2309.
[6] J. I. Fujii and E. Kamei, Relative operator entropy in noncommutative information theory, Math. Japon., 34(1989), n. 3, 341-348.
[7] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 2013.
[8] F. Kittaneh, M. S. Moslehian and T. Yamazaki, Cartesian decomposition and numerical radius inequalities, Linear Algebra Appl., 471(2015), 46-53.
[9] J. Liu and Q. Wang, More inequalities for sector matrices, Bull. Iran. Math. Soc., 44(2018), 1059-1066.
[10] M. Lin, Extension of a result of Hanynsworth and Hartfiel, Arch. Math., 1 (2015), 93-100.
[11] M. Lin, Some inequalities for sector matrices, Oper. Matrices, 10 (2016), n. 4, 915-921.
[12] A. W. Marshall and I. Olkin, Matrix versions of Cauchy and Kantorovich inequalities, Aequ. Math., 40(1990), 89-93.
[13] L. Nasiri and S. Furuichi, On a reverse of the Tan-Xie inequality for sector matrices and its applications, Journal of Mathematical Inequalities, 15(2021), n. 4, 1425-1434.
[14] M. Raissouli, M. S. Moslehian and S. Furuichi, Relative entropy and tsallis entropy of two accretive operators, C. R. Acad. Sci. Paris Ser. I, 355(2017), 687-693.
[15] F. Tan and A. Xie, An extension of AM-GM-HM inequality, Bull. Iran. Math. Soc., 46(2020), 245-251.
[16] F. Tan and H. Chen, Inequalities for sector matrices and positive linear maps, Electronic Journal of Linear Algebra, 35(2019), 418-423.
[17] X. Zhang, Matrix theory, American Mathematical Society, 2013.
[18] F. Zhang, A matrix decomposition and its applications, Linear Multilinear Algebra, 63(2015), 2033-2042.

[^0]: 2020 Mathematics Subject Classification. 47A63, 47A64, 15 B48.
 Keywords. Sector matrix; Relative entropy; Means; Kantorovich inequality.
 Received: 26 Marhc 2021; Accepted: 20 November 2023
 Communicated by Dragan S. Djordjević
 Email address: leilanasiri468@gmail.com (Leila Nasiri)

