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Abstract. Let a, d be two elements in rings and a∥d be the inverse of a along d. Some characterizations of
the equality a∥d = d are given in rings. We also investigate the equivalent conditions for aa∥d = a∥da to hold,
as well as ad = da. We prove that a∥d = d if and only if ad is idempotent, when a ∈ R∥d; aa∥d = a∥da if and
only if there exists t ∈ R−1 such that a∥d = at = ta, when a ∈ R∥•d; ad = da if and only if a∥d(a + d) = (a + d)a∥d,
when a ∈ R∥•d. Thus, some well-known results on partial isometries, EP and normal elements in rings are
extended to more general settings.

1. Introduction

Throughout this paper, R denotes an associative ring with unity 1 and N means the set of all positive
integers. An involution ∗: R→ R is an anti-isomorphism: (a∗)∗ = a, (a + b)∗ = a∗ + b∗ and (ab)∗ = b∗a∗ for all
a, b ∈ R. First, we list several types of generalized inverses as follows.

An element a ∈ R is said to be Moore-Penrose invertible with respect to involution ∗ [12] if the following
equations

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa

have a common solution. Such solution is unique if it exists, and is denoted by a†.
The group inverse of a ∈ R is the element x ∈ R which satisfies

(1) axa = a, (2) xax = x, (5) ax = xa.

The element x above is unique if it exists and is denoted by a#.
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In 2011, Mary [6] defined a new generalized inverse called the inverse along an element in a ring or
semigroup. The element a ∈ R is said to be invertible along d ∈ R [6] if there exists b ∈ R such that

bad = d = dab, bR ⊆ dR and Rb ⊆ Rd,

i.e.,
bab = b, bR = dR and Rb = Rd.

If such b exists, then it is unique and is said to be the inverse of a along d, which will be denoted by a∥d. In
particular, a∥1 = a−1, a∥a = a# and a∥a∗ = a†. Moreover, if aa∥da = a, then we say that a∥d is an inner inverse of a
along d, and a is inner invertible along d.

The symbols R−1, R†, R#, R∥d and R∥•d stand for the sets of all invertible, Moore-Penrose invertible, group
invertible, invertible along d and inner invertible elements along d in the ring R, respectively.

As we all know, an element a ∈ R† satisfying a∗ = a† is called a partial isometry. An element a ∈ R is said
to be EP if a ∈ R† and aa† = a†a. An element a ∈ R satisfying aa∗ = a∗a is called normal. Many researchers
studied the partial isometry, EP and normal elements in different settings, such as complex matrices, Banach
algebras and rings [1, 3, 8–11, 15]. Motivated by some known results, in this paper we will consider more
general case by using the inverse along an element. Several characterizations of the equality a∥d = d are
obtained in rings. We also consider the equivalent conditions for aa∥d = a∥da to hold, as well as ad = da. In
particular, in a ring with involutions, if d = a∗, then the equalities a∥d = d, aa∥d = a∥da and ad = da become
a† = a∗, aa† = a†a and aa∗ = a∗a, respectively. So, some results on partial isometries, EP and normal elements
are extended to more general settings.

Next, we will give some lemmas. First, we present the existence criteria for the inverse along an element
and the group inverse in rings as follows.

Lemma 1.1. [7, Theorem 2.1] Let a, d ∈ R. Then the following statements are equivalent:

(i) a ∈ R∥d.

(ii) dR ⊆ daR and da ∈ R#.

(iii) Rd ⊆ Rad and ad ∈ R#.

In this case, a∥d = d(ad)# = (da)#d.

Lemma 1.2. [16, Lemma 3] and [13, Corollary 1] Let a, d ∈ R. Then the following statements are equivalent:

(i) a ∈ R∥•d. (ii) d ∈ R∥•a. (iii) a ∈ R∥d and d ∈ R∥a.

In this case, aa∥d = d∥ad and a∥da = dd∥a.

Lemma 1.3. [5, Theorem 1] Let a ∈ R. Then a ∈ R# if and only if a ∈ a2R∩Ra2. In this case, if a = a2x = ya2, then
a# = ax2 = y2a = yax.

The next lemmas gives some equivalent conditions for aa∥d = a∥da, which will play an important role in
the sequel.

Lemma 1.4. [2, Theorem 7.1 and 7.3] Let a, d ∈ R be such that a ∈ R∥d. Then the following statements are
equivalent:

(i) aa∥d = a∥da.

(ii) d ∈ R# and add# = dd#a.

(iii) da ∈ Rd and ad ∈ dR.
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Lemma 1.5. [16, Theorem 5 and Lemma 10] Let a, d ∈ R be such that d ∈ R∥a. Then, the following statements are
equivalent:

(i) a ∈ R∥d and aa∥d = a∥da.

(ii) a, d ∈ R# and aa# = dd#.

(iii) a ∈ R∥d ∩ R# and a∥d = a#.

(iv) a ∈ R∥d, aR ⊆ dR and Ra ⊆ Rd.

(v) aR = dR and Ra = Rd.

Lemma 1.6. [14, Proposition 4.2] Let a, d ∈ R be such that a ∈ R∥d. Then, ad = da if and only if aa∥d = a∥da and
da∥d = a∥dd.

The following lemma is known as the bicommuting properties of the group inverse.

Lemma 1.7. [4, Theorem 1] Let a, d ∈ R. If a ∈ R# and da = ad, then da# = a#d.

2. Characterizations for a∥d = d and aa∥d = a∥da

In this section, first we give several characterizations for the equality a∥d = d. Then, some new necessary
and sufficient conditions for aa∥d = a∥da are obtained. Next, we present equivalent conditions, which ensure
that both a∥d = d and aa∥d = a∥da hold.

Inspired by [9, Theorem 2.1], we characterize the equality a∥d = d by the idempotent as follows, which
generalized the partial isometry.

Theorem 2.1. Let a, d ∈ R be such that a ∈ R∥d. Then the following statements are equivalent:

(i) a∥d = d.

(ii) ad = aa∥d.

(iii) da = a∥da.

(iv) da is idempotent.

(v) ad is idempotent.

Proof. (i)⇒ (ii) is obvious.
(ii)⇒ (iii). If ad = aa∥d, then we have

da = a∥d(ad)a = a∥daa∥da = a∥da.

(iii)⇒ (iv). Note that a∥da is idempotent. Thus, da is idempotent.
(iv)⇒ (v). By the hypotheses, we get

ad = adaa∥d = adadaa∥d = adad = (ad)2.

(v)⇒ (i). Since ad is idempotent, we deduce that ad = (ad)2 and (ad)# = ad. Then, we obtain

d = a∥dad = a∥dadad = dad,

which implies that a∥d = d(ad)# = dad = d by Lemma 1.1, as required.

According to Theorem 2.1 and Lemma 1.2, we directly have the following corollary.

Corollary 2.2. Let a, d ∈ R be such that a ∈ R∥•d. Then, a∥d = d if and only if d∥a = a.
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The following theorem show that the idempotency of d and a∥d is related to the equality of a∥d = d.

Theorem 2.3. Let a, d ∈ R be such that a ∈ R∥d and d = d2. Then, a∥d = (a∥d)2 if and only if a∥d = d.

Proof. Suppose that a∥d = (a∥d)2. Then,

a∥d = d(ad)# = d2(ad)# = d
(
d(ad)#

)
= da∥d.

Thus, we claim that

d = daa∥d =
(
daa∥d

)
a∥d = da∥d = a∥d.

Conversely, it is clear.
In what follows, we present new equivalent conditions for aa∥d = a∥da in terms of the ring units, which

extend [3, Theorem 16].

Theorem 2.4. Let a, d ∈ R be such that a ∈ R∥•d. Then, the following statements are equivalent:

(i) aa∥d = a∥da.

(ii) There exists t ∈ R−1 such that a∥d = at = ta.

(iii) a, d ∈ R# and d = u−1av, where u = a2 + 1 − aa# and v = ad + 1 − dd#.

Proof. (i)⇒ (ii). Suppose that (i) holds. Then, by Lemma 1.5, we get a ∈ R# and a∥d = a#. Let t = (a#)2+1−aa#.
Note that

t(a2 + 1 − aa#) = (a2 + 1 − aa#)t = 1.

So, t ∈ R−1. In addition, it is clear that a∥d = a# = at = ta.
(ii)⇒ (i). By the hypotheses, we get d = a∥dad = atad ∈ aR and a = a∥dt−1 = d(ad)#t−1

∈ dR, which yield
aR = dR. Similarly, we can deduce that Ra = Rd. Using Lemma 1.5, we infer that aa∥d = a∥da.

(i) ⇒ (iii). In view of Lemma 1.5, we see that a, d ∈ R# and aa# = dd#. Note that u ∈ R−1 and
u−1 = (a#)2 + 1 − aa#. Then,

u−1av =
(
(a#)2 + 1 − aa#

)
a(ad + 1 − dd#) = a#ad + a#(1 − dd#) = d.

(iii)⇒ (i). Since a ∈ R∥d and d ∈ R#, by [7, Theorem 3.2], we get v ∈ R−1 and a∥d = dv−1. Thus, we have

a∥d = dv−1 = u−1avv−1 = u−1a =
(
(a#)2 + 1 − aa#

)
a = a#,

which yields that aa∥d = a∥da.

Motivated by [10, Theorem 2.1], the second characterization of aa∥d = a∥da is given by means of the group
inverse as follows.

Theorem 2.5. Let a, d ∈ R be such that a ∈ R∥•d ∩ R#. Then the following statements are equivalent:

(i) aa∥d = a∥da.

(ii) aa#a∥d = a∥daa#.

(iii) aa#d = daa#.

(iv) aa#d + da#a = 2d.

(v) a2a∥d = a∥da2.

(vi) a2a∥d + a∥da2 = 2a.

(vii) a# = a(a∥d)2 = (a∥d)2a.
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(viii) a∥dd = a#d and da∥d = da#.

(ix) aa∥dda = da2a∥d and a∥da2d = ada∥da.

(x) a∥d = a#.

Proof. (i)⇒ (ii) − (x). Note that a ∈ R∥•d ∩ R# and aa∥d = a∥da. In view of Lemma 1.5, we obtain a# = a∥d and
aa# = dd#. Then, it is easy to check that items (ii) − (x) hold.

(ii)⇒ (i). Suppose that aa#a∥d = a∥daa#. Then, we get

aa∥d = a(aa#a∥d) = aa∥daa# = aa# = a#a = (a#aa∥d)a = a∥daa#a = a∥da.

(iii)⇒ (i). Since a ∈ R∥•d and a ∈ R#, by Lemma 1.4, it follows that dd∥a = d∥ad. So, in view of Lemma 1.2,
we get aa∥d = a∥da.

(iv)⇒ (i). By the item (iv), we get

d = 2d − d = a∥da(2d) − d = a∥da(aa#d + da#a) − d
= a∥dad + a∥dada#a − d = daa#.

Similarly, we have d = aa#d. Thus, aa#d = daa#, which means item (iii) holds.
(v)⇒ (i). Suppose that a2a∥d = a∥da2. Then, we get

aa∥d = a#a2a∥d = a#a∥da2 = (a#)2aa∥da2 = (a#)2a2 = a#a
= aa# = aa(a#)2 = a2a∥da(a#)2 = a∥da2a#

= a∥da.

(vi)⇒ (i). From a2a∥d + a∥da2 = 2a, it follows that

aa# = 2aa#
− aa# = (a2a∥d + a∥da2)a#

− aa#

= a2a∥da(a#)2 + a∥da − aa#

= aa# + a∥da − aa#

= a∥da.

Dually, a#a = aa∥d. So, aa∥d = a∥da.
(vii)⇒ (i). By the hypotheses, it follows that

aa# = aa(a∥d)2 = aa(a∥d)2aa∥d = aa#aa∥d = aa∥d.

Similarly, we have a#a = a∥da. Therefore, aa∥d = a∥da.
(viii)⇒ (i). Note that da∥d = da#, aa∥da = a and aa∥d = d∥ad. Then, we have

a# = a(a#)2 = aa∥da(a#)2 = aa∥da# = d∥ada# = d∥ada∥d = aa∥da∥d = a(a∥d)2.

Also, we have a# = (a∥d)2a. So, item (vii) holds.
(ix)⇒ (i). Since a ∈ R∥•d, then d ∈ R∥a, which yields d∥ada = a. Note that aa∥dda = da2a∥d. So, we conclude

that
a = aaa# = d∥adaaa# = d∥a(daaa∥d)aa# = d∥aaa∥ddaaa#

= d∥a(aa∥dda) = (d∥ada)aa∥d = a2a∥d.

Similarly, using a∥da2d = ada∥da we can get a = a∥da2. Thus, a∥da2 = a2a∥d, which gives that item (v) is satisfied,
as required.

(x)⇒ (i). It is clear.

Now, we present the following several conditions to ensure that both a∥d = d and aa∥d = a∥da hold, when
a ∈ R∥•d ∩ R#.
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Theorem 2.6. Let a, d ∈ R be such that a ∈ R∥•d ∩ R# and n ∈N. Then the following statements are equivalent:

(i) a∥d = d and aa∥d = a∥da.

(ii) a∥d = d and and = dan.

(iii) d = a#.

(iv) and = a∥dan.

(v) dan = ana∥d.

Proof. (i)⇒ (ii). By item (i), we get ad = da, which gives that and = dan, for n ∈N.
(ii)⇒ (iii). Note that a∥d = d is equivalent to dad = d. In addition, since a ∈ R∥•d, by Corollary 2.2, we get

d∥a = a, which gives ada = a. From and = dan and a ∈ R#, it follows that

ad = (a#)n−1and = (a#)n−1dan = (a#)n(ada)an−1 = (a#)naan−1 = a#a.

Similarly, da = aa#. So, ad = da. Therefore, by the definition of the group inverse, we infer that a# = d.
(iii)⇒ (iv). If a ∈ R# and d = a#, then we have dad = a#aa# = a# = d, which implies a∥d = d. Note that

ad = aa# = a#a = da. Then, and = dan = a∥dan, for n ∈N.
(iv)⇒ (v). Applying the hypotheses, we have

ad = (a#)n−1(and) = (a#)n−1a∥dan = (a#)n(aa∥da)an−1 = (a#)naan−1 = aa#,

which means that ad is idempotent. By Theorem 2.1, we claim that a∥d = d. Thus,

dan = a∥dan = and = ana∥d.

(v)⇒ (i). Since dan = ana∥d, we have

a = an−1a(a#)n−1 = an−1aa∥da(a#)n−1 = ana∥da(a#)n−1 = dana(a#)n−1 = da2,

which gives that da = da2a# = aa# is idempotent. So, a∥d = d, i.e. d∥a = a. Thus, ada = a. Then, we deduce
that

a = (a#)n−1aan−1 = (a#)n−1adaan−1 = (a#)n−1a(dan)
= (a#)n−1a(ana∥d) = a2a∥d = a2d.

Thus, by Lemma 1.3 we get a# = dad = d = a∥d, which implies aa∥d = a∥da, as required.

3. Characterizations for ad = da and da∥d = a∥dd

In this section, the equality ad = da is characterized by certain conditions involving the inverse along
an element and the group inverse. The results obtained can be seen as the generalizations of the normal
elements.

We begin with the following theorem, which extends [11, Theorem 2.1].

Theorem 3.1. Let a, d ∈ R be such that a ∈ R∥•d. Then, the following statements are equivalent:

(i) ad = da.

(ii) d∥aa∥d = a∥dd∥a

(iii) a∥d(a + d) = (a + d)a∥d.

Proof. (i) ⇒ (ii). Suppose that ad = da. From Lemma 1.6 and Lemma 1.2, it follows that aa∥d = a∥da and
ad∥a = d∥aa, which imply

d∥aa∥d = d∥add∥aa∥d = aa∥dd∥aa∥d = a∥dd∥aa∥da = a∥dd∥add∥a = a∥dd∥a.
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(ii)⇒ (iii). Since d∥aa∥d = a∥dd∥a, we get

da∥d = da∥daa∥d = d(a∥dd∥a)d = dd∥aa∥dd = a∥daa∥dd = a∥dd.

Note that add∥a = a = d∥ada. So, we obtain

aa∥d = add∥aa∥d = ada∥dd∥a = aa∥ddd∥a = aa∥da∥da

and

a∥da = a∥dd∥ada = d∥aa∥dda = d∥ada∥da = aa∥da∥da,

which means aa∥d = a∥da. Hence, item (iii) holds.

(iii)⇒ (i). Applying a∥d(a + d) = (a + d)a∥d, we get

aa∥dda = (a2 + aa∥dda) − a2 = (aa∥daa + aa∥dda) − a2

= aa∥d(a + d)a − a2 = a(a + d)a∥da − a2

= ada∥da.

So, we get the following equation:

da∥d = da∥daa∥d = a∥d(ada∥da)a∥d = a∥d(aa∥dda)a∥d = a∥dd,

which together with a∥d(a + d) = (a + d)a∥d, yield aa∥d = a∥da. Then, by Lemma 1.6, we claim that ad = da.

Next, we continue to investigate the equivalent conditions for ad = da to hold.

Theorem 3.2. Let a, d ∈ R be such that a ∈ R∥•d ∩ R#. Then, the following statements are equivalent:

(i) ad = da.

(ii) a2d = ada and da2 = ada;

(iii) da∥d = a#d and a∥dd = da#.

(iv) d = ada∥d and d = a∥dda.

(v) d = ada# and d = a#da.

(vi) d2a# = da#d and a#d2 = da#d.

(vii) da#a∥d = a∥dda# and a∥da#d = a#da∥d.

Proof. (i)⇒ (ii) − (vii). From the condition ad = da, we get a# = a∥d by Lemma 1.5 and da# = a#d by Lemma
1.7, which directly imply that items (ii) − (vii) hold.

(ii)⇒ (i). Since a2d = ada, da2 = ada and a ∈ R#, then by Lemma 1.7, we get ada# = a#ad and daa# = a#da.
Thus, we obtain

d = a∥dad = a∥da(a#ad) = a∥daada# = a∥da(ada)a∥da#

= a∥dadaaa∥da# = da(aa∥da)(a#)2 = da2(a#)2

= daa#.

So, ad = (ada)a# = daaa# = da.
(iii)⇒ (i). By the hypotheses, we see that

a# = a(a#)2 = aa∥da(a#)2 = d∥ada(a#)2 = d∥ada# = d∥aa∥dd
= d∥a(a∥dd)aa∥d = d∥ada#aa∥d = aa∥daa#a∥d

= aa#a∥d,
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which gives that daa# = daaa#a∥d = daa∥d = d. On the other hand,

a# = (a#)2a = (a#)2aa∥da = (a#)2add∥a = a#dd∥a = da∥dd∥a

= a∥da(da∥d)d∥a = a∥daa#dd∥a = a∥daa#a∥da
= a∥daa#,

which yields da# = da∥daa# = a#(daa#) = a#d. Therefore, we claim that ad = da.

(iv)⇒ (i). Applying d = ada∥d and d = a∥dda, we get

da∥d = ada∥da∥d = a#a(ada∥d)a∥d = a#(ada∥d) = a#d,

and

a∥dd = a∥da∥dda = a∥d(a∥dda)aa# = (a∥dda)a# = da#.

Thus, item (iii) holds.

(v) ⇒ (i). Suppose that d = ada# and d = a#da. Then, da# = a∥d(ada#) = a∥dd and a#d = (a#da)a∥d = da∥d.
This means that item (iii) is satisfied.

(vi)⇒ (i). Let d2a# = da#d and a#d2 = da#d. Then, we get

a#d = a(a#)2d = aa∥da(a#)2d = d∥ada(a#)2d = d∥a(da#d)
= d∥adda# = d∥a(dda#)aa# = d∥ada#daa#

= d∥ada(a#)2daa# = aa∥da(a#)2daa#

= a#daa#.

So, we can conclude that

d = a∥dad = a∥da2(a#d) = a∥da2a#daa# = a∥dadaa# = daa#.

Similarly, we get d = aa#d. According to d = daa#, we have

aa∥d = a(da)#d = a(da)#daa# = aa∥daa# = aa#,

which implies a = a(aa#) = aaa∥d = a2a∥d. Note that d = aa#d and aa# = aa∥d. Therefore, we get

d = aa∥dd = aa∥daa∥dd = aa∥dd∥add = aa∥dd∥addaa∥d = aa∥dd∥a(dda#)a2a∥d

= aa∥dd∥ada#da2a∥d = aa∥daa∥da#da2a∥d = aa∥da#d(a2a∥d)
= a#da.

Similarly, we get d = ada#. Therefore, item (v) holds.

(vii)⇒ (i). Suppose that da#a∥d = a∥dda# and a∥da#d = a#da∥d. Then, we have

(a#)2 = a(a#)3 = aa∥da(a#)3 = d∥ada(a#)3 = d∥ad(a#)2aa#

= d∥ad(a#)2aa∥daa# = d∥a(da#a∥d)aa# = d∥aa∥dda#aa#

= d∥a(a∥dda#) = d∥ada#a∥d = d∥ada(a#)2a∥d = aa∥da(a#)2a∥d

= a#a∥d.

Therefore, we deduce that

daa# = da2(a#)2 = da2a#a∥d = daa∥d = d,

which implies that

da# = d(a#)2a = d(a#)2aa∥da = (da#a∥d)a = a∥d(da#a) = a∥dd.
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Similarly, we can deduce that a#d = da∥d. So, item (iii) holds, as required.

Let us recall that an element a ∈ R† satisfying a∗a† = a†a∗ is called star-dagger. In [9, Theorem 3.1], Mosić
and Djordjević investigated several sufficient conditions for Moore-Penrose invertible element a in the
ring with involution to be star-dagger. Motivated by this result, we consider the following corresponding
sufficient conditions for da∥d = a∥dd to hold, when a ∈ R∥d.

Theorem 3.3. Let a, d ∈ R be such that a ∈ R∥d. Consider the following conditions:

(i) a∥d = (a∥d)2.

(ii) d = (a∥d)2.

(iii) a∥d = d2.

(iv) d = da∥d.

(v) d = a∥dd.

If one of the conditions (i) − (v) holds, then da∥d = a∥dd.

Proof. (i). If a∥d = (a∥d)2, then

da∥d = daa∥da∥d = daa∥d = d = a∥dad = (a∥d)2ad = a∥d(a∥dad) = a∥dd.

(ii). Suppose that d = (a∥d)2. Then,

da∥d = daa∥da∥d = dad = (a∥d)2ad = a∥d(a∥dad) = a∥dd.

(iii). By the condition a∥d = d2, we get da∥d = dd2 = d2d = a∥dd.
(iv). Suppose that d = da∥d. Then, we conclude that

a∥d = (da)#d = (da)#da∥d = (a∥d)2.

So, item (i) holds. Thus, da∥d = a∥dd.
(v). It is similar to the proof of item (iv).
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