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A helicoidal hypersurfaces family in five-dimensional euclidean space
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Abstract. A family of helicoidal hypersurfaces, denoted as x(u, v, s, t), is introduced within the context of
the five-dimensional Euclidean space E5. Matrices for the first and second fundamental forms, the Gauss
map, and the shape operator matrix of x are derived. Furthermore, by employing the Cayley–Hamilton
theorem to define the curvatures of these hypersurfaces, the curvatures are computed specifically for the
helicoidal hypersurfaces family x. Several relationships between the mean and Gauss–Kronecker curvatures
of x are established. Additionally, the equation ∆x = Ax is demonstrated, whereA is a 5 × 5 matrix in E5.

1. Introduction

The relationship between ruled (helicoidal) and rotational surfaces elucidated by Bour’s theorem, as
established in the seminal work of Bour [7]. Do Carmo and Dajczer [9] undertaken a rigorous investigation
of helical surfaces within the framework of Bour’s theorem in Euclidean 3-space E3.

Moore [45, 46] conducted an extensive study on general rotational surfaces, encompassing their funda-
mental properties and characteristics. Ganchev and Milousheva [10] delved into the realm of Minkowski
4-space, exploring the analogous counterparts of these surfaces within that context. Hasanis and Vlachos
[24] dedicated their research efforts to the examination of hypersurfaces equipped with harmonic mean
curvature vector fields. The concept of affine umbilical surfaces was introduced by Magid et al. [43], while
Scharlach [47] made significant contributions to the study of affine geometry pertaining to surfaces and
hypersurfaces.

Arslan et al. [1] made notable strides in the understanding of generalized rotational surfaces, extending
the theoretical framework associated with these surfaces. In a separate study, Arslan et al. [2] explored the
properties and behavior of tensor product surfaces featuring pointwise 1-type Gauss maps.

Ikawa [26, 27] worked the Bour’s theorem and Gauss map. Beneki et al. [6] studied the helicoidal
surfaces; Güler and Turgut Vanlı [18] served the Bour’s theorem; Güler [11] worked the helicoidal surfaces
with light-like generating curve; Mira and Pastor [44] presented the helicoidal maximal surfaces; Kim and
Yoon [30–32] considered the ruled and rotation surfaces. The readers can see [5, 18–20, 25, 28, 29, 48] for
details.

Güler et al. [17] introduced the concept of helicoidal hypersurfaces within the confines ofE4. Güler et al.
[16] made substantial contributions by examining the Gauss map and the third Laplace–Beltrami operator
associated with rotational hypersurfaces in E4. Güler [13] achieved some results by identifying rotational
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hypersurfaces that satisfy the condition ∆IR = AR, where A ∈ Mat(4, 4), within E4. Moreover, Güler [12]
made advancements in the study of the fundamental form IV and the curvature formulas pertinent to
hyperspheres in E4.

Arslan et al. [4] conducted an in-depth investigation into rotational hypersurfaces within the framework
of Euclidean spaces. Güler et al. [21, 22] made contributions by exploring the properties and characteristics
of bi-rotational hypersurfaces inE4 andE4

2, respectively. Güler [14] considered the helicoidal hypersurfaces
constructed by a time-like axis. He [15] also introduced the helicoidal hypersurface determined by a
space-like axis in E5

1.
Within the space forms, an extensive and dedicated research effort spanning over four decades, spear-

headed by Chen et al. [8], devoted to the thorough examination of 1-type submanifolds and the associated
1-type Gauss map.

The aim of this research is to investigate the helicoidal hypersurfaces family x = x(u, v, s, t) in five-
dimensional Euclidean space E5. The objectives include analyzing its fundamental forms, Gauss map,
and shape operator matrix, calculating its curvatures, and establishing relationships between mean and
Gauss–Kronecker curvatures. Additionally, the study aims to explore the mathematical connection between
x and a 5 × 5 matrix A through the Laplace–Beltrami operator of x. The future research endeavors will
focus on exploring the practical applications of the core discoveries in this paper. The main aim is to
integrate concepts derived from soliton theory, submanifold theory, and other relevant results mentioned
in references [17, 18, 21, 22, 30–42]. Through this approach to investigate the most promising avenues that
can advance the research objectives.

In Section 2, we present a comprehensive overview of the fundamental concepts and principles of
five-dimensional Euclidean geometry. Specifically, we delve into the establishment of the first and second
fundamental form matrices, Gauss map, and the shape operator matrix applicable to hypersurfaces residing
in E5.

Moving forward, in Section 3, we precisely define the concept of a helicoidal hypersurfaces family
within the domain of E5. Subsequently, in Section 4, we introduce the curvatures of hypersurfaces by
leveraging the Cayley−Hamilton theorem. Furthermore, we present the curvature formulas and perform
the computation of the curvatures associated with the family x. We also establish pertinent relationships
concerning the mean and Gauss–Kronecker curvatures of x.

Finally, in the last section, we unveil the intriguing result∆x = Ax, where∆denotes the Laplace–Beltrami
operator,A represents a 5 × 5 matrix.

2. Preliminaries

We introduce the first and second fundamental forms, Gauss map G, the shape operator matrix S,
curvature formulasKi, the mean curvatureK1, and the Gauss–Kronecker curvatureK4 of a hypersurface x
in Euclidean 5-space E5. We identify a vector −→α with its transpose in this work.

The following definitions and notations contribute to the understanding and study of Euclidean 5-space
and its geometric properties. We assume x = x(u, v, s, t) be an immersion from M4

⊂ E4 to E5.

Definition 2.1. A Euclidean dot product of
−→
x1 = (x1

1, ..., x
1
5),
−→
x2 = (x2

1, ..., x
2
5) of E5 is given by

−→

x1
·
−→
x2 =

5∑
i=1

x1
i x2

i .

Definition 2.2. A quadruple vector product of E5 is defined by

−→

x1
×
−→
x2
×
−→
x3
×

−→

x4 = det


e1 e2 e3 e4 e5
x1

1 x1
2 x1

3 x1
4 x1

5
x2

1 x2
2 x2

3 x2
4 x2

5
x3

1 x3
2 x3

3 x3
4 x3

5
x4

1 x4
2 x4

3 x4
4 x4

5

 ,
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where ei, i = 1, ..., 5, are the base elements of E5.

Definition 2.3. For a hypersurface x in 5-space, first and second fundamental form matrices, resp., are given by

I =


E F A D
F G B J
A B C Q
D J Q S

 , II =


L M P X
M N T Y
P T V Z
X Y Z I

 ,
with

det I =
(
EG − F2

) (
CS −Q2

)
+

(
J2
− GS

)
A2 +

(
D2
− ES

)
B2

+2 ((CF − AB) DJ + (EB − FA) JQ + (GA − FB) DQ)

−

(
EJ2 + GD2

)
C + 2FABS,

det II =
(
LN −M2

) (
IV − Z2

)
+

(
Y2
− IN

)
P2 +

(
X2
− IL

)
T2

+2 ((VM − PT) XY + (LT −MP) YZ + (NP −MT) XZ)

−

(
LY2 +NX2

)
V + 2MIPT,

where the components of the matrices described by

E = xu · xu, F = xu · xv, A = xu · xs, D = xu · xt, G = xv · xv,
B = xv · xs, J = xv · xt, C = xs · xs, Q = xs · xt, S = xt · xt,
L = xuu ·G, M = xuv ·G, P = xus ·G, X = xut ·G, N = xvv ·G,
T = xvs ·G, Y = xvt ·G, V = xss ·G, Z = xst ·G, I = xtt ·G.

Here, xu = ∂x∂u , xuv =
∂2x
∂u∂v , xvv =

∂2x
∂v2 , etc., and

G =
xu × xv × xs × xt

∥xu × xv × xs × xt∥

denotes the Gauss map of x.

Definition 2.4. Computing I−1·II, the shape operator matrix is given by S = 1
det I

(
si j

)
4×4

with the following
components

s11 = AJ2P − CJ2L − B2LS + B2XD + CJMD − BJPD − BMQD
−CGXD + GPQD + ABMS − ABJX − AJMQ + BJLQ
+BJLQ − CFMS + CGLS − AGPS + BFPS + CFJX
+AGQX − BFQX − FJPQ + FMQ2

− GLQ2,

s12 = AJ2T − CJ2M − B2MS + B2YD + CJND − BJTD − BNQD
−CGYD + GQTD + ABNS − ABJY − AJNQ + BJMQ
+BJMQ − CFNS + CGMS + CFJY − AGST + BFST
+AGQY − BFQY + FNQ2

− GMQ2
− FJQT,

s13 = AJ2V − CJ2P − B2PS + B2ZD + CJTD − BJVD − CGZD
−BQTD + GQVD − ABJZ + ABST + BJOP + BJPQ
+CFJZ + CGPS − AJOT − CFST + AGQZ − AGSV
−BFQZ + BFSV − FJQV − GPQ2 + FTQ2,
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s14 = AJ2Z − CJ2X − B2SX + B2DI − BJZD + CJYD − BQYD
+GQZD − ABJI + CFJI + AGQI − BFQI − CGDI
+ABSY − AJQY + BJQX − AGSZ + BFSZ + BJQX
−CFSY + CGSX − FJQZ + FQ2Y − GQ2X,

s21 = −A2MS + A2 JX − CMD2 + BPD2 + CJLD − ABXD
−AJPD + AMQD − BLQD + AMQD + CFXD + CMSE
−BPSE − CJXE − FPQD + BQXE + JPQE −MQ2E
+ABLS − AJLQ − CFLS + AFPS − AFQX + FLQ2,

s22 = A2 JY − A2NS − CND2 + BTD2 + CJMD − ABYD
+ANQD − BMQD − AJTD + ANQD + CFYD + CNSE
−CJYE − BSTE + BQYE − FQTD −NQ2E + JQTE
+ABMS − AJMQ − CFMS + AFST − AFQY + FMQ2,

s23 = A2 JZ − A2ST − CTD2 + BVD2
− ABZD + CJPD

−AJVD − BQPD + CFZD + AQTD + AQTD − CJZE
+CSTE + BQZE − BSVE − FQVD + JQVE −Q2TE
+ABPS − AJPQ − CFPS − AFQZ + AFSV + FPQ2,

s24 = −A2SY + A2 JI − CYD2 + BZD2
− AJZD + CJXD

+AQYD − BQXD + AQYD − BSZE + CSYE − FQZD
+JQZE −Q2YE − AFQI − ABDI + CFDI − CJEI
+BQEI + ABSX + AFSZ − AJQX − CFSX + FQ2X,

s31 = AJ2L − F2PS + F2QX + BMD2
− GPD2

− J2PE − AJMD
−BJLD + AGXD − BFXD + 2FJPD − FMQD + GLQD
−BMSE + BJXE + JMQE + GPSE − GQXE + AFMS
−AGLS + BFLS − AFJX − FJLQ,

s32 = AJ2M − F2ST + F2OY + BND2
− GTD2

− J2TE − AJND
−BJMD + AGYD − BFYD − FNQD + GMQD − BNSE
+2FJTD + BJYE + JNQE + GSTE − GQYE + AFNS
−AGMS + BFMS − AFJY − FJMQ,

s33 = AJ2P + F2QZ − F2SV + BTD2
− GVD2

− J2VE − BJPD
−AJTD + AGZD − BFZD + 2FJVD + GQPD + BJZE
−FQTD − BSTE + JQTE − GQZE + GSVE − AFJZ
−AGPS + BFPS + AFST − FJQP,

s34 = AJ2X − F2SZ + BYD2
− GZD2

− J2ZE + F2QI − AJYD
−BJXD + 2FJZD − FQYD + GQXD − BSYE + JQYE
+GSZE − AFJI + AGDI − BFDI + BJEI − GQEI
+AFSY − AGSX + BFSX − FJQX,
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s41 = A2 JM − A2GX − CF2X + F2PQ + B2LD − B2XE − ABMD
+CFMD − CGLD + AGPD − BFPD − CJME + BJPE
+BMQE + CGXE − GPQE − ABJL + CFJL + 2ABFX
−AFJP − AFMQ + AGLQ − BFLQ,

s42 = A2 JN − A2GY − CF2Y + F2QT + B2MD − B2YE − ABND
+CFND − CGMD − CJNE + AGTD − BFTD + BJTE
+BNQE + CGYE − GQTE − ABJM + CFJM + 2ABFY
−AFJT − AFNQ + AGMQ − BFMQ,

s43 = A2 JT − A2GZ − CF2Z + F2QV + B2PD − B2ZE − ABTD
−CGPD + CFTD + AGVD − BFVD − CJTE + BJVE
+CGZE + BQTE − GQVE − ABJP + 2ABFZ + CFJP
−AFJV + AGPQ − BFPQ − AFQT,

s44 = A2 JY + F2QZ + B2XD − A2GI − CF2I − B2EI − ABYD
+AGZD − BFZD + CFYD − CGXD + BJZE − CJYE
+BQYE − GQZE + 2ABFI + CGEI − ABJX − AFJZ
+CFJX − AFQY + AGQX − BFQX.

Definition 2.5. The mathematical expressions for the mean curvature and the Gauss−Kronecker curvature of a
hypersurface x in 5-space are provided by the following formulas

K1 =
1
4

tr (S) , (1)

K4 = det(S) =
det II
det I

, (2)

where

tr (S) = [(EN + GL − 2FM)
(
CS −Q2

)
+

(
EG − F2

)
(SV + IC)

− (GI +NS) A2
− (LS + EI) B2

− (CN + GV) D2
− (EV + CL) J2

+2(A2 JY + B2XD +D2BT + J2AP + F2QZ + CJMD − ABYD
−BJPD + ANQD − AJTD − BMQD + AGZD − BFZD + CFYD
−AGPS − CGXD + FJVD + GQPD + BJZE − CJYE + BFPS
−BSTE − FQTD + BQYE + JQTE + AGQX − BFQX − GQZE
+ABFI − FJPQ + AFST − AFQY + ABMS − ABJX − AJMQ
+BJLQ + CFJX − AFJZ)]/det I.

A hypersurface x is j-minimal ifK j = 0 identically on x.

Definition 2.6. In E5, the curvature formulasKi, where i = 0, ..., 4, are obtained by the characteristic polynomial of
S:

PS(λ) =
4∑

k=0

(−1)k
skλ

n−k = det(S − λI4) = 0, (3)

I4 describes the identity matrix of order 4. Hence, we reveal the curvature formulas
(n

i
)
Ki = si. Here,

(4
0
)
K0 = s0 = 1

(by definition),
(4

1
)
K1 = s1, . . . ,

(4
4
)
K4 = s4, andK1 is the mean curvature,K4 is the Gauss-Kronecker curvature, and(n

r
)
= n!

r!(n−r)! .

See [23] for details. See also [16, 17, 21, 22] for details of dimension 4.
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3. A Helicoidal Hypersurfaces Family in E5

In this section, we establish the definition of a helicoidal hypersurfaces family in five-dimensional
Euclidean space E5. Consider an open interval I, which is a subset of R2, and let γ : I ⊂ R2

−→ Π ⊂ R5

represent a surface in E5. Furthermore, let ℓ denote a straight line in Π.

Definition 3.1. A rotational hypersurface inE5 is characterized as a hypersurface formed by rotating a profile surface
around an axis E5. The rotation is accompanied by the parallel displacement of lines orthogonal to the axis ℓ, where
the displacement speed is proportionate to the rotational speed. Consequently, the resulting hypersurface is identified
as the helicoidal hypersurface with the axis ℓ and pitches a and b, both of which are real numbers excluding zero.
When both a and b are equal to zero, the resulting hypersurface is simply a rotational hypersurface.

Considering the line ℓ defined by the vector (0, 0, 0, 0, 1)T, the rotation matrix R = R(s, t) in five-
dimensional Euclidean space can be mathematically represented by

R =


cos s − sin s 0 0 0
sin s cos s 0 0 0

0 0 cos t − sin t 0
0 0 sin t cos t 0
0 0 0 0 1

 , s, t ∈ [0, 2π), (4)

where R·ℓ = ℓ, Rt·R = R·Rt = I5, detR = 1. When the axis of rotation is ℓ, a Euclidean transformation
occurs, through which the axis is converted to the x5-axis of E5. The parametrization of the profile surface
is defined by γ(u, v) =

(
f , 0, 1, 0, h

)
, where f , 1, and h are differentiable functions that depend on u and v,

both belonging to the open interval I ⊂ R2. In E5, the helicoidal hypersurfaces family x, spanned by the
vector (0, 0, 0, 0, 1), can be expressed as x = R·γT + (as + bt) ℓT, where u and v are in I, and s and t are in the
interval [0, 2π), while a and b are real numbers excluding zero.

Consequently, the helicoidal hypersurfaces family can be expressed in the following explicit form

x(u, v, s, t) =


f (u, v) cos s
f (u, v) sin s
1(u, v) cos t
1(u, v) sin t

h(u, v) + as + bt

 . (5)

4. Curvatures in E5

In this section, we reveal the curvature formulas of any hypersurface x = x(u, v, s, t) in E5.

Theorem 4.1. For a hypersurface x in E8, the curvature formulas are given by

K0 = 1, 4K1 = −
b

a
, 6K2 =

c

a
, 4K3 = −

d

a
, K4 =

e

a
. (6)

Here, PS(λ) = aλ4 + bλ3 + cλ2 + dλ + e = 0 represents the characteristic polynomial of shape operator matrix S,
a = det I, e = det II, and I, II correspond to the first, and the second fundamental form matrices, respectively.

Proof. By computing the product matrix I−1·II, we obtain the shape operator matrix S for the hypersurface
x in five-dimensional space. Next, we compute the curvature formulas, denoted as x, where i takes values
from 0 to 4. This computation reveals the characteristic polynomial PS(λ) = det(S − λI4) = 0 associated
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with S. Consequently, we determine the following curvatures in five-dimensional space(
4
0

)
K0 = 1,(

4
1

)
K1 =

4∑
i=1

ki = −
b

a
,

(
4
2

)
K2 =

4∑
1=i1<i2

ki1 ki2 =
c

a
,

(
4
3

)
K3 =

4∑
1=i1<i2<i3

ki1 ki2 ki3 = −
d

a
,

(
4
4

)
K4 =

4∏
i=1

ki =
e

a
.

Here, ki, where i ranges from 1 to 4, represents the principal curvatures of the hypersurface x.

For the case of E4, refer to the works by Güler et al. [12, 16, 17, 21, 22] for more details.

Theorem 4.2. A hypersurface x = x(u, v, s, t) in E5 satisfies the following relation

K0V − 4K1IV + 6K2III − 4K3II +K4I = O,

where I, II, III, IV,V denote the fundamental form matrices of the hypersurface, O describes the zero matrix, each
having a order of 4 × 4.

Proof. By considering n = 4 in the determinant expression given (3), the result is evident.

By taking the first derivatives of the family defined by Eq. (5) with respect to u, v, s, and t,we obtain the
following quantities

I =


f 2
u + 1

2
u + h2

u fu fv + 1u1v + huhv ahu bhu
fu fv + 1u1v + huhv f 2

v + 1
2
v + h2

v ahv bhv
ahu ahv f 2 + a2 ab
bhu bhv ab 12 + b2

 . (7)

Moreover, we can express the determinant of the first fundamental form matrix given by (7) as follows

det I =
(
a212 + b2 f 2

)
B2 + f 212

(
A2 +B2 + C2

)
,

where A = 1uhv − 1vhu, B = fu1v − fv1u,C = fuhv − fvhu.
The Gauss map of the helicoidal hypersurfaces family given by Eq. (5) is characterized by the following

parametrization

G =
1

(det I)1/2


− f1A cos s − a1B sin s
a1B cos s − f1A sin s
f1C cos t − b fB sin t
b fB cos t + f1C sin t

− f1B

 . (8)

By calculating the second derivatives of xwith respect to u, v, s, and t, and utilizing them in conjunction
with Eq. (8), we obtain the following second fundamental form matrix

II =
1

(det I)1/2


f1

(
−A fuu + C1uu −Bhuu

)
f1

(
−A fuv + C1uv −Bhuv

)
a fu1B b f1uB

f1
(
−A fuv + C1uv −Bhuv

)
f1

(
−A fvv + C1vv −Bhvv

)
a fv1B b f1vB

a fu1B a fv1B f 21A 0
b f1uB b f1vB 0 f12C

 .
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The product matrix I−1·II yields the shape operator matrix S of the hypersurface x. Subsequently, we calcu-
late the mean curvature K1 and the Gauss−Kronecker curvature K4. Therefore, the following relationship
holds.

Theorem 4.3. The mean curvature and Gauss−Kronecker curvature of the helicoidal hypersurfaces family determined
by Eq. (5) are given by, respectively,

K1 =
f1

4 (det I)3/2
[
((

b2 f 2 + a212
) (

f 2
v + 1

2
v

)
+ f 212

(
f 2
v + 1

2
v + h2

v

)) (
−A fuu +Bhuu − C1uu

)
+

(
a21C + b2 fA

)
B2 + f1

(
fC + A1

) (
A2 +B2 + C2

)
−

((
b2 f 2 + a212

) (
f 2
u + 1

2
u

)
+ f 212

(
f 2
u + 1

2
u + h2

u

)) (
A fvv + C1vv +Bhvv

)
],

K4 =
f 212

(
b2B

(
12

vΨ1 + 1
2
uΨ2

)
+ 13C

(
a2B

(
f 2
vΨ3 − f 2

uΨ4

)
+ f 3AΨ5

))
(det I)3 ,

where

det I =
(
a212 + b2 f 2

)
B2 + f 212

(
A2 +B2 + C2

)
,

Ψ1 = a2 f 2
uB

3 + A2 f 3 (
1u fuv − 1v fuu

)
+ AC f 3 (

1u1uv − 1v1uu
)

+AB f 3 (
1uhuv − 1vhuu

)
− A f 3 fu12

vhuu,

Ψ2 = − fv
(
a2B3 + f 3A

(
hu

(
1u1vv − 1v1uv

)
+ 1u

(
1uhvv − 1vhuv

)))
+A

(
1u fvv − 1v fuv

)
+ fu1v

(
1uhvv − 1vhuv

)
+ fuhv

(
1u1vv − 1v1uv

)
,

Ψ3 = A
(

fu fuv − fv fuu
)
+B

(
fuhuv − fvhuu

)
+ C

(
fu1uv − fv1uu

)
,

Ψ4 = A
(

fu fvv − fv fuv
)
+B

(
fuhvv − fvhuv

)
+ C

(
fu1vv − fv1uv

)
,

Ψ5 =
(
A fuu +Bhuu + C1uu

) (
A fvv +Bhvv + C1vv

)
−

(
A fuv +Bhuv + C1uv

)2 ,

A = 1uhv − 1vhu, B = fu1v − fv1u, C = fuhv − fvhu.

Here, f = f (u, v), 1 = 1(u, v), h = h(u, v), fu =
∂ f
∂u , fuv =

∂2 f
∂u∂v , etc., a,b ∈ R− {0}.

Through the utilization of the Cayley–Hamilton theorem, we uncover the characteristic polynomial of
S as follows

K0λ
4
− 4K1λ

3 + 6K2λ
2
− 4K3λ +K4 = 0.

The curvaturesKi of the helicoidal hypersurfaces family x can also be determined by solving the aforemen-
tioned equation.

An umbilical point on a hypersurface is a point where all principal curvatures are equal, implying that
the surface exhibits uniform curvature in all directions at that particular point. Subsequently, we give the
following.
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Theorem 4.4. The helicoidal hypersurfaces family x in E5 possesses an umbilical point if and only if the following
condition is satisfied

f 212[
((

b2 f 2 + a212
) (

f 2
v + 1

2
v

)
+ f 212

(
f 2
v + 1

2
v + h2

v

)) (
−A fuu +Bhuu − C1uu

)
+

(
a21C + b2 fA

)
B2 + f1

(
fC + A1

) (
A2 +B2 + C2

)
−

((
b2 f 2 + a212

) (
f 2
u + 1

2
u

)
+ f 212

(
f 2
u + 1

2
u + h2

u

)) (
A fvv + C1vv +Bhvv

)
]4

−256
[(

a212 + b2 f 2
)
B2 + f 212

(
A2 +B2 + C2

)]3

.
[
b2B

(
12

vΨ1 + 1
2
uΨ2

)
+ 13C

(
a2B

(
f 2
vΨ3 − f 2

uΨ4

)
+ f 3AΨ5

)]
= 0.

Proof. Given that the hypersurface x possesses an umbilical point, it can be rigorously shown that it satisfies
the equation (K1)4 = K4.

Problem 4.5. Determine the solutions h = h(u, v) of the aforementioned second-order partial differential Eq.

Corollary 4.6. Consider x : M4
⊂ E4

−→ E5, an immersion defined by Eq. (5). The immersion x exhibits zero mean
curvature if and only if the subsequent condition is fulfilled(

a21C + b2 fA
)
B2 + f1

(
fC + A1

) (
A2 +B2 + C2

)
+

((
b2 f 2 + a212

) (
f 2
v + 1

2
v

)
+ f 212

(
f 2
v + 1

2
v + h2

v

)) (
−A fuu +Bhuu − C1uu

)
−

((
b2 f 2 + a212

) (
f 2
u + 1

2
u

)
+ f 212

(
f 2
u + 1

2
u + h2

u

)) (
A fvv + C1vv +Bhvv

)
= 0,

where f , 1, h , 0.

Problem 4.7. Investigate and obtain the solutions h = h(u, v) of the second-order partial differential Eq. mentioned
above.

Corollary 4.8. Consider x : M4
⊂ E4

−→ E5, an immersion given by Eq. (5). The immersion x exhibits zero
Gauss−Kronecker curvature if and only if the following equation is satisfied

b2B
(
12

vΨ1 + 1
2
uΨ2

)
+ 13C

(
a2B

(
f 2
vΨ3 − f 2

uΨ4

)
+ f 3AΨ5

)
= 0,

where f , 1, h , 0.

Problem 4.9. Find the solutions h = h(u, v) of the aforementioned second-order partial differential Eq.

5. Helical Hypersurfaces Family Supplying ∆x = Ax in E5

In this section, we give the Laplace–Beltrami operator of a smooth function in E5. Then we calculate it
by using the helicoidal hypersurfaces family defined by Eq. (5).

Definition 5.1. The Laplace–Beltrami operator of a smooth function ϕ = ϕ(x1, x2, x3, x4) |D (where D ⊂ R4)
belonging to the class C4 and depending on the first fundamental form, is the differential operator defined by

∆ϕ =
1

g1/2

4∑
i, j=1

∂

∂xi

(
g1/2gi j ∂ϕ

∂x j

)
, (9)

where
(
gi j

)
=

(
gkl

)−1 and g = det
(
gi j

)
.
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Hence, the Laplace–Beltrami operator associated with the first fundamental form of the helicoidal
hypersurfaces family x defined by Eq. (5), is given by

∆x = 1
g1/2

[
∂
∂u

(
g1/2g11 ∂x

∂u

)
+ ∂
∂u

(
g1/2g12 ∂x

∂v

)
+ ∂
∂u

(
g1/2g13 ∂x

∂s

)
+ ∂
∂u

(
g1/2g14 ∂x

∂t

)
+ ∂
∂v

(
g1/2g21 ∂x

∂u

)
+ ∂
∂v

(
g1/2g22 ∂x

∂v

)
+ ∂
∂v

(
g1/2g23 ∂x

∂s

)
+ ∂
∂v

(
g1/2g24 ∂x

∂t

)
+ ∂
∂s

(
g1/2g31 ∂x

∂u

)
+ ∂
∂s

(
g1/2g32 ∂x

∂v

)
+ ∂
∂s

(
g1/2g33 ∂x

∂s

)
+ ∂
∂s

(
g1/2g34 ∂x

∂t

)
+ ∂∂t

(
g1/2g41 ∂x

∂u

)
+ ∂
∂t

(
g1/2g42 ∂x

∂v

)
+ ∂
∂t

(
g1/2g43 ∂x

∂s

)
+ ∂
∂t

(
g1/2g44 ∂x

∂t

)]
,

(10)

where

g11 =

(
f 2
v + 1

2
v

) (
a212 + b2 f 2

)
+ f 212

(
f 2
v + 1

2
v + h2

v

)
det I

,

g12 = −

(
a212 + b2 f 2

) (
fu fv + 1u1v

)
+ f 212 (

fu fv + 1u1v + huhv
)

det I
= g21,

g13 =
a12

((
fu fv + 1u1v

)
hv −

(
f 2
v + 1

2
v

)
hu

)
det I

= g31,

g14 =
b f 2

((
fu fv + 1u1v

)
hv −

(
f 2
v + 1

2
v

)
hu

)
det I

= g41,

g22 =

(
f 2
u + 1

2
u

) (
a212 + b2 f 2

)
+ f 212

(
f 2
u + 1

2
u + h2

u

)
det I

,

g23 =
a12

((
fu fv + 1u1v

)
hu −

(
f 2
u + 1

2
u

)
hv

)
det I

= g32,

g24 =

(
fu fv + 1u1v

)
hu − b f 2

((
f 2
u + 1

2
u

)
hv

)
det I

= g42,

g33 =
b2B2 + 12

(
A2 +B2 + C2

)
det I

,

g34 = −
ab

(
fu1v − fv1u

)2

det I
= g43,

g44 =
a2B2 + f 2

(
A2 +B2 + C2

)
det I

.

By utilizing the inverse matrix mentioned above of I as referenced in (7) and differentiating the functions
in (10) with respect to u, v, s, and t, respectively, we obtain the following results.

Theorem 5.2. The Laplace–Beltrami operator of the helicoidal hypersurfaces family described by Eq. (5) can be
expressed as ∆x = 4K1G, whereK1 represents the mean curvature and G corresponds to the Gauss map of x.

Proof. By performing direct computations using Eq. (10), we arrive at the expression for x.

Theorem 5.3. Let x : M4
⊂ E4

−→ E5 be an immersion given by Eq. (5). Then, ∆x = Ax, whereA is the matrix of
order 5, if and only if x hasK1 = 0, indicating that it is a minimal helical hypersurface.
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Proof. We establish the Eq. 4K1G = Ax, thereby leading us to the subsequent deductions

a11 f cos s + a12 f sin s + a131 cos t + a141 sin t + a15 (h + as + bt)
= Φ

(
− f1A cos s − a1B sin s

)
,

a21 f cos s + a22 f sin s + a231 cos t + a441 sin t + a25 (h + as + bt)
= Φ

(
a1B cos s − f1A sin s

)
,

a31 f cos s + a32 f sin s + a331 cos t + a341 sin t + a35 (h + as + bt)
= Φ

(
f1C cos t − b fB sin t

)
,

a41 f cos s + a42 f sin s + a431 cos t + a441 sin t + a45 (h + as + bt)
= Φ

(
b fB cos t + f1C sin t

)
,

a51 f cos s + a52 f sin s + a531 cos t + a541 sin t + a55 (h + as + bt)
= −Φ f1B,

whereA is the 5 × 5 matrix Φ = 4K1 (det I)−1/2 . Upon taking the second derivative of the aforementioned
ODEs with respect to the variable s, the resulting outcomes are as follows

a15 = a25 = a35 = a45 = a55 = 0, Φ = 0.

Consequently, the following expression emerges

ai1 f cos s + ai2 f sin s = 0,

where i = 1, ..., 5. By considering the linear independence of the functions sin and cos with respect to s, it
can be deduced that all components of the matrixA are equal to 0. SinceA = 4K1 (det I)−1/2, it follows that
K1 must be 0. This crucially implies that x represents a minimal helicoidal hypersurface.
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