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Abstract. In this paper, we study the geometric characterizations and classify of the Riemannian manifold
with generalized gradient Ricci-Yamabe soliton or almost generalized gradient Ricci-Yamabe soliton. In
addition, theorems were obtained to construct a model space with gradient Ricci-Yamabe soliton, general-
ized gradient Ricci-Yamabe soliton, almost gradient Ricci-Yamabe soliton and almost generalized gradient
Ricci-Yamabe soliton.

1. Introduction

The notion of the Ricci soliton was introduced by Hamilton [6], which is a natural generalization of
Einstein’s metrics and self-similar solutions to the Ricci flow. The Ricci soliton is defined on a Riemannian
manifold (M, 1) as follows:

S +
1
2
LX1 = ρ1, (1)

where X is a smooth vector field on M, LX is the Lie derivative with respect to X, S is a Ricci tensor of 1
and ρ is a constant ( see [2], [3], [4] and [9]). The Ricci soliton is said to be expanding, steady, or shrinking
according to ρ < 0, ρ = 0 or ρ > 0, respectively. If X is a gradient of some smooth function h, that is X = ∇h,
then M is called a gradient Ricci soliton with a potential function h or (h, ρ). In this case, the equation (1)
reduces to

S + ∇2h = ρ1, (2)

where ∇2h is the Hessian form of h. If ρ is a function on M, then M is called an almost gradient Ricci soliton
with (h, ρ) (see [7]).

A Riemannian metric 1 on a Riemannian manifold M is called a Yamabe soliton if there exists a smooth
vector field X and a constant ρ such that

(r − ρ)1 =
1
2
LX1, (3)
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where r is the scalar curvature of 1 (see [2], [3], [4], [9] and [12]). When X = ∇h for some function h on M,
we say that M is a gradient Yamabe soliton with a potential function h or (h, ρ). In this case, the equation
(3) becomes

(r − ρ)1 = ∇2h. (4)

If ρ is a function on M, then M is called an almost gradient Yamabe soliton with (h, ρ).
There are many attempts and papers for Ricci and Yamabe solitons and generalizations with their

geometric characterizations. In 2019, S. Guler and M. Crasmareanu [5] introduced the notion of Ricci-
Yamabe flow on a Riemannian manifold by considering a scalar combination of the Ricci flow and the
Yamabe flow. In [3], the authors introduced the notion of Ricci-Yamabe soliton (1,X, λ, α, β) from the Ricci-
Yamabe flow on a Riemannian manifold as there exists a smooth vector field X on M and constants λ, α, β
such that

LX1 + 2αS = (2λ − βr)1. (5)

If there exists a smooth function λ on M satisfying the equation (5), then M is said to admit almost Ricci-
Yamabe soliton[7]. In [7], the authors examine the isometries of almost Ricci-Yamabe solitons and showed
that the potential function of a compact gradient almost Ricci-Yamabe soliton agrees with the Hodge-de
Rham potential function. In particular, if X = ∇h for some smooth function h on M, we say that M is a
gradient Ricci-Yamabe soliton with (1, h, λ, α, β). In this case, the equation (5) becomes

∇
2h + αS = (λ −

1
2
βr)1. (6)

If λ is a function on M, then M or 1 is said to be an almost gradient Ricci-Yamabe soliton [7]. The notion of
gradient Ricci-Yamabe soliton generalizes a large class of solitons like equations. Ricci-Yamabe soliton (or
gradient Ricci-Yamabe soliton) is said to be a (see [2] and [5])
(a) Ricci soliton (or gradient Ricci soliton) if α = 1, β = 0
(b) Yamabe soliton (or gradient Yamabe soliton) if α = 0, β = 1
(c) Einstein soliton (or gradient Einstein soliton) if α = 1, β = −1
(d) ρ-Einstein soliton (or gradient ρ-Einstein soliton) if α = 1, β = −2ρ.

The Ricci-Yamabe soliton or gradient Ricci-Yamabe soliton is said to be proper if α , 0, 1 (see [2] and [8]).
In [4], the authors extended these solitons to a more generalized version, that is a generalized Ricci-Yamabe
soliton.

An n-dimensional Riemannian manifold (M, 1), n > 2 is said to admit a generalized Ricci-Yamabe soliton
(1,X, λ, α, β,w) if

LX1 + 2αS = (2λ − βr)1 + 2wV#V#, (7)

where λ, α, β,w ∈ R and V# is the 1-form dual to V. If V is a gradient of some function h on M, then M or 1
is called a generalized gradient Ricci-Yamabe soliton (1, h, λ, α, β,w). In this case, the equation (7) becomes

∇
2h + αS = (λ −

1
2
βr)1 + wdh ⊗ dh. (8)

If λ is a function on M, then M or 1 is said to be an almost generalized gradient Ricci-Yamabe soliton.
The generalized gradient Ricci-Yamabe soliton is said to be proper if w , 0.

A generalized Ricci-Yamabe soliton is said to be a (see [4])
(a) proper Ricci-Yamabe soliton if w = 0 and α , 0, 1.
(b) Ricci soliton if α = 1, β = w = 0.
(c) Yamabe soliton if α = w = 0, β = 2.
(d) quasi-Yamabe soliton if α = 0 and β = 2.
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(e) Einstein soliton if α = 1, β = −1 and w = 0.
(f) ρ-Einstein soliton if α = 1, β = −2ρ and w = 0.

In [4], the authors investigated a Sasakian 3-metric as a generalized gradient Ricci-Yamabe soliton and
some related results and they suggested a 3-dimensional unit sphere S3 as an example of a generalized
gradient Ricci-Yamabe soliton by taking an orthonormal basis for the tangent space at any point of S3.
In [3], they studied Ricci-Yamabe solitons and a 3-dimensional Riemannian manifold with a model space
of gradient Ricci-Yamabe soliton. In [8], the present authors studied a gradient Ricci-Yamabe soliton and
gave theorems for constructing a gradient Ricci-Yamabe soliton on the product manifold. In this paper, we
studied geometric characterizations of the manifold with almost gradient Ricci-Yamabe soliton and almost
generalized gradient Ricci-Yamabe soliton in sections 2, 6, and 7. Moreover, we obtained theorems for the
construction of the model space admitting a gradient Ricci-Yamabe soliton, a generalized gradient Ricci-
Yamabe soliton, an almost gradient Ricci-Yamabe soliton, and an almost generalized gradient Ricci-Yamabe
soliton on the product manifold in Theorems 2.3, 2.4, 6.3, and 7.2 respectively.

We prepare the following theorem for later use.

Theorem 1.1. ([11]) Let M be a complete Riemannian manifold of dimension n ≥ 2 and suppose it admits a special
concircular field ρ satisfying the equation

∇µ∇λρ = (−kρ + b)1µλ

Then M is one of the following manifolds :
(I, A) if k = b = 0, the direct product V × I of an (n-1)-dimensional complete Riemannian manifold V with a straight
line I,
(I, B) if k = 0 but b , 0, a Euclidean space,
(II, A) if k = −c2 < 0 and N = 0, a pseudo-hyperbolic space of zero or negative type,
(II, B) if k = −c2 < 0 and N = 1, a hyperbolic space of curvature −c2, and
(III) if k = c2 > 0, a spherical space of curvature c2,
where c is a positive constant and N is the number of isolated stationary points of a concircular scalar field ρ.

This paper is organized as follows: After an introduction, section 2 introduces the results of geometric
characterization of generalized gradient Ricci-Yamabe soliton in the product manifold and gave methods
for construction of model space of gradient Ricci-Yamabe soliton in Theorems 2.3, and 2.4. In section 3, we
study the geometric characterization of the warped product manifold Rn

× f F with generalized gradient
Ricci-Yamabe soliton. In sections 4 and 5, we study the geometric characterizations of generalized gradient
Ricci-Yamabe soliton in the warped product manifold B × f F and the twisted product manifold B × f F
respectively. In sections 6 and 7, we study the geometric characterizations of almost gradient Ricci-Yamabe
soliton and almost generalized gradient Ricci-Yamabe soliton in the product manifold and obtain Theorem
6.3 and Theorem 7.2 that how we can construct the model space.

2. Generalized gradient Ricci-Yamabe soliton in the product manifold

Let M be the product manifold B×F of an n-dimensional Riemannian manifold (B, 1) and a p-dimensional
Riemannian manifold (F, 1̄). If M = B×F be a generalized gradient Ricci-Yamabe soliton with(1̃, h̃, λ̃, α̃, β̃, w̃),
then we obtain

∇bh̃a + α̃Sba = (λ̃ − 1
2 β̃r̃)1ba + w̃h̃bh̃a,

∂bh̃x = w̃h̃bh̃x,

∇̄yh̃x + α̃S̄yx = (λ̃ − 1
2 β̃r̃)1̄yx + w̃h̃yh̃x,

r̃ = r + r̄,

(9)
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where ∇ and ∇̄ are Levi-Civita connections for 1 and 1̄ respectively, and S and S̄ are Ricci curvatures on B
and F respectively, and r̃ , r and r̄ are scalar curvatures on M, B and F respectively. The ranges of the indices
a, b, ..., and x, y, ... are 1, 2, ...,n, and n + 1,n + 2, ...,n + p, respectively. Moreover h̃a =

∂h̃
∂ua

, h̃x =
∂h̃
∂ūx

for the
coordinate neighborhoods {Ũ = (U, Ū); Ũh = (ua, ūx)} in B × F.

Assume that the potential function h̃ is repressed by h̃ = k + l for some function k on B and l on F
respectively. Then, from (9), we get

∇bka + α̃Sba = (λ̃ − 1
2 β̃r̃)1ba + w̃kbka,

∂blx = w̃kblx,

∇̄ylx + α̃S̄yx = (λ̃ − 1
2 β̃r̃)1̄yx + w̃lylx.

(10)

Then we see that K̃ = λ̃ − 1
2 β̃r̃ becomes a constant from the first and third equation of (10), and that r̃

becomes a constant. From the second equation of (10), we see that w̃ = 0 or ka = 0 or lx = 0.
In the first case where w̃ = 0, M becomes a gradient Ricci-Yamabe soliton. In addition, B and F become
gradient Ricci solitons with ( k

α̃ ,
K̃
α̃ ) and ( l

α̃ ,
K̃
α̃ ) respectively if α̃ , 0. If α̃ = 0, then the first and third

equations of (10) become ∇bka = K̃1ba and ∇̄ylx = K̃1̄yx. Hence if we consider these equations and Theorem
1.1, then B and F become Euclidean spaces, when K̃ , 0, and M becomes the direct product V × I of an
(n − 1)-dimensional complete Riemannian manifold V with a straight line I when K̃ = 0.
In the second case where ka = 0, that is k is a constant, then the base space B and F become Einstein if α̃ , 0.
If α̃ = 0, then K̃ = 0. Finally, let us consider the third case where lx = 0, that is l is a constant. If we think
about it in the same way as in the second case, we see that F becomes Einstein if α̃ , 0. If α̃ = 0, then K̃ = 0.
Thus we have

Theorem 2.1. Let M = B × F be a generalized gradient Ricci-Yamabe soliton with (1̃, h̃, λ̃, α̃, β̃, w̃). If h = k + l for
some functions l and m on B and F respectively, then K̃ and r̃ become constants and M becomes one of the following
three cases :
(a) M becomes a gradient Ricci soliton with ( k+l

α̃ ,
K̃
α̃ ). Moreover, B and F become gradient Ricci solitons with ( k

α̃ ,
K̃
α̃ )

and ( l
α̃ ,

K̃
α̃ ) respectively if α̃ , 0. And if α̃ = 0, then B and F become Euclidean spaces if K̃ , 0, and M becomes the

direct product V × I of an (n− 1)-dimensional complete Riemannian manifold V manifold a straight line I and W × J
of a (p − 1)-dimensional complete Riemannian manifold W manifold a straight line J respectively if K̃ = 0.
(b) B becomes an Einstein or K̃ = 0 .
(c) F becomes an Einstein or K̃ = 0.

Even if λ̃ is a function on M̃, that is M̃ is a generalized gradient almost Ricci-Yamabe soliton, then we
have a similar result of Theorem 2.1 except r̃ becomes a constant. Thus we have

Theorem 2.2. Let M = B × F be an almost generalized gradient Ricci-Yamabe soliton with (1̃, h̃, λ̃, α̃, β̃, w̃). If
h = k + l for some functions l and m on B and F respectively, then K̃ becomes a constant and M becomes one of the
following three cases :
(a) M becomes a gradient Ricci soliton with ( k+l

α̃ ,
K̃
α̃ ). Moreover, B and F become gradient Ricci solitons with ( k

α̃ ,
K̃
α̃ )

and ( l
α̃ ,

K̃
α̃ ) respectively if α̃ , 0. And if α̃ = 0, then B and F become Euclidean spaces if K̃ , 0, and M becomes the

direct product V × I of an (n− 1)-dimensional complete Riemannian manifold V manifold a straight line I and W × J
of a (p − 1)-dimensional complete Riemannian manifold W manifold a straight line J respectively if K̃ = 0.
(b) B becomes an Einstein or K̃ = 0 .
(c) F becomes an Einstein or K̃ = 0.

In [8], the present authors proved

Theorem 2.3. Let B and F be gradient Ricci solitons with (h, ρ) and (h̄, ρ̄) respectively. Assume thatρ = ρ̄ and r+r̄ is a
constant, then the product space M = B×F becomes a gradient Ricci-Yamabe soliton with (1+1̄, αh+αh̄, α(r+r̄)

n+p , α,
−2α
n+p ).
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So, if we use Theorem 2.3, then we can construct the model space of gradient Ricci-Yamabe solitons on
the product space.

Also if we refer to Theorems 2.1 and 2.2, then we can prove the following Theorem using the equations
(8) and (10).

Theorem 2.4. Let B be a gradient Ricci-Yamabe soliton with (1, k, λ, α, β) and F be an Einstein space, that is S̄ = µ1̄
for a constant µ. Assume that r or ||ka||

2 are constant, then the product space M = B × F becomes a generalized
gradient Ricci-Yamabe soliton with (1̃, h̃, λ̃, α̃, β̃, w̃) = (1 + 1̄, k, λ, α, 2(λ−µα)

r+r̄ ,w), where w̃ satisfies

(λ −
βr
2
− µα)1ab = w̃kakb. (11)

Proof. If we take (h̃, λ̃, α̃, β̃, w̃) as h̃ = k, λ̃ = λ, α̃ = α, β̃ = 2(λ−µα)
(r+r̄) and w̃ satisfying the equation (11), then

we can calculate the components of ∇̃h̃ + α̃S̃ and (λ̃ − 1
2 β̃r̃)1̃ + w̃dh̃dh̃ as follows

∇̃∇̃h̃ + α̃S̃ =
(
∇bka + {(λ −

βr
2 )1ba − ∇bka} 0

0 α̃S̄yx

)
=

(
(λ − βr2 )1ba 0

0 αµ1̄yx

)
, (12)

(λ̃ −
1
2
β̃r̃)1̃ + w̃dh̃dh̃ =

(
(λ − βr2 )1ba 0

0 αµ1̄yx

)
, (13)

where we have put S̄ = µ1̄.
Hence we can see that the following equation

∇̃∇̃h̃ + α̃S̃ = (λ̃ −
1
2
β̃r̃)1̃ + w̃dh̃dh̃ (14)

is true on the product space B × F, that is B × F becomes a generalized gradient Ricci-Yamabe soliton with
(1̃, h̃, λ̃, α̃, β̃, w̃).

Hence if we use Theorem 2.3, we can construct the model space of generalized Ricci-Yamabe solitons
on the product space.

3. Generalized gradient Ricci-Yamabe soliton in the warped product manifold Rn × f F

Let the warped product manifold R× f F be a generalized gradient Ricci-Yamabe soliton with (1̃, h̃, λ̃, α̃, β̃, w̃).
Then we get

h̃11 −
α̃p
f f11 = λ̃ − 1

2 β̃r̃ + w̃h̃1h̃1,

∂1h̃x −
f1
f h̃x = w̃h̃1h̃x,

(λ̃ − 1
2 β̃r̃) f 21̄yx + w̃h̃yh̃x = ∇̄yh̃x + f f 1h̃11̄yx + α̃[S̄yx − f (△ f )1̄yx − (p − 1)|| f1||21̄yx],

r̃ = r̄
f 2 −

2p(△ f )
f −

p(p−1)
f 2 || f1||2,

(15)

where ∇̄ is Levi-Civita connection for 1̄ on F, and the ranges of the indices x and y are 2,3,· · · , p+1. Moreover
f1 =

∂ f
∂t , h̃1 =

∂h̃
∂t , h̃x =

∂h̃
∂ūx

for the coordinate neighborhoods {Ũ = (U, Ū); Ũh = (t, ūx)} in R × F.
From (15), we have
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Theorem 3.1. If the warped product manifold M = R × f F is a proper generalized gradient Ricci-Yamabe soliton
with (1̃, h̃, λ̃, α̃, β̃, w̃), then we have the followings :
(a) If h̃x = 0 for all x = 2, 3, ..., p + 1, then F becomes an Einstein, K̃ = λ̃ − 1

2 β̃r̃ and r̃ depend only on R. So r̄ is a
constant.
(b) If h̃1 = 0, then either M is the Riemann product of R and a special generalized gradient Ricci-Yamabe soliton or F
is an Einstein,
where p is the dimension of F.

Proof. (a) Assume that h̃x = 0 for all x that is h̃ depends only on R. Then we see that K̃ = λ̃ − 1
2 β̃r̃

becomes a function on R from the first equation of (15), so that r̃ = r̃(t) and r̄ become a constant, where t is
a parameter of R.

On the other hand, from the third equation of (15), we obtain

α̃S̄yx = [K̃ f 2
− f f 1h̃1 + α̃ f (△ f ) + α̃(p − 1)|| f1||2]1̄yx. (16)

Then the equation (16) is reduced to the form α̃S̄yx =
α̃r̄
p 1̄yx, that is F is an Einstein when α̃ , 0.

(b) If h̃1 = 0, then see that r̄ becomes a constant from the first and fourth equation of (15). From the second
equation of (15), we get f1h̃x = 0, and that f1 = 0 or h̃x = 0 because f and h̃ are functions that depend only on
B and F respectively. In the first case where f1 = 0, we get K̃ = 0 from the first equation of (15). Moreover,
we obtain ∇̃ j∇̃ih̃ + α̃S̃ ji = w̃h̃ jh̃i and ∇̄yh̃x + α̃S̄yx = w̃h̃yh̃x using (8) and the third equation of (15). Hence M
is the Riemann product of R and a special generalized gradient Ricci-Yamabe soliton and M itself becomes
a special generalized gradient Ricci-Yamabe soliton. The manifold is called a special generalized gradient
Ricci-Yamabe soliton if the Ricci tensor S satisfies Ric + Hessh = wdhdh for some function h and a constant
w. For the second case h̃x = 0, h̃ becomes a constant. Then we get α̃S̄yx = α̃( f△ f + (p − 1)|| f1||2 − p f f11)1̄yx
from the first and third equation of (15). Hence F becomes an Einstein.

Theorem 3.2. Let the warped product manifold M = R × f F be a generalized gradient Ricci -Yamabe soliton with
(1̃, h̃, λ̃, α̃, β̃, w̃) and h̃ = k + l for some functions k and l in R and F respectively. Then r̄ is a constant and either F
becomes an Einstein or w̃k = ln A

f for some constant A.

Proof. Since h = k + l, we get

k11 −
α̃p
f f11 = λ̃ − 1

2 β̃r̃ + w̃||k1||
2,

∂1lx −
f1
f lx = w̃k1lx,

(λ̃ − 1
2 β̃r̃) f 21̄yx + w̃lylx = ∇̄ylx + f f 1k11̄yx + α̃[S̄yx − f (△ f )1̄yx − (p − 1)|| f1||21̄yx],

r̃ = r̄
f 2 −

2p(△ f )
f −

p(p−1)
f 2 || f1||2.

(17)

From the first equation of (17), we see that K̃ = λ̃ − 1
2 β̃r̃ and r̃ depend only on R. If we combine these facts

and the fourth equation of (17), we get ∂xr̄ = 0, that is r̄ becomes a constant. Since l is a function on F,
∂1lx = 0. Hence we get lx(w̃k1 +

f1
f ) = 0 and that lx = 0 or w̃k1 +

f1
f = 0 from the second equation of (17). In

the first case lx = 0, that is l is a constant, we obtain

(λ̃ − 1
2 β̃r̃) f 21̄yx = f f 1k̃11̄yx + α̃[S̄yx − f (△ f )1̄yx − (p − 1)|| f1||21̄yx],

equivalently,

S̄yx = [ 1
α (λ̃ − 1

2 β̃r̃) f 2
−

1
α̃ f f 1k1 + f (△ f ) + (p − 1)|| f1||1]1̄yx =

r̄
p 1̄yx.
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Hence F becomes an Einstein. For the second case, we can put w̃k + ln f = lnA for some constant A,
because w̃k1 +

f1
f = ∂1(w̃k + ln f ), that is w̃k = ln A

f .

If we consider the warped product manifold M = Rn
× f F with a generalized gradient Ricci-Yamabe

soliton (1̃, h̃, λ̃, α̃, β̃, w̃), then we obtain

∇bh̃a −
α̃p
f ∇c fb = K̃1ba + w̃h̃bh̃a,

∂bh̃x −
fb
f h̃x = w̃h̃bh̃x,

∇̄yh̃x + α̃[S̄yx − f (△ f )1̄yx − (p − 1)|| fe||21̄yx] + f f dhd1̄yx = K̃ f 21̄yx + w̃h̃yh̃x,

(18)

where we have put K̃ = λ̃ − 1
2 β̃r̃.

By the similar method of the proof of Theorem 3.1, we have

Theorem 3.3. If the warped product manifold M = Rn
× f F is a proper generalized gradient Ricci-Yamabe soliton

with (1̃, h̃, λ̃, α̃, β̃, w̃), then we have the followings :
(a) If h̃x = 0 for all x = n + 1, · · ·,n + p, then F becomes an Einstein, K̃ and r̃ depend only on Rn. So r̄ becomes a
constant.
(b) If h̃a = 0 for all a = 1, 2, · · ·,n, then either M becomes an Einstein or a product manifold, that is f becomes a
constant, where h̃a =

∂h̃
∂ua

, h̃x =
∂h̃
∂ūx

for the coordinate neighborhoods {Ũ = (U, Ū); Ũh = (ua, ūx)} in Rn
× F.

Proo f . (a) Assume h̃x = 0 for all x, that is h̃ depends only on Rn. Then we see that K̃ and r̃ become
functions on Rn from the first equation of (18). So r̄ becomes a constant. By the similar method of the proof
of theorem 3.1, we see that F becomes an Einstein.

(b) If h̃a = 0 for all a, then we get f1h̃x = 0 from the second equation of (18). Since f and h̃x are functions
on Rn and F respectively, we get either f1 = 0 or h̃x = 0, that is either f is a constant or h̃ is a constant. If h̃ is
a constant, we easily see that M becomes an Einstein manifold. Hence we complete the proof.

4. Generalized gradient Ricci-Yamabe soliton in the warped product manifold B × f F

In this section, we consider the warped product manifold M = B × f F of Riemannian manifolds (B, 1)
and (F, 1̄). If M is a generalized gradient Ricci-Yamabe soliton with (1̃, h̃, λ̃, α̃, β̃), then we have

∇bh̃a + α̃(Sab −
p
f ∇b fa) = K̃1ab + w̃h̃bh̃a,

∂bh̃x −
fb
f h̃x = w̃h̃bh̃x,

∇̄yh̃x + f f ch̃c1̄yx + α̃[S̄yx − f (△ f )1̄yx − (p − 1)|| fe||21̄yx] = K̃ f 21̄yx + w̃h̃yh̃x,

(19)

where K̃ = λ̃− 1
2 β̃r̃, r̃ = r+ r̄

f 2 −
2p(△ f )

f −
p(p−1)

f 2 || fe||2, fa =
∂ f
∂ua , h̃a =

∂h̃
∂ua

, h̃x =
∂h̃
∂ūx

for the coordinate neighborhoods
{Ũ = (U, Ū); Ũh = (ua, ūx)} in B × F.

From (19), we have

Theorem 4.1. If the warped product space M = B × f F is a generalized gradient Ricci-Yamabe soliton with
(1̃, h̃, λ̃, α̃, β̃), then we have the following :
(a) If h̃a = 0 for all a = 1, 2, · · ·,n, then M is either a Riemann product of the Einstein space B with n > 2 and F or F
becomes Einstein.
(b) If h̃x = 0 for all x = n + 1, · · ·,n + p, then r̄ is a constant and F becomes an Einstein.
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Proo f . (a) Since h̃a = 0 for all a, we see that fbh̃x = 0 from the second equation of (19) and K̃ depends only
on B from the first equation of (19). Moreover, we can easily see that r̄ is a constant. The relation fbh̃x = 0
means that f is a constant or h is a constant. If h̃ is a constant, we can reduce the relation S̄ = A1̄ from the
third equation of (19) and A depends only on the base space B. Hence A is a constant on F and F becomes
an Einstein. If f is a constant, we get α̃Sab = K̃1ab and ∇̄yh̃x + α̃S̄yx = K̃ f 21̄yx + w̃h̃yh̃x, that is B becomes an
Einstein space if n > 2. Moreover, r becomes a constant because K̃ is a constant if n > 2, and F becomes a

generalized gradient Ricci-Yamabe soliton with (1̄, h̃, f 2λ̃ −
β̃
2 f 2r, α̃, β̃2 ). Hence M becomes the Riemannian

product of the Einstein space and a generalized gradient Ricci-Yamabe soliton.
(b) If h̃x = 0, then we see that K̃ depends only on the base space B from the first equation of (19) and that r̄
becomes a constant. From this fact and the third equation of (19), we see that F becomes an Einstein manifold.

If the potential function h̃ = k + l for some functions k and l on B and F respectively, then we see that
r̄ is a constant from (19) and that K̃ depends only on B. Moreover we get (w̃kb +

fb
f )lx = 0 from the second

equation of (19). Hence w̃kb +
fb
f = 0 or lx = 0. If w̃kb +

fb
f = 0, then we get ∂b(w̃k + ln f ) = 0. Since w̃k + ln f

depends only on B, we can put w̃k + ln f = lnA for some constant A, that is w̃k = ln A
f .

If l is a constant, then we obtain

f f ck̃c1̄yx + α̃[S̄yx − f (△ f )1̄yx − (p − 1)|| fe||21̄yx] = K̃ f 21̄yx,

p f f ck̃c + α̃[r̄ − p f (△ f ) − p(p − 1)|| fe||2] = pK̃ f 2
(20)

from the third equation of (19), and we see that K̃ depends only on B from the first equation of (19).
Moreover, r̄ is a constant due to the second equation of (20). From these facts and the first equation of (19),
we see that F becomes an Einstein. Thus we have

Theorem 4.2. Let the warped product space M = B × f F be a gradient Ricci-Yamabe soliton with (1̃, h̃, λ̃, α̃, β̃) and
h̃ = k + l for some functions k and l in R and F respectively, then r̄ is a constant and either F becomes an Einstein or
w̃k = ln A

f for some constant A.

5. Generalized gradient Ricci-Yamabe soliton in the twisted product manifold B × f F

In [1], the authors proved that

Theorem 5.1. If the twisted product manifold M = B × f F of the Riemannian manifolds (B, 1) and (F, 1̄) are
conformally flat and p , 1, n , 1, then M is the warped product space B × f ∗ F∗ of B and F∗, where F∗ is F with the
metric 1∗ = ( f̄ )21̄.

In the process of proving Theorem 5.1, the authors knew that the warping function f can be expressed as
a product of two functions f ∗ and f̄ in B and F respectively, that is f = f ∗ f̄ . Now, let us study the geometric
characterization of the conformally flat twisted product manifold with a generalized gradient Ricci-Yamabe
soliton. If the twisted product manifold M = B × f F is a generalized gradient Ricci-Yamabe soliton with
(1̃, h̃, λ̃, α̃, β̃). then we get

∇bh̃a + α̃(Sab −
p
f ∇b fa) = K̃1ab + w̃h̃bh̃a,

∂bh̃x −
fb
f h̃x − α̃(p − 1)( 1

f ∂b fx − 1
f 2 fb fx) = w̃h̃bh̃x,

∇̄yh̃x −
1
f ( fyh̃x + fxh̃y − f zh̃z1̄yx) + f f ch̃c1̄yx + α̃[S̄yx − f (△ f )1̄yx − (p − 1)|| fe||21̄yx

−
△̄ f
f 1̄yx −

(p−2)
f ∇̄y fx +

2(p−2)
f 2 fy fx −

(p−3)
f 2 || fw||21̄yx] = K̃ f 21̄yx + w̃h̃yh̃x,

(21)
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where K̃ = λ̃ − 1
2 β̃r̃ and r̃ = r + r̄

f 2 −
2p(△ f )

f −
2(p−1)

f 3 (△̄ f ) − p(p−1)
f 2 || fe||2 −

(p−1)(p−4)
f 4 || fx||2.

If the potential function h̃ = k+ l for some functions k and l on B and F respectively and M is conformally
flat, then the warping function f is expressed by f = f ∗ f̄ according to the proof process of Theorem 5.1 and
the first equation of (21) becomes

∇bka + α̃(Sab −
p
f ∗∇b f ∗a ) = K̃1ba + w̃kbka. (22)

Hence we see that K̃ depends only on B. Since f = f ∗ f̄ , we get 1
f ∂b fx − 1

f 2 fb fx = 0. Hence from the second

equation of (21), we get (
f ∗b
f ∗ + w̃kb)lx = 0, that is either

f ∗b
f ∗ + w̃kb = 0 or lx = 0.

In the first case, we get ∂b(ln f ∗ + w̃k) =
f ∗b
f ∗ + w̃kb = 0. Thus we can put ln f ∗ + w̃k = lnA for some constant

A, that is w̃k = ln A
f ∗ . Since ∂a(ln f ∗) = f ∗a

f ∗ , we get

∇b∇aln f ∗ = ∇b f ∗a
f ∗ −

f ∗a f ∗b
( f ∗)2 . (23)

Since K̃ depends on B, we see that

r̄
f 2 −

2p(△ f )
f −

2(p−1)
f 3 (△̄ f ) − p(p−1)

f 2 || fe||2 −
(p−1)(p−4)

f 4 || fx||2 (24)

depends on B. From these facts and the equations (22),(23), and (24), we obtain

∇b∇a(k − pα̃ln f ∗) + α̃Sba = [{λ̃ − β̃2 ( r̄
f 2 −

2p(△ f )
f −

2(p−1)
f 3 (△̄ f ) − p(p−1)

f 2 || fe||2 −
(p−1)(p−4)

f 4 || fx||2)}

−
1
2 β̃r]1ab + w̃kbka +

pα̃ f ∗a f ∗b
( f ∗)2 .

(25)

If we take h = k−pα̃ln f ∗ and w = 1
w̃ +pα̃, then hahb = ( 1

w̃ +pα̃)2 f ∗a f ∗b
( f ∗)2 , and the equation (25) can be rewritten

as

∇b∇ah + α̃Sba = [{λ̃ − β̃2 ( r̄
f 2 −

2p(△ f )
f −

2(p−1)
f 3 (△̄ f ) − p(p−1)

f 2 || fe||2

−
(p−1)(p−4)

f 4 || fx||2)} − 1
2 β̃r]1ab + whbha.

(26)

Therefore B admits a generalized gradient almost Ricci-Yamabe soliton (1, h = k− pα̃ln f ∗, λ = λ̃− β̃2 ( r̄
f 2 −

2p(△ f )
f −

2(p−1)
f 3 (△̄ f ) − p(p−1)

f 2 || fe||2 −
(p−1)(p−4)

f 4 || fx||2), α = α̃, β = β̃,w = 1
w̃ + pα̃) due to the fact λ is a function on B.

In the second case, that is lx = 0, the third equation of (21) becomes

α̃S̄yx − α̃( (p−2)
f ∇̄y fx −

2(p−2)
f 2 fy fx) = [− f f ckc + α̃{ f (△ f ) + (p − 1)|| fe||2

+
△̄ f
f +

(p−3)
f 2 || fw||2} + K̃ f 2]1̄yx.

(27)

Since

∇̄y fx
f =

∇̄y f̄x
f̄ = ∇̄y∇̄xln f + f̄x f̄y

f̄ 2 , (28)

we get
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α̃S̄yx − α̃(p − 2)∇̄y∇̄x(ln f ) = ([λ̃ f 2
−
β̃ f 2

2 {r −
2p(△ f )

f −
2(p−1)

f 3 (△̄ f ) − p(p−1)
f 2 || fe||2

−
(p−1)(p−4)

f 4 || fx||2} − f f ckc + α̃{ f (△ f ) + (p − 1)|| fe||2

+
△̄ f
f +

(p−3)
f 2 || fw||2}] − 1

2 β̃r̄)1̄yx + α̃
(p−2)

f̄ 2 f̄y f̄x,

(29)

that is F admits a generalized gradient almost Ricci-Yamabe soliton with

(1̄, h̄ = −α̃(p − 2)ln f , λ̄ = λ̃ f 2
−
β̃ f 2

2 {r −
2p(△ f )

f −
2(p−1)

f 3 (△̄ f ) − p(p−1)
f 2 || fe||2

−
(p−1)(p−4)

f 4 || fx||2} − f f ckc + α̃{ f (△ f ) + (p − 1)|| fe||2 +
△̄ f
f +

(p−3)
f 2 || fw||2}, ᾱ = α̃, β̄ = β̃, w̄ = (p − 2)α̃) and we can see

that λ̄ is a function on F from the equations (28) and (29).

Theorem 5.2. Let the twisted product manifold M = B × f F be a generalized gradient Ricci-Yamabe soliton with
(1̃, h̃, λ̃, α̃, β̃) and conformally flat. If h̃ = k + l for some functions k and l on B and F respectively, then the quantity
K̃ = λ̃− 1

2 β̃r̃ depends only on B and either B admits a generalized gradient almost Ricci-Yamabe soliton (1, h, λ, α, β,w)
or F admit a generalized gradient almost Ricci-Yamabe soliton (1̄, h̄, λ̄, ᾱ, β̄, w̄).

6. Almost gradient Ricci-Yamabe soliton in the product manifold

Let M be the product manifold B×F of the n-dimensional Riemannian manifold (B, 1) and p-dimensional
Riemannian manifold (F, 1̄). If M = B×F be a generalized gradient Ricci-Yamabe soliton with (1̃, h̃, λ̃, α̃, β̃, w̃),
then we obtain

∇bh̃a + α̃Sba = (λ̃ − 1
2 β̃r̃)1ba,

∂bh̃x = 0,

∇̄yh̃x + α̃S̄yx = (λ̃ − 1
2 β̃r̃)1̄yx,

r̃ = r + r̄,

(30)

where ∇ and ∇̄ are Levi-Civita connections for 1 and 1̄ respectively and S and S̄ are Ricci curvatures on
B and F respectively. The ranges of the indices a, b, ..., and x, y, ... are 1, 2, ...,n, and n + 1,n + 2, ...,n + p,
respectively.

From the second equation of (30), we see that the potential function h̃ is represented by h̃ = k+ l for some
function k on B and l on F respectively. Hence the equation of (30) can be rewritten as

∇bka + α̃Sba = (λ̃ − 1
2 β̃r̃)1ba,

∂blx = 0,

∇̄ylx + α̃S̄yx = (λ̃ − 1
2 β̃r̃)1̄yx.

(31)

Then we see that K̃ = λ̃ − 1
2 β̃r̃ becomes constant from the first and third equations of (31). From the

first and third equations of (31), B and F become gradient Ricci soliton with ( k
α̃ ,

K̃
α̃ ) and ( l

α̃ ,
K̃
α̃ ) respectively if

α̃ , 0. If α̃ = 0, then the first and third equations of (31) become ∇bka = K̃1ba and ∇̄ylx = K̃1̄yx. Hence if we
consider this equation and Theorem 1.1, then B and F become Euclidean spaces, when K̃ , 0, and the direct
product V × I of an (n− 1)-dimensional complete Riemannian manifold V with a straight line I when K̃ = 0.
Thus we have
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Theorem 6.1. Let M = B × F be an almost gradient Ricci-Yamabe soliton with (1̃, h̃, λ̃, α̃, β̃). then we have
(a) K̃ becomes a constant.
(b) h̃ = k + l for some functions k on B and l on F respectively,
(c) M̃ becomes a gradient Ricci-soliton with ( k+l

α̃ ,
K̃
α̃ ).

(d) B and F become gradient Ricci-Yamabe solitons with (1, k, λ = λ̃− β2 r̄, α̃, β̃) and (1̄, l, λ̄ = λ̃− β2 r, α̃, β̃) respectively.
(e) B and F become gradient Ricci-solitons with ( k

α̃ ,
K̃
α̃ ) and ( l

α̃ ,
K̃
α̃ ) respectively if α̃ , 0.

( f ) If α̃ = 0, then B and F become either Euclidean spaces if K̃ , 0 or B = V × I of an (n − 1)-dim. complete
Riemannian manifold V and a straight-line I, and F =W × J of a (p− 1)-dim. complete Riemannian manifold W and
a straight-line J if K̃ = 0.

From Theorem 6.1, we get

Corollary 6.2. For the assumptions of the Theorem 6.1 and r is a constant, then B and F become a gradient
Ricci-Yamabe soliton with (1, k, λ̃ − β̃2 r̄, α̃, β̃) and an almost gradient Ricci-Yamabe soliton with (1̄, l, λ̃ − β̃2 r, α̃, β̃),
respectively.

Let us consider the converse of Theorem 6.1. Assume that B and F are gradient Ricci solitons with (k, ρ)
and (l, ρ̄) respectively, that is

Sab + ∇a∇bk = ρ1, S̄yx + ∇̄y∇̄xl = ρ̄1̄. (32)

Take h̃ = α̃(k+ l) and ρ = ρ̄, then ∇̃i∇̃ jh̃+ α̃S̃ = α̃(∇̃i∇̃ j(k+ l)+ S̃) = α̃ρ1̃. Since r+△k = nρ and r̄+ △̄l = pρ,
we obtain r + r̄ + △k + △̄l = (n + p)ρ, that is r̃ + △k + △̄l = (n + p)ρ. Then we see that

α̃ρ1̃ = α̃△k+△̄l+r̃
n+p 1̃ = ( α̃(△k+△̄l)

n+p −
1
2 (− 2α̃

n+p )r̃)(1 + 1̄).

Since α̃(△k+△̄l)
n+p is a function on B × F, B × F become an almost gradient Ricci-Yamabe soliton with (1 +

1̄, α̃(k + l), α̃(△k+△̄l)
n+p , α̃,

−2α̃
n+p ). Thus we have

Theorem 6.3. Let B be the gradient Ricci soliton with (k, ρ) and F be the gradient Ricci soliton with (l, ρ̄). If we take
h̃ = α̃(k+l) andρ = ρ̄, then B×F becomes an almost gradient Ricci -Yamabe soliton with (1+1̄, α̃(k+l), α̃(△k+△̄l)

n+p , α̃,
−2α̃
n+p ).

Hence if we use Theorem 6.3, then we can construct a model space of an almost gradient Ricci-Yamabe
soliton.

7. Almost generalized gradient Ricci-Yamabe soliton in the product manifold

Let M be the product manifold B×F of the n-dimensional Riemannian manifold (B, 1) and p-dimensional
Riemannian manifold (F, 1̄). If M = B × F be an almost generalized gradient Ricci-Yamabe soliton
with(1̃, h̃, λ̃, α̃, β̃, w̃), that is λ is a function on M with generalized gradient Ricci-Yamabe soliton, then we
obtain

∇bh̃a + α̃Sba = (λ̃ − 1
2 β̃r̃)1ba + w̃h̃bh̃a,

∂bh̃x = w̃h̃bh̃x,

∇̄yh̃x + α̃S̄yx = (λ̃ − 1
2 β̃r̃)1̄yx + w̃h̃yh̃x,

r̃ = r + r̄,

(33)
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where ∇ and ∇̄ are Levi-Civita connections for 1 and 1̄ respectively and S and S̄ are Ricci curvatures on
B and F respectively. The ranges of the indices a, b, ..., and x, y, ... are 1, 2, ...,n, and n + 1,n + 2, ...,n + p,
respectively.

Assume that the potential function h̃ is represented by h̃ = l + m for some functions l on B and m on F
respectively. Then, from (33), we get

∇bka + α̃Sba = (λ̃ − 1
2 β̃r̃)1ba + w̃kbka,

0 = w̃kblx,

∇̄ylx + α̃S̄yx = (λ̃ − 1
2 β̃r̃)1̄yx + w̃lylx, .

(34)

Then we see that K̃ = λ̃ − 1
2 β̃r̃ becomes a constant from the first and third equations of (34). From the

second equation of (34), we see that w̃ = 0 or ka = 0 or lx = 0.

In the first case where w̃ = 0, the first and third equations of (34) become

∇bka + α̃Sba = K̃1ba = ((λ̃ − 1
2 β̃r̄) − 1

2 β̃r)1ba,

∇̄ylx + α̃S̄yx = K̃1̄yx = ((λ̃ − 1
2 β̃r) − 1

2 β̃r̄)1̄yx.
(35)

Since K̃ is a constant, λ̃ is a function on M, and r̃ = r+r̄, the quantities λ̃− 1
2 β̃r̄ and λ̃− 1

2 β̃r are functions on B
and F respectively. Hence B and F become almost gradient Ricci-Yamabe solitons with (1, k, λ = λ̃− 1

2 β̃r̄, α̃, β̃)
and (1̄, l, λ̄ = λ̃ − 1

2 β̃r, α̃, β̃) respectively. On the other hand, it could be said that B and F become gradient
Ricci-Yamabe solitons with ( k

α̃ ,
K̃
α̃ ) and ( l

α̃ ,
K̃
α̃ ) respectively if α̃ , 0 from the equation (34) and the fact that K̃

is a constant. If α̃ = 0, then B and F become Euclidean spaces when K̃ , 0, and the direct product V × I of
an (n − 1)-dimensional complete Riemannian manifold V with a straight line I if K̃ = 0.

For the second case where ka = 0, that is k is a constant, then the base space B and F becomes Einstein if
α̃ , 0. If α̃ = 0, then K̃ = 0. Finally, let us consider the third case lx = 0, that is l is a constant. If we think
about it in the same way as in the second case, we see that F becomes an Einstein if α̃ , 0. If α̃ = 0, then
K̃ = 0. Thus we have

Theorem 7.1. Let M = B × F be an almost generalized gradient Ricci-Yamabe soliton with (1̃, h̃, λ̃, α̃, β̃, w̃). If
h = k+ l for some functions l and m on B and F respectively, then K̃ is a constant, and M becomes one of the following
three cases :
(a) M becomes a gradient Ricci soliton with ( k+l

α̃ ,
K̃
α̃ ) if α̃ , 0. Moreover B and F become almost gradient Ricci-Yamabe

solitons with (1, k, λ = λ̃ − 1
2 β̃r̄, α̃, β̃) and (1̄, l, λ̄ = λ̃ − 1

2 β̃r, α̃, β̃) respectively if α̃ , 0. And if α̃ = 0, then B and
F become Euclidean spaces if K̃ , 0, and the direct product V × I of an (n − 1)-dimensional complete Riemannian
manifold V manifold a straight line I and W × J of a (p− 1)-dimensional complete Riemannian manifold W manifold
a straight line J respectively if K̃ = 0.
(b) B becomes an Einstein or K̃ = 0 .
(c) F becomes an Einstein or K̃ = 0.

Assume that B is an almost gradient Ricci-Yamabe soliton with (1, k, λ, α, β) and F is an Einstein space,
where we choose λ satisfying the relation λ = βr2 +

pβ+2α
2p r̄ and ||ka||

2 is a constant. Since r̄ is a constant, λ is a
function on B. Then we see that

∇bka + αSba = (λ − 1
2βr)1ba,

S̄yx = r̄
p 1̄yx.

(36)

If we take 1̃ = 1 + 1̄, h̃ = k, α̃ = α, β̃ = β, λ̃ = λ, and take w̃ such that βr̃2 1ba = w̃kbka, then we can calculate



B.H. Kim et al. / Filomat 38:11 (2024), 3825–3837 3837

∇̃ j∇̃ih̃ + α̃S̃ =
(
∇bka + αSba 0

0 αS̄yx

)
=

 ( (pβ+2α)
2p r̄1ba 0

0 αr̄
p 1̄yx

 (37)

(λ̃ −
1
2
β̃r̃)1̃i j + w̃h̃ jh̃i =

 (λ − β(r+r̄)
2 )1ab + w̃kakb 0

0 (λ − β(r+r̄)
2 )1̄yx

 =

 ( (pβ+2α)
2p r̄1ba 0

0 αr̄
p 1̄yx

 . (38)

Hence the product space B × F becomes an almost generalized gradient Ricci-Yamabe soliton with
(1̃, h̃, λ̃, α̃, β̃, w̃). Thus we have

Theorem 7.2. Let B be an almost generalized gradient Ricci-Yamabe soliton with (1, k, λ, α, β) and F be an Einstein
space. If we take h̃ = k, λ̃ = λ = βr2 +

pβ+2α
2p r̄, α̃ = α, β̃ = β and choose w̃ such that β(r+r̄)

2 1ba = w̃kbka. Then B × F

becomes an almost generalized gradient Ricci-Yamabe soliton with (1 + 1̄, h, βr2 +
pβ+2α

2p r̄, α, β, w̃).

Hence if we use Theorem 7.2, then we can construct a model space of an almost generalized gradient
Ricci-Yamabe soliton.
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