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From the hyperbolic distance to the hyperbolic length

Miljan Kneževića,∗, Marek Svetlika

aUniversity of Belgrade, Faculty of Mathematics, Studentski trg 16, 11000 Belgrade, Republic of Serbia

Abstract. In this paper we show one way to define the hyperbolic length of a curve in the unit disc. We
start from the formula for hyperbolic distance in the unit disc and via the hyperbolic lengths of the inscribed
hyperbolic polygonal lines we arrive at the formula for calculating the hyperbolic length of the C1 curve in
a natural way.

1. Introduction

It is well known (see for example, [16, p. 136-137]) that in Euclidean plane (as a model of that plane in
this paper we consider the set of all complex numbers C) Euclidean length of the curve γ : [a, b] → C is
introduced as follows:

1) first, the length of a line segment with the endpoints z1 and z2 is defined as the distance between that
points, i.e. that length is equal to de(z1, z2), where de(z1, z2) = |z1 − z2|;

2) then, the length of a polygonal line is defined as the sum of lengths of the segments which form that
polygonal line;

3) further, if P : a = t0 < t1 < . . . < tn−1 < tn = b is a partition of the interval [a, b], then we assign to the
partition P and the curve γ the number

ℓe(P, γ) =
n∑

j=1

de(γ(t j), γ(t j−1)),

i.e. we assign them the length of polygonal line consisting of the segments

[γ(t0), γ(t1)], . . . , [γ(tn−1), γ(tn)].

4) finally, Euclidean length of the curve γ (which we denote by ℓe(γ)) is defined by

ℓe(γ) = sup
P∈Π

ℓe(P, γ),

where Π is the set of all partitions of the interval [a, b].
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If ℓe(γ) < +∞ then we say that the curve γ is rectifiable. One could show (see [16, Theorem 6.27]) that

any C1 curve γ : [a, b]→ C is rectifiable as well as ℓe(γ) =
∫
γ
|dz|.

On the other hand in the literature (see for example [1–3, 11]) it is usual that in hyperbolic plane (as a
model of that plane in this paper we consider the unit discU = {z ∈ C : |z| < 1}), hyperbolic length of a C1

curve γ : [a, b]→ U is defined in the following way∫
γ
ρU(z)|dz|, (1)

where ρU : U→ (0,+∞) is hyperbolic density on the unit disc defined by

ρU(z) =
2

1 − |z|2
.

In this paper we introduce hyperbolic length of C1 curve in the hyperbolic plane (i.e. in the unit disc
U) in an analogous way as it is introduce in the Euclidean plane (i.e. in C, which we identify as a metric
space with R2) for Euclidean length of C1 curve. More precisely, starting from the formula for hyperbolic
distance of two points in the unit disc U we firstly define the hyperbolic length of a hyperbolic segment,
then the hyperbolic length of a hyperbolic polygonal line and at the end we define hyperbolic length of
arbitrary C1 curve as the supremum of hyperbolic lengths of hyperbolic polygonal lines which is inscribed
in that curve. It turns out that the hyperbolic length of a C1 curve γ : [a, b]→ U that was introduced in this
way is equal to the hyperbolic length of that curve, which is given by the formula (1).

2. The hyperbolic length of curve in the unit disc

Let γ : [a, b] → U be an arbitrary curve and let P : a = t0 < t1 < . . . < tn−1 < tn = b be partition of the
interval [a, b]. Analogous to the Euclidean case to the partition P and the curve γ we assign the number

ℓh(P, γ) =
n∑

j=1

dh(γ(t j), γ(t j−1)),

where dh : U ×U→ [0,+∞) is defined by

dh(z1, z2) = log
1 +
∣∣∣∣∣ z1 − z2

1 − z2z1

∣∣∣∣∣
1 −
∣∣∣∣∣ z1 − z2

1 − z2z1

∣∣∣∣∣ . (2)

In other words, dh is the hyperbolic distance in the unit disc. In the paper [13] the method of deriving the
equality (2) without using the notion of hyperbolic density in the unit discU is described in details.

Finally, the hyperbolic length of the curve γ (which we denote by ℓh(γ)) we define by

ℓh(γ) = sup
P∈Π

ℓh(P, γ),

where Π is the set of all partitions of the interval [a, b]. Moreover, if ℓh(γ) < +∞, then we say that the curve
γ is rectifiable in the hyperbolic sense.

As the main result of this paper, we state the following theorem.

Theorem 2.1. Let γ : [0, 1]→ U be an arbitrary C1 curve. Then

ℓh(γ) =
∫ 1

0

2|γ′(t)|
1 − |γ(t)|2

dt =
∫
γ

2
1 − |z|2

|dz|.
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3. Proof of the main result

We will prove Theorem 2.1 by formulating and proving two propositions (see Proposition 3.1 and
Proposition 3.8) and several lemmas.

Note that by tr (γ) we will denote the trace of a curve γ : [a, b]→ U, i.e. the set {γ(t) : t ∈ [a, b]}.

Proposition 3.1. Let γ : [0, 1]→ U be an arbitrary C1 curve. Then

ℓh(γ) ⩽
∫ 1

0

2|γ′(t)|
1 − |γ(t)|2

dt. (3)

Proof. Let P : 0 = t0 < t1 < . . . < tn−1 < tn = 1 be a partition of the interval [0, 1], let f j ( j ∈ {1, . . . ,n}) be
conformal automorphism of the unit disc U such that f j(γ(t j−1)) = 0 and f j(γ(t j)) ⩾ 0 and let Γ j = f j ◦ γ.
From classical complex analysis it is well known that f j exist and preserves the distance dh. So,

dh(γ(t j), γ(t j−1)) = dh( f j(γ(t j)), f j(γ(t j−1)))
= dh(Γ j(t j), 0)

= log
1 + |Γ j(t j)|
1 − |Γ j(t j)|

(4)

= log
1 + ReΓ j(t j)
1 − ReΓ j(t j)

=

∫ t j

t j−1

2 ReΓ′j(t)

1 − (ReΓ j(t))2 dt.

It can immediately be shown that∫ t j

t j−1

2 ReΓ′j(t)

1 − (ReΓ j(t))2 dt ⩽
∫ t j

t j−1

2|Γ′j(t)|

1 − |Γ j(t)|2
dt (5)

is valid and by the famous Schwarz-Pick lemma (see [3, Theorem 3.2]) we obtain∫ t j

t j−1

2|Γ′j(t)|

1 − |Γ j(t)|2
dt =

∫ t j

t j−1

2|γ′(t)|
1 − |γ(t)|2

dt. (6)

Hence, from (4), (5) and (6) we get

n∑
j=1

dh(γ(t j), γ(t j−1)) ⩽
n∑

j=1

∫ t j

t j−1

2|γ′(t)|
1 − |γ(t)|2

dt =
∫ 1

0

2|γ′(t)|
1 − |γ(t)|2

dt,

i.e.

ℓh(P, γ) ⩽
∫ 1

0

2|γ′(t)|
1 − |γ(t)|2

dt. (7)

Finally, by taking the supremum over all partitions P of the interval [0, 1], from (7) we obtain (3).

Note that from Proposition 3.1 it immediately follows that each C1 curve γ : [0, 1] → U is rectifiable in
the hyperbolic sense.

In order to prove Theorem 2.1, it is necessary to proved that in (3) the opposite inequality also holds. To
prove that we will first formulate and prove several lemmas.

Lemma 3.2. Let ε > 0 be arbitrary. Then there is δ > 0 such that for all z ∈ U, |z| < δ the following double inequality
0 ⩽ dh(0, z) − 2|z| < ε|z| holds.
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Proof. The proof trivially follows from the equalities

dh(0, z) = log
1 + |z|
1 − |z|

and

lim
|z|→0

1
|z|

(
log

1 + |z|
1 − |z|

− 2|z|
)
= 0.

Before we formulate next lemma, for the sake of completeness we give definition of the parameter of a
partition. Parameter of the partition P : a = t0 < t1 < . . . < tn−1 < tn = b of the interval [a, b] is

λ(P) = max
1⩽ j⩽n

|t j − t j−1|.

Lemma 3.3. Let γ : [0, 1] → U be a curve and ε > 0. Then there exists δ > 0 such that for all partition
P : 0 = t0 < t1 < . . . < tn = 1, λ(P) < δ and for all j ∈ {1, . . . ,n} the inequality∣∣∣∣∣∣∣ γ(t j) − γ(t j−1)

1 − γ(t j−1)γ(t j)

∣∣∣∣∣∣∣ < ε
holds.

Proof. Let m be the minimum of the function f (z,w) = |1 − zw| on the compact set tr (γ) × tr (γ). It is
clear that m > 0. Since γ is uniformly continuous on [0, 1] there exists δ > 0 such that for all partition
P : 0 = t0 < t1 < . . . < tn = 1, λ(P) < δ and for all j ∈ {1, . . . ,n} the inequality |γ(t j) − γ(t j−1)| < mε holds.
Hence for all j ∈ {1, . . . ,n}we have∣∣∣∣∣∣∣ γ(t j) − γ(t j−1)

1 − γ(t j−1)γ(t j)

∣∣∣∣∣∣∣ ⩽ 1
m
|γ(t j) − γ(t j−1)| < ε.

Lemma 3.4. Let γ : [0, 1]→ U be a curve and ε > 0. Then exists δ > 0 such that for all partition P : 0 = t0 < t1 <
. . . < tn = 1, λ(P) < δ and for all j ∈ {1, . . . ,n} the double inequality

0 ⩽ dh(γ(t j−1), γ(t j)) − 2

∣∣∣∣∣∣∣ γ(t j) − γ(t j−1)

1 − γ(t j−1)γ(t j)

∣∣∣∣∣∣∣ < ε|γ(t j) − γ(t j−1)|

holds.

Proof. Let m be as in the proof of Lemma 3.3. By using Lemma 3.2 there exists δ1 > 0 such that

0 ⩽ dh(0, z) − 2|z| < mε|z|,

for all z ∈ U, |z| < δ1.
On other hand, by applying Lemma 3.3, there exists δ > 0 such that for all partition

P : 0 = t0 < t1 < . . . < tn = 1,

of the interval [0, 1], for which λ(P) < δ, and for all j ∈ {1, . . . ,n} the following inequality∣∣∣∣∣∣∣ γ(t j) − γ(t j−1)

1 − γ(t j−1)γ(t j)

∣∣∣∣∣∣∣ < δ1
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holds.
Hence, for any partition P : 0 = t0 < t1 < . . . < tn = 1, λ(P) < δ, and for all j ∈ {1, . . . ,n}we get

dh

0,
∣∣∣∣∣∣∣ γ(t j) − γ(t j−1)

1 − γ(t j−1)γ(t j)

∣∣∣∣∣∣∣
 − 2

∣∣∣∣∣∣∣ γ(t j) − γ(t j−1)

1 − γ(t j−1)γ(t j)

∣∣∣∣∣∣∣ < mε

∣∣∣∣∣∣∣ γ(t j) − γ(t j−1)

1 − γ(t j−1)γ(t j)

∣∣∣∣∣∣∣
⩽

mε
m
|γ(t j) − γ(t j−1)|

= ε|γ(t j) − γ(t j−1)|.

Finally, since

dh(γ(t j−1), γ(t j)) = dh

0,
∣∣∣∣∣∣∣ γ(t j) − γ(t j−1)

1 − γ(t j−1)γ(t j)

∣∣∣∣∣∣∣
 ,

we obtain the proof.

Lemma 3.5. Let γ : [0, 1]→ U be a curve. Then there exists constant M > 0 such that∣∣∣∣∣∣ ∣∣∣∣ z − w
1 − wz

∣∣∣∣ − ∣∣∣∣ z − w
1 − ww

∣∣∣∣ ∣∣∣∣∣∣ ≤M|z − w|2,

for all z,w ∈ tr (γ).

Proof. Let z,w ∈ tr (γ) be arbitrary points. Then∣∣∣∣∣∣ ∣∣∣∣ z − w
1 − wz

∣∣∣∣ − ∣∣∣∣ z − w
1 − ww

∣∣∣∣ ∣∣∣∣∣∣ = |z − w|

∣∣∣∣∣∣
∣∣∣∣∣ 1
1 − wz

∣∣∣∣∣ − ∣∣∣∣∣ 1
1 − ww

∣∣∣∣∣
∣∣∣∣∣∣

⩽ |z − w|
∣∣∣∣∣ 1
1 − wz

−
1

1 − ww

∣∣∣∣∣
= |z − w|2

∣∣∣∣∣ w
(1 − wz)(1 − ww)

∣∣∣∣∣
⩽ M|z − w|2,

where M is the maximum of the function f (z1, z2) =
∣∣∣∣∣ z2

(1 − z2z1)(1 − z2z2)

∣∣∣∣∣ on the compact set tr (γ)× tr (γ).

Lemma 3.6. Let γ : [0, 1] → U be a curve and ε > 0. Then there is δ > 0 such that for all partition P : 0 = t0 <
t1 < . . . < tn = 1, λ(P) < δ and for all j ∈ {1, . . . ,n} the following inequality∣∣∣∣∣∣

∣∣∣∣∣∣∣ γ(t j) − γ(t j−1)

1 − γ(t j−1)γ(t j)

∣∣∣∣∣∣∣ −
∣∣∣∣∣∣∣ γ(t j) − γ(t j−1)

1 − γ(t j−1)γ(t j−1)

∣∣∣∣∣∣∣
∣∣∣∣∣∣ < ε|γ(t j) − γ(t j−1)|

holds.

Proof. Let M be maximum of the function f (z1, z2) =
∣∣∣∣∣ z2

(1 − z2z1)(1 − z2z2)

∣∣∣∣∣ on the compact set tr (γ) × tr (γ).

Since γ uniformly continuous on [0, 1] there is δ > 0 such that for all partition P : 0 = t0 < t1 < . . . < tn = 1,
λ(P) < δ and for all j ∈ {1, . . . ,n} the inequality |γ(t j) − γ(t j−1)| <

ε
M

holds. Hence, by using lemma 3.5, we
have ∣∣∣∣∣∣

∣∣∣∣∣∣∣ γ(t j) − γ(t j−1)

1 − γ(t j−1)γ(t j)

∣∣∣∣∣∣∣ −
∣∣∣∣∣∣∣ γ(t j) − γ(t j−1)

1 − γ(t j−1)γ(t j−1)

∣∣∣∣∣∣∣
∣∣∣∣∣∣ ⩽ M|γ(t j) − γ(t j−1)|2
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< M
ε
M
|γ(t j) − γ(t j−1)|

= ε|γ(t j) − γ(t j−1)|.

Lemma 3.7. Let γ : [0, 1] → U be a C1 curve and ε > 0. Then there is δ > 0 such that for all partition
P : 0 = t0 < t1 < . . . < tn = 1, λ(P) < δ and for all j ∈ {1, . . . ,n} the following inequality∣∣∣∣∣∣ |γ(t j) − γ(t j−1)|

1 − |γ(t j−1)|2
−
|γ′(t j−1)|

1 − |γ(t j−1)|2
(t j − t j−1)

∣∣∣∣∣∣ < ε(t j − t j−1)

holds.

Proof. Let P : 0 = t0 < t1 < . . . < tn = 1. Then∣∣∣∣∣∣ |γ(t j) − γ(t j−1)|
1 − |γ(t j−1)|2

−
|γ′(t j−1)| · (t j − t j−1)

1 − |γ(t j−1)|2

∣∣∣∣∣∣ < |γ(t j) − γ(t j−1) − γ′(t j−1)(t j − t j−1)|
1 − |γ(t j−1)|2

. (8)

Further, let α = Reγ and β = Imγ. By the Lagrange mean value theorem, there are ξ j, η j ∈ ( t j−1, t j) such
that

γ(t j) − γ(t j−1) = (α′(ξ j) + iβ′(η j))(t j − t j−1). (9)

Let us denote by M the maximum of the function f (z) =
1

1 − |z|2
on the compact set tr (γ). Since α′ and β′

are uniformly continous on [0, 1], it follows that there is δ > 0, such that

|α′(t) − α′(s)| <
ε

2M
(10)

and

|β′(t) − β′(s)| <
ε

2M
, (11)

for all t, s ∈ [0, 1], |t − s| < δ.
If λ(P) < δ, then from (9), (10) and (11), we get

|γ(t j) − γ(t j−1) − γ′(t j−1)(t j − t j−1)|
= |(α′(ξ j) − α′(t j−1) + i(β′(η j) − β′(t j−1))|(t j − t j−1)

<
(
ε

2M
+

ε
2M

)
(t j − t j−1) =

ε
M

(t j − t j−1).

(12)

Finally, from (8) and (12) it follows that∣∣∣∣∣∣ |γ(t j) − γ(t j−1)|
1 − |γ(t j−1)|2

−
|γ′(t j−1)|

1 − |γ(t j−1)|2
(t j − t j−1)

∣∣∣∣∣∣ < M
ε
M

(t j − t j−1) = ε(t j − t j−1).

Note that from next proposition the opposite inequality in (3) also holds, from which we obtain the
Theorem 2.1.
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Proposition 3.8. Let γ : [0, 1] → U be an arbitrary C1 curve and ε > 0. Then there is δ > 0 such that for all
partition P : 0 = t0 < t1 < . . . < tn = 1 of the interval [0, 1] for which λ(P) < δ the following inequality∣∣∣∣∣∣∣∣

n∑
j=1

dh(γ(t j), γ(t j−1)) −

1∫
0

2|γ′(t)|
1 − |γ(t)|2

dt

∣∣∣∣∣∣∣∣ < ε
holds.

Proof. Let P : 0 = t0 < t1 < . . . < tn = 1 be an arbitrary partition of the interval [0, 1]. Then∣∣∣∣∣∣∣∣
n∑

j=1

dh(γ(t j), γ(t j−1)) −

1∫
0

2|γ′(t)|
1 − |γ(t)|2

dt

∣∣∣∣∣∣∣∣ ⩽ |I1| + |I2| + |I3| + |I4|, (13)

where

I1 =

n∑
j=1

dh(γ(t j), γ(t j−1)) −
n∑

j=1

2|γ(t j) − γ(t j−1)|

|1 − γ(t j−1)γ(t j)|
,

I2 =

n∑
j=1

2|γ(t j) − γ(t j−1)|

|1 − γ(t j−1)γ(t j)|
−

n∑
j=1

2|γ(t j) − γ(t j−1)|
1 − |γ(t j−1)|2

,

I3 =

n∑
j=1

2|γ(t j) − γ(t j−1)|
1 − |γ(t j−1)|2

−

n∑
j=1

2|γ′(t j−1)|
1 − |γ(t j−1)|2

(t j − t j−1),

I4 =

n∑
j=1

2|γ′(t j−1)|
1 − |γ(t j−1)|2

(t j − t j−1) −

1∫
0

2|γ′(t)|
1 − |γ(t)|2

dt.

Since γ is C1 curve, it follows that γ is Euclidean rectifiable, i.e. ℓe(γ) < +∞. Suppose, in addition, that γ
is not a constant function. Then ℓe(γ) > 0. By using the Lemmas 3.4, 3.6 and 3.7 and definition of definite
integral there is δ > 0 such that for all partition

P : 0 = t0 < t1 < . . . < tn = 1

of the interval [0, 1] for which λ(P) < δ, the following inequalities

|I1| <
ε

4ℓe(γ)

n∑
j=1

|γ(t j) − γ(t j−1)| ⩽
ε
4

,

|I2| <
ε

4ℓe(γ)

n∑
j=1

|γ(t j) − γ(t j−1)| ⩽
ε
4

,

|I3| <
ε
4

n∑
j=1

(t j − t j−1) =
ε
4

|I4| <
ε
4

(14)

hold.
Finally, from (13) and (14) for all partition P : 0 = t0 < t1 < . . . < tn = 1, λ(P) < δ we get∣∣∣∣∣∣∣∣

n∑
j=1

dh(γ(t j), γ(t j−1)) −

1∫
0

2|γ′(t)|
1 − |γ(t)|2

dt

∣∣∣∣∣∣∣∣ < ε.
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Proof. [Proof of the Theorem 2.1] Directly follows from Proposition 3.1 and Proposition 3.8.

4. Appendix

In this section we give a short review of some applications related to the notion of hyperbolic density,
as well as some recent results in which the hyperbolic density plays crucial role.

First of all, the classical result, usually called the Schwarz-Pick lemma for the unit disc, is well known
(for example, see [3, Theorem 3.2]). This assertion can be stated in the following form: If f : U → U be a
holomorphic function then

ρU( f (z))| f ′(z)| ⩽ ρU(z), for all z ∈ U, (15)

and

dh( f (z1), f (z2)) ⩽ dh(z1, z2), for all z1, z2 ∈ U. (16)

Thereby, the equalities hold in (15) and (16) if and only if f is bijection, i.e. conformal automorphism ofU.
Further, if Ω ⊂ C is simply connected domain, different from C, then Ω is conformally equivalent to

the unit disc U by the Riemann mapping theorem. In other words, there exist a conformal isomorphism
ϕ : Ω → U, i.e. ϕ is univalent holomorphic mapping form Ω onto U. This fact allows us to define the
hyperbolic density on Ω as follows

ρΩ(z) = ρU(ϕ(z))|ϕ′(z)|, z ∈ Ω,

and hyperbolic distance on Ω as follows

dΩ(z1, z2) = dh(ϕ(z1), ϕ(z2)), z1, z2 ∈ Ω,

It can be easily shown that these definitions do not depend on the choice of mapping ϕ. Moreover, a
conformal isomorphism ϕ : Ω→ U allows us to consider the domain Ω as a model of hyperbolic plane.

Example 4.1. Let S = {z ∈ C : −1 < Re z < 1} be the vertical strip. Then ϕ : S→ U defined by ϕ(z) = tan
(
π
4

z
)

is

a conformal isomorphism. By direct calculation, we obtain

ρS(z) =
π
2

1

cos
(
π
2

Re z
) . (17)

Note that

ρS(z) = ρS(Re z), for all z ∈ S. (18)

Example 4.2. Let K = {z ∈ C : Re z > 0} be the right half-plane. Then ψ : K → U defined by ψ(z) =
z − 1
z + 1

is a
conformal isomorphism. By direct calculation, we obtain

ρK(z) =
1

Re z
. (19)

Note that

ρK(z) = ρK(Re z), for all z ∈ K. (20)
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As we have a defined hyperbolic density on an arbitrary simply connected domain Ω ⊂ C, different
from C, we can formulate the Schwarz-Pick lemma for simply connected domains (for example, see [3,
Theorem 6.4]): LetΩ1,Ω2 ⊂ C be simply connected domains and let f : Ω1 → Ω2 be holomorphic function.
Then

ρΩ2 ( f (z))| f ′(z)| ⩽ ρΩ1 (z), for all z ∈ Ω1, (21)

and

dΩ2 ( f (z1), f (z2)) ⩽ dΩ1 (z1, z2), for all z1, z2 ∈ Ω1. (22)

Thereby, the equalities hold in (21) and (22) if and only if f is bijection, i.e. conformal isomorphism of the
domain Ω1 onto the domain Ω2.

Recently, some versions of the Schwarz-Pick lemma and it’s generalizations for harmonic functions
and for harmonic quasiregular mappings, in particular for harmonic quasiconformal mappings, have been
considered (see, for example, [4, 5, 8–10, 12, 14, 15]). Also, for further results we refer the interested reader
to the [6, 7].

For example, using the Schwarz-Pick lemma for simply connected domains, facts (18) and (20), as well as
the fundamental relationship between harmonic and holomorphic functions defined onU (or on a simply
connected domains), i.e. the fact that every real harmonic function defined on a simply connected domain
is the real part of a holomorphic function defined on such a domain, the following recent results can be
elegantly proved (see [12, 15]):

1) If u : U→ (−1, 1) is a harmonic function, then

|∇u(z)| ⩽
ρU(z)
ρS(u(z))

=
4
π

cos
(
π
2

u(z)
)

1 − |z|2
, z ∈ U,

and hence

|∇u(z)| ⩽
4
π

ρU(z)
ρU(u(z))

=
4
π

1 − |u(z)|2

1 − |z|2
, z ∈ U.

2) If u : U→ (0,+∞) is a harmonic function, then

|∇u(z)| ⩽
ρU(z)
ρK(u(z))

=
2u(z)

1 − |z|2
, z ∈ U.

Here by ∇u we denote the gradient (ux,uy) of the function u.
Assertions 1) and 2), together with their proofs, are also called the strip method and half-plane method,

respectively. Let us note that the mentioned methods represent a new approach when obtaining results of
this type that describe the distortion of harmonic functions.

As a consequence of assertions 1) and 2), the following statements can also be proved:

3) If u : U→ (−1, 1) is a harmonic function, then

dS(u(z1),u(z2)) ⩽ dU(z1, z2), z1, z2 ∈ U

and

dU(u(z1),u(z2)) ⩽
4
π

dU(z1, z2), z1, z2 ∈ U,

4) If u : U→ (0,+∞) is a harmonic function, then

dK(u(z1),u(z2)) ⩽ dU(z1, z2), z1, z2 ∈ U.
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M. Knežević, M. Svetlik / Filomat 38:11 (2024), 3851–3860 3860

References

[1] L. V. Ahlfors, Conformal Invariants, McGraw-Hill Book Company, New York, 1973.
[2] J. W. Anderson, Hyperbolic Geometry, Springer-Verlag, London, 2005.
[3] A. F. Beardon, D. Minda, The hyperbolic metric and geometric function theory, Proceedings of the International Workshop on

Quasiconformal Mappings and their Applications (IWQCMA05), editors: S. Ponnusamy, T. Sugawa and M. Vuorinen, 2007.
[4] H. Chen, The Schwarz-Pick lemma and Julia lemma for real planar harmonic mappings, Sci. China Math. November 2013, Volume 56,

Issue 11, pp. 2327-2334.
[5] D. Kalaj, M. Vuorinen, On harmonic functions and the Schwarz lemma, Proc. Amer. Math. Soc. 140 (2012), no. 1, 161-165.
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