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Abstract. In this paper, we present findings concerning the existence of solutions to a particular type
of nonlocal second-order delay semilinear integro-differential equation with time-varying evolution. We
utilize the theory of the resolvent family, the Kuratowski measure of noncompactness, and fixed point the-
orems in conjunction with a convex-power condensing operator to establish novel and sufficient conditions

for ensuring the existence of mild solutions. Finally, we provide an illustrative example to demonstrate the
validity of the proposed results.

1. Introduction

The investigation of initial value problems for evolution equations with local or nonlocal conditions has
various applications in physics and other fields of applied mathematics. It is widely recognized that time
delays are commonly observed in numerous industrial and practical systems, including but not limited
to chemical processing, bioengineering, fuzzy systems, automatic control, neural networks, circuits, and

vehicle suspension systems [6, 8, 23, 36]. For more recent results on differential and integral equations, see
[2,3,9,10,16-18, 22, 33, 34].

Currently, numerous researchers worldwide are investigating semilinear integrodifferential equations
with nonlocal and delay properties. Recent articles on the topic can be found in [4, 5, 12-14, 21, 28—
30, 32, 35, 41], and additional resources include the monographs of [1]. In many instances, it is more
advantageous to directly treat second-order abstract differential equations, rather than converting them
to first-order systems. The theory of abstract second-order equations in the autonomous case is associ-
ated with the concept of cosine families. Serizawa and Watanabe [37] studied non-autonomous abstract
second-order equations and assumed that A(t) = A + B(t), where A is the infinitesimal generator of a
strongly continuous cosine family Cy(f) in a Banach space X, and $(t) is a family of operators for which the
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mapping t — B(t)x is continuously differentiable for all x € X and for which the function Co(-)x is of class C'.

The existence of solutions to the non-autonomous second-order abstract Cauchy problem associated
with the family {A(t) : t € [0,d]} is closely tied to the idea of an evolution operator created by this fam-
ily. The first concept was introduced by Kozak [31] and expanded upon in subsequent works such as
[11,15, 20, 26, 27, 37, 39, 40, 42].

The aim of this paper is to discuss the following nonlocal second order delay semilinear integro-
differential time varying evolution equation:

a2yt ¢
dyti ) _ A y(t) + N(t, yt,fo M(t,s, ys)ds), te[0,d],

y(t) = o) + (hy)(t), t € [-1,0], ¥’ (0) = w1,

where E is a Banach space endowed with anorm |- |, 3 = [0, d], {A(#)}o<t<s : D(A) C E — E is a linear closed
operator, that generates an evolution system of linear bounded operators {G(t,5)}¢s)en. N : IXQXE — E
is a given functionand M: AxQ — E, fi: €SJ,E) = Q, Q=¢([-1,0L,E), A={(t,s) €eIxJ:s <t}

1)

The layout of our work is as follows. In Section 2, we provide some essential preliminary information
that is required for the subsequent sections. In Section 3, we prove the existence theorem of a mild solution
of (1) under certain sufficient conditions, using the measure of noncompactness and fixed-point theorem
with respect to a convex-power condensing operator. In Section 4, we present an example that serves to
illustrate our results.

2. Preliminaries

In this section, we present the notations, definitions, lemmas and preliminary facts needed to obtain our
main results.

Denote by €(3, E), the space of all continuous E-valued functions on interval 3 which is a Banach space
with the norm

Iyl = sup{ly(t)l, t € 3}.

LP(3, E) denotes the space of E-valued Bochner functions on 3 with the norm

d ;
Iyl = (f Iy(t)lpdt) , p>1.
0

B(E) is the Banach space of bounded linear operators from E into E.

In what follows, let {A(t), t > 0} be a family of closed linear operators on the Banach space E with
domain D(A(t)) which is dense in E and independent of ¢.

First we recall the concept of the evolution operator G(t, s) for problem:

2
ddytit) = A(y(t), for t>0, "

introduced by Kozak in [31] and recently used by Henriquez, Poblete and Pozo in [26].

Definition 2.1 ([26]). A family of bounded linear operators G(t,s) : I X I — E,
(t,5) € A = {(t,5) € I XI5 < t}, is called an evolution operator of the equation (2) if the following conditions are
satisfied:

(e1) Forany y € E the function G(-,-)y : I X I — E is of class C* and
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(@) foranyteJ, G(t,t) =0,

(b) forall (t,s) € ©and forany y € E, %g(t, s)y|t=S =yand %g(t,s)yLzs = -.

(e2) Forall (t,s) € A, if y € D(A(Y)), then %g(t,s)y € D(A()), the map (t,s) — G(t,s)y is of class C* and

2

@ %Q(t,S)y = ADG(,5)y,

2

®) 260,59y = 6 9HAG)Y,

82
© 5=G(t )y, =0.

(e3) Forall (t,s) € A, then %g(t,s)y € D(A(t)), there exist

3 9’
mg(f/ )y, mg(f,s)y,
and
3 d
(a) EToRR Gt s)y = ﬂ(t)g(t)g(t,s)y. Moreover, the map

(49— AW 2 (OG0 3)y

is continuous,

83

d
(b) 8528tg(t’s)y = Eg(f, $)A(s)y.

Next, we introduce the definition for Kuratowski measure of noncompactness, which will be used in
the proof of our main results.

Definition 2.2 ([7]). The Kuratowski measure of noncompactness Bg(-) defined on bounded set B of Banach space E
is
Be(B) = inf{€ > 0 : B has a finite cover by sets of diameter < ¢},

We now recall some useful properties of Kuratowski measures of noncompactness. For more details, please
refer [7].

Lemma 2.3 ([7]). Let B be bounded set of E. The Kuratowski measure of noncompactness satisfies some properties:
(V1) Be(B) = 0, if and only if B is compact, where B means the closure of B,

(Va) ﬁg(§) = Be(B) = Be(convV), where convB means the convex hull of B,

(V3) Be(B1) < Pe(B2) when By C By,

(Va) Be(B1 + B2) < Be(B1) + Pe(Bo), where

Bi1+By={x|x=y+z,ye€By,zeB,},

(Vs5) Be(cB) = [clBe(B) forany c € R,
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(V) Be(B +y) =Be(VB) forany y € E, where B +y ={x|x =y +2zz € B}.

The map Q : X C E — E is said to be a fg-contraction if there exists a positive constant k < 1 such that
Be(Q(B)) < kPr(B) for any bounded closed subset B C E, where E is a Banach space.

Lemma 2.4 ([19]). Let E be a Banach space, B C E be bounded. Then, there exists a countable set Wy C B, such that

BE(B) < 2BE(Wo).

Lemma 2.5 ([24]). Let E be a Banach space, and let B = {y,},en € €([0,d], E) be a bounded and countable. Then,
Be(B(t)) is Lebesgue integral on [0, d], and

d d
B f yu(Bdt : n € N}) <2 f Be(B(t))dt.
0 0
Denote ¢ by the Kuratowski measure of noncompactness of €(3, E). Before we prove the existence results,

we need the following results.

Lemma 2.6 ([7]). If B c C(S,E) is bounded, then Bp(B() < Be(B), for all t € I, where V(t) = {y(t);y € B}.
Furthermore if B is equicontinuous on I, then Bp(B(t)) is continuous on I and

Be(B) = sup B(B(1)).

teJ

Theorem 2.7 ([38]). Let E be a Banach space, let ® C E be bounded, closed and convex. Suppose thatI1: ® — @ is
a continuous operator and I1(Q) is bounded. For any D C ® and yo € D, set

/(D) = I1(D),
[1¥)(D) = I1 (m 110Dy, yo) )
If there exist yo € © and a positive integer my such that for any bounded and noncompact subset D C ©,
Be(I1™*)(D)) < Br(D),

then I1 has at least one fixed point in ©.

3. Existence Results

In this section, we will establish the existence results for the problem (1) by using the Kuratowski
measure of noncompactness. Firstly, let us propose the definition of the mild solution of system (1).

Definition 3.1. A function y € €([-n,d], E) is said to be a mild solution of system (1) if
(1) fort & [-n,0], y(t) = () + (ry)(t),
(2) foreach 0 <t <d, y(t) satisfies the following integral equation:

Q)0 =~ 26,0) (p(0) + HE)O) + Gt, 0y

t S
ﬂ[Q@@N@%:{Nwm%Mﬂm
0 0

Before stating and proving the main results, we introduce the following hypotheses:
(H;) There exist constants N; > 0, N, > 0 and A > 0, such that

< N2, (t,S) e A.

d
16 Mew < Nie ™, [ 26,9
S B(E)
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(H;) The function N : 3 X Q X E — E satisfies:

(i) For every t € 3, the function N(t,-,-) : Q X E — E is continuous, and for each (y1, 1) € Q X E, the
function N(-, y1,¥2) : 3 — E is strongly measurable.

(71) There exist Oy € L%(S,]Rﬂ, p € [1,00) and a continuous nondecreasing function Wy : [0, 00) —
(0, 00) such that:
}N(t, y1,y2)( <O (llylla + |y2|) foraet € Jandeachy; € Q,y; € E,

Wal(r)
— =

where W satisfies lim inf Apn.

r—+00

and for any bounded and

1
(iif) There exists a function p € L®(J3,R*), such that ||p|l~ € (O’W]
1

countable set V| € Q), V, C E, we have

Be(N(t, V1, V2)) < P(t)[ sup Be(V1(0)) + ﬁE(Vz)), foraetes.
0¢€[-n,0]

(H3) The function M : A x Q — E satisfies the following:

(i) There exists a positive function &(t,s) € LY(A, R*) such that:
¢
Mt s, y)| < &t 9)lylla, & = supf &(t,8)ds < +o0,
te3 JO
fora.et € Jandeachy € Q.

(i1) There exists a positive number K*, such that for any bounded and countable set V C Q, we have

Be(M(t,s, V) <K sup Be(V(0)) foraete]
0e[-1,0]

(H4) The operator #i : €3, E) — Q, satisfies the following:

(i) Foreacht € [-7,0], the operator I : €(3J, E) defined by I':(y) = (fiy)(t) is continuous and the subset
h(A) C Q is equicontinuous for each bounded set A C €(3, E).
(i1) There exist a positive number Nj; and a continuous nondecreasing function ¥y : [0, c0) — (0, o)

such that:
Ih(W)lla < NyWa(llyll),
4 1
where W, satisfies lim inf M =Aj € [O, —)
r—+00 r Nj
(iii) There exists a positive number Kj € |0, 1 such that for any bounded and countable set
max(N3,2)

V cES,E)
Be((V (1)) < Kupe(V(t)) fora.e t € [-7,0].

Theorem 3.2. Assume that the conditions (H;) — (Hy) hold. If

1 =-p)'7lDNl 4

NoNpAy + N L Ay <1, 3)

then the nonlocal Cauchy problem (1) has at least a mild solution on [-n, d].
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Proof. Let us consider the operator Q : €(] — n,d], E) — €(] — 1, d], E), defined by:
o)+ h(y)(®), te[-n,0],
@)1 = ~5G(E0) (¢(0) +hp©O) + G(t, 0y 4)
+ fo Gt, s N (s, Ys, j; M(s, T, yT)dT)dS, tes.

It is obvious that the fixed point of Q is the mild solution of (1). We now show that Q satisfies all the
assumptions of Theorem 2.7. To simplify the result, we subdivide the proof into four steps. Let

A ={y € €] -n,d]E): llylle <7},

where r be any positive constant. Then, U, is clearly a bounded closed and convex subset in €(] — 7, d], E).

Step 1. We prove that there exits r such that Q maps 2, into U,.
If we assume that Q(,) € U,, then for every positive constant r and t € J, there exists a y,(-) € 2, such that
ly(t)| > r. For t € [-n,0], and from the hypotheses (IH;), (IHs), we get

ly®| < o)l + I)H))
< liplla + 1(y) (&)l
< llplla + Ny Pr(liylla).

Dividing both sides by r and, let r — +0c0, we get

1 < Nj lim M
r—+00 r
Then,
1 < Ny,

which is a contradiction to (IHy)(ii).
For t € [0,d], from the hypotheses (IH;)-(IHs), we get

d
0] < | 560 G001+ IIOlo + 16 Do 1

+ fo 16 ey Ox ()W (|ys| + fo &, r)|yf|dr)ds
< Na(Ip(0)] + Ny) + N1 |y

e [ I (W (|ys| a &, mwdf) ds.
< N2(|¢(8)| + NpWa(llyllc)) + Na [ 0

+ fo t Nle-Mf-S)@N(s)\PN(w + fo &6, r>|yT|dT) ds.
< Na(Ip(0)] + NaWa(llyllc)) + Nu |y

+ fo t NleM“>®N(s>wN(|ys| + fo &, T)nyldf) ds.

< Na(IpO)] + Ny Zy(llyllc)) + Ni [
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+ fo NN (W (sup sl + & suplye i) s
< Na(Ip(0)] + NaWia(llyllc)) + Nu |y

+ fo N I (B (1 + Elo) ds.
< Na(Ip(0)] + NaWa(llyllc)) + Nu |y

+ fo N I (W (1 + Elo) ds.

< Na(1p(0)] + NpWa(llyllc)) + N |y
t Alt—s) 1-p + : p
+N1 (fov e_l(zfds) (ﬁ ((DN(S))E ds) \IJN((]. +E*)I|y”0)

Then,

Y@< N1 [y1] + Nalp(0)] + NoNaWillyllc)

Ni(1 - p)'PlDpll

+ YN+ Ollyllo)

Dividing both sides by r and letting r — +0c0, we get

W), MA-PIRNL L w@ o
r

1 < NoNj lim i Jim. .

r—+00

Then,
—p)l-
1 =p)lOnll 3
Al-p
which is a contradiction to (3). Thus, there exists r > 0 such that Q(2,) c U,.

1 < NoNyAy + N

Step 2. Q is continuous.
Let (y,)nen be a sequence in €(3J, E) such that y, — y in €(3, E). Define

N, (s) = N(s, y?,f M(s, T, yr)dr):
0

N(s) = N¢s, ys,[: M(s, T, yr)dr).
Using the assumptions (H;) and (Hy), for t € I, we obtain that
e N,(t) = N(f) asn — +oo;
* Ni(yn)(t) — Ti(y)(t) as n — +oo.
On the other hand, By (4), for every f € 3 and y,, y € 2., we have

¢
|@)(®) = @O < Nalln(ya)(t) = Byl + Ny f INa(s) = N(s)] ds.
0
By the help of Lebesgue dominated convergence theorem, we have that

Qy, — Qu as n— +oo.
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From (Hy)(i), we find Qy, — Qy — 0, asn — +oco pointwise on [-1,0]. Thus, we conclude that Q is
continuous.

Step 3. Q is equicontinuous.
Take —nn < t; < t, < 0. For each y € A, we have

[(Qy)(E2) = (Qu)(E)] < Ip(E2) = p(t)] + (y)(E2)) = F(y) (k).

Since ¢ € Q, and from (IH)(ii), when ¢, — t; the right-hand side of the above inequality tends to zero.
Take -1 < t; <0<, <d and for each y € A, we get
0
I(Qy)(t2) — (Quy)(t)l = ‘@(tz) +h(y)(t2) — ERACHY) (¢(0) + (y)(0)) + G(t1, 0)y
t S
+ f G(t, s )N (s, ys,f M(s, 1, ]/T)d’l') ds
0 0

< o162 = 60)] + | 5601, 00600) - 4(0) + 1)) - B)O)

d
| 5601, 0O = KO + |62, 01 ~ 61,0

PNy fo e Ny (5) Wy (|ys| + fo &G, f>|yf|df) ds.
It follows from the Holder’s inequality that
@yt - @y)(t)
J
< 016 = 600)] + | 36(6,00(0) - 60 + |12 ~ O]

+ '%Q(tl, 0)(y)(0) = h(y)(O)‘ +|G(t2, 0)y1 — G(t1, )y

* 1-
N NilIONIr WA (1 + Er)(A —p)F (e—ﬁ(t—tl) _ e—ll—)pt)l"’
Al-p ’

Since ¢ € () and from (IH;)) — (IHy)), the right-hand side of the above inequality tends to zero when t; — 0
and t, — 0.
Forany ye A, and 0 <t <t, < d, we get

[(Qy)(t2) = (Qy)(t)] =' - %Q(tz, 0) (¢(0) + 1(y)(0) + G(t2, 0)y1

153 s
+ f g(tr S)N (S/ Ys, f M(S, T, yT)dT) ds
0 0

0
- gg(h/ 0) (¢(0) + i(y)(0)) + G(t1,0)y1

153 s
+ f Gt s)N (s,ys, f M(s,r,}/r)dl')ds
0 0

0 dJ
< 'gg(tz, 0)b(0) - ;gm,mqb(m'

d d
|60, 0(0) ~ 56161, 01 0)
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+|G(t2, 0)y1 — G(t1, O)y|

t
f (G(t2,9) = G(t, )N (S, ys,f;M(S, T, yz)dT) ds
0

153
+f g(tZ/T)N(S;ys),fM(S,T,yT)dT)dS
f 0

0 d

+

d d
|56t 00(4(0) - 61, 0)0)
+|G(t2, 0)y1 — G(t1, O)y|
t S
+f (D]F(S)‘II]F(l]/sl""f E(S,T)IyTIdT)dS
0 0
X |G(t2, T) — G(t1, DllpE)
ty S
N ~AME=S) Dy (5)W ( 2 )|y ld )d.
. 1fhe N(s>N|y|+fos(sT>|y|r s

It follows from the Holder’s inequality that
I(Qy)(t2) — (Qy)(t)] < ||%Q(t2/ 0) - %Q(f1,0)||3(5)(||q5(0)||0 +Wr(llyllc))
+ G (t2, 7) = Gk, Dllsee) |11
sl
W1+ [ 16060 - 60, Dy D)
0

1-p

to N
+ N1||(DN||L% Wa((1+E)r) (f E_W(t_s)ds)
t
It follows that

Qy)(t2) = Qy)(t1)] <

dJ d
5600~ 2.60,0)|_ (160lo + i)
+11G(t2, T) = G(t1, Dl |y1| + Ua (@ + &)
X f G (t2, T) — G(t1, )lIpE) Pu(s)ds
0

N1l 3 Wa((L + EYr)(1 —p)'
Al-p

: 1-
% (e—ffp(t—tz) _ e—ﬁ(t—tl)) "

+

When t, — ti, the right-hand side of the above inequality tends to zero. Therefore, Q(%,) is equicontinuous.

Step 4. Now, we show that Q : %, — U, is a convex-power condensing operator.
Take yo € U,, we shall prove that there exists a positive integral 7y such that

Bs(Q¥)(S)) < Bs(QUS)),

for every nonprecompact bounded subset © C U,. By the definition of operator Q%) and the equicon-
tinuity of Q, we get that Qmy)(S) c ¥, is also equicontinuous. Therefore, we know from Lemma 2.6
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that
Be(@" (@) = sup Fr@" (D)D),
te

Case 1. The operator7i : €(3J, E) — Q is compact (Ky = 0).
For every bounded subset S C €(3J, E), by Lemma 2.4, there exists a countable set Sy = {z"}°°, C &, such

n=1

that for each t € 3, and from (IH;), (H3)(ii1), (IH4)(#7), (Hs)(ii), Lemma 2.4, Lemma 2.5 and properties of the
measure g, we obtain

BE(QM@)(1) = Fe(QUS)(D)
< 2Be(Q(So)(1)

< Zﬁg( - %Q(t, 0) (p(0) + 7i(y)(0)) + G(t, 0)y1

+ Lt Q(t,S)N(S, ys,ﬁs M(s, 1, ]/T)d’[)ds)
<2BE (j: g(t,S)N(S, Ys, j: M(s, T, yT)dT) ds)
< 4]; G(t,s)Be (N(S, Ys, j: M(s, T, yT)dT)) ds
<26, ( [ Gt s)N(s, wo [ Mot y»df) ds)

<4 j; Q(t,S)p(t)( sup Be(So(s + @))

te[-n,0]

+ BE (fos M(s, T, yT)dT) )ds

<4 fo Q(t,S)p(t)( sup Be(So(s + @)

te[-n,0]

+2 fs Be (M(s, T, y2)) dT)dS
0

¢
54£ g(t,s)p(t)( sup Be(So(s + @))

te[-n,0]

+2 fs Be (M(s, T, y2)) d’c)ds
0

t
+4£g(t,s)p(t)( sup PBe(So(s + @))

@€[-n,0]

+2f K* sup ﬁ5(60(1+®))d1)ds
0

@€[-1,0]

t
+ 4](: G(t, s)p(t)( sup Se(So(s))

s€[0,]

+ 2fs K* sup 55(60(7))017)0[5
0

7€[0,s]
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g(t s)p(s)(1 + 2K's) sup Be(So(s))ds
se[0,d]

< (2N1||p||L°<> a1+ 2607 Be((@)

_(a+2e VNIl

- 2 X (2k)

Be(S).
Again by Lemma 2.6, there exists a countable set D, = {y,zl} c coQ®@¥)(D), y), such that

BE(@Q¥/(S))(1) = ﬁE(Q(Z'y(’)(E{Q(Z’yO)(S)/ yo}))(f))
< 2Be(Q(S2))(1))

<2 (igm, 0r({y2)O)] ))

+4M f ﬁg(( oI fo Sw(s,f,{yim}f:o)df))

X G(t,s)p(t)ds

t

< 4Mlpll (1 +2K's) sup Be(@Q")(S), y0))(s)))
celo]

t
gf(1+2K*s)(2N1IIP||L°°
0

1+ 2ks)2) Bs((S)ds

t
< fo @N1llpll= )2m(1+2ks)3ﬁ¢((6)ds

< ((2N1||P||L°°)2W(1 + 2kf)4) Be(S)

_(a+2e \/_2N1||P|_|L°°)

2 X 4 X (2k)?

Be(S).

If for any ¢ € ], we assume

§ ((1 + 2ka) NPT ) "
PE@ @) < s

Then, by Lemma 2.4, there exists a countable set set

St = {1} € @QM(S), o),

Bs(S)

such that

BE@Q(@))(t) = Be(Q 40 (0 {QP(S), yo ()
< ZﬁE (Q(6m+1))(t)

< 2/35( G(d, 0({y '””)(0)}:0)
+4M j; G, s)p(t)

X p (f(s, el Hs o o)) dT)ds

3871



N. Rezoug et al. / Filomat 38:11 (2024), 3861-3880 3872

t
< aMlpln, [ (142K°9) sup Be@Q" (), 10)6)
0 Ce[0.4]

< @Nillplle=)"(1 + 2kd)>

= T2x4A X 2m X (2k)m Pe(©).

Therefore, we obtain the following inequality

(1 + 2kd) 2N )

ﬁG(Q(erO)(G))(f)) < 2X4x---2m x (2k)m

By the fact that

Bs(S).

((1 +2kd) 2N =)

2X4X%---2m X (2k)"

Therefore, there must exist a positive integer mg, which is large enough, such that
2my
((1+ 26d) V2Nalpll=) )
2X4X---2ny X (2kym
By Lemma 2.4and Lemma 2.5. From (IHs)(ii), we have, for any ¢ € [-7,0],
Be(Q(E)(E) = Be (p(B) + Ay)(B) = 0.

Therefore, Q : © — S is a convex-power condensing operator.

— Q0asn — +oo.

Case 2. The operator i : (3, E) — Q is noncompact (Kj # 0).
Take yo € U,, we shall prove that there exists a positive integral m such that

Be(@Q)(S)) < Be(QUS))

for every nonprecompact bounded subset S C ¥,. By the definition of operator Q¥ and the equiconti-
nuity of Q, we get that Q"¥)(3) c U, is also equicontinuous. Therefore, we know that

Be(Q (@) = sup B @ (S)(H).

te]

For every bounded subset © c €(3, E), by Lemma 2.4, there exists a countable set Sy = {z"}” | C &, such
that for each t € 3, and from (IH;), (H3)(@ii), (H4)(ii), (Hs)(@) and by using Lemma 2.4, Lemma 2.5 and
properties of the measure ¢, we obtain

Be(@QS)(t) = Be(Q(S)()
< 2Be((Q(So)(?)

< 2ﬁg( - %Q(t, 0) (p(0) + 7i(y)(0)) + G(t, 0)y1

t S
+ f Gt N (S, ]/s,f M(s, T, yT)dT) ds)
0 0

<2 (%ga, 0>h<y><0))

t s
< 28 ( fo g(t,s)N(s,ys, fo M(S,T,yT)dT)ds)

< NoKiBe(So(t))
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t S

<4 fo G(t,s)BE (N (s, Ys, fo M(s, T, yT)dT))ds
t s

< 2Bk (fo g(t,s)N(s,ys,fo M(S,T,yT)dT)dS)

< NoKj; sup Be(So(t))
te[0,d]

< 41(: [tes[l_l,fm BE(So(s + @) + B (j(; M(s, T, yT)dT)]

X G(t,s)p(t)ds

< NyKj sup Be(So(t))
e[0,d]

' S
< 4]; (ES[EIEO] Be(So(s + @) + 2](; Be (M(s, T, yr)) d’l’]
X Gt S)P(t)ds

< NoKj; sup Be(So(t))
e[0,d]

t
< 4f0 (tes[ufmﬁE(eo s+ @)) +2f Be (M(s, T, yT))dT]
x G(t, 9)p(t)ds

< NoKj sup Be(So(t))
te[0,d]

t
+4£g(t,s)p(t)( sup Pe(So(s + @))

@€[-1,0]

+2f K* sup ﬁE(EO(T+cD))dT)dS
0

@€[-1,0]

< NoKy sup Be(Solt))
te[0,d]

t
+4 fo g(t,s)p(t)( sup Be(So(s))

s€[0,]

+ 2fs K* sup ﬁE(SO(T))dT)ds
0

7€[0,s]
< NaKj; sup Be(So(t))
te[0,d]
t

g(t s)p(s)(1 + 2K's) sup Be(So(s))ds

s€[0,d]

< (Nth + 2Nl 5= 1+ 2K02) (@)

2 X Zk
(1 + 207 Be((D),

<1
—(+2

where

L = max(N,Kjy, 2N1l|pllc=).
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Again by Lemma 2.4, there exists a countable set D, = { yﬁ} C coQ¥)(D), Yo), such that
BE@QPP(@)(1) = e(Q>4) (0 {Q>*(S), yo))(B)
< 2e(Q(S2))(1)
a 21
<35 (S0 (3], ) o)

t
+4M fo Be (f(s,{yﬁ(s)}:’_o), f; W(S,T,ﬂyﬁ(T)}n_o)dT)

x G(t,s)p(t)ds
< 4N, (1 (20QM40(2), yo)(0))))

t
+ 4Mllpll f (129 sup (@0 )(), 3)()
e[0,t

2 2
<L (1+2 2k(1+2kt))

t
+12 f (1 +2K's) (1 b 2k(1 + 2ks)2) Be((S)ds

j=2 . 2
. @ j+1)(1+2kd)? N
<k [“ _ (2><4>< (2j)x(2kd)f)]5“(("’)'

If for any t € |, we assume

j=2 . 2j
2-j+1) 1+ 2kd)”
Be(QM¥)(@))(t)) < L™ [1 + [ . ]]ﬁ ().
¢ ; 2x4x - % (2)) x (2kd)i ||"¢

Then by Lemma 2.4, there exists a countable set set S,,.1 = { y;”“} C coQ¥)(S), Yo), such that

BE@QUI(@))(t)
= BE(Q 1) (G {QP(S), yo)(H)
< 2B(Q(Sn+1))(1))

sZﬁE( G(d, 0y ) ))

+4M f G, s)p(t)ﬁg(f(s G ), f 5,7 (v (@) )dT)dS))ds
< AN (7 (C0Q™(S), yo))(©))))

t

+4MllpllL- (1 +2K"s) Sl{lp] BE(@Q¥)(S), 19))(5)))
Celo,t

m+1 2 4
<L (1 + 5 2k(l + 2kt)” + 1+ 2kt)* +

(2k)2
N 1
2X4X---2m X (2k)ym

1+ de)Zm)ﬁ@((G)
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t
m+1 « 2, m—1 4.
+L f0(1+21<s)(1+2 2k(1+2ks) ><4><(21{)2(1+2ks) +t
1 2m =
+ X Ax 2mx 2" (1 + 2ks) )ﬁq((u)ds
m+1 24 —m 4
<L (1 + ™ 2k(l + 2kt)” + SYRILTE (1 + 2kt)

1
+
2xX4%---2(m+ 1) x (2k)m+!

1+ 2kt)2<m+1>)/3¢(c5).

Therefore, we obtain the following inequality

j=m . 2j
ﬁ@(Q(m’y(’)(g))(t)) <M [1 n Z [ (m-j+1) (1 + 2kd) j )] ﬁq((g)
=

42X 4 X+ X (2]) X (2kd)]

By the fact that
L™ — 0asm — +oo,

and

fz( (m—]+1 ) (1 + 2kd)*
1

. t,
T XA X x (2]) » (Zk)]J 1s convergen

there must exist a positive integer g, which is large enough, such that
—j+1) (1 + 2kd)*
L’”01+Z (o~ j+ 1) " | <1
2x4 %X (2f) x (2k)i
By Lemma 2.4 and Lemma 2.5 and from (IHs)(ii), we have for any t € [-1, 0],

Be((@Q ) S)(t) = Be((Q(E)()
< 2Be((Q(So)(1)
< 2Be (p(t) + A(y)(t))
< 2KuBE(So(t))

< 2Ky sup Be(S(1)).
te[0,d]

Again by Lemma 2.6, there exists a countable set S, = {y,%} c c0Q?>¥)(D), y), such that

Be(@QP(@))(1) = Be(Q) (@ (QP1(S), yo (1)
< 2Bp(Q(S2))(1)
< 2Bk (@(t) + H(S)(1)
< 2KnBe(S2(1))

< (2Kp)? sup Be(S(t).
te[0,d]

Continuing this iterative procedure and for t € J, we get the m'" iterative therm,

BE(@QUN(@))(#) < (2Kn)"Be(S).

Therefore, by the fact that
(2Kp)"™ — 0 as m — +oo,
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we know that there exists a large enough positive integer m such that
(2Kp)™ < 1.
Thus, Q : @ — S is a convex-power condensing operator. Thus, Q has at least one fixed point, which is a
mild solution of the nonlocal impulsive problem (1). [
4. An example
Let X = Lz([O, 71t], R). Consider the following finite delay partial differential equation:

3

&822 (’D é) &aézx(’[, )+)/(’zj) J x(’zj, )+ Tt

0
f In(1+ 7 |p(@)(&)]) do
o
+fﬂ fo nst@dlgg (1 -
0 -n

0
f st @9l g
-1
x(7,0) = x(t,1) =0, T € [0, 7],

x(t, &) =P(@, &) + j; T+ (@, ) ds, T €[-n,0], T €[0, r],

ox(0,&)
T

—T

) dé, te], £€[0,n],

- 1/ é € [0 T[]
Assume that n € [0, %] andd > 1+ % Define the operator A : D(A) — E by

Av(t) = 0" (1),

with domain D(A;) = H2(R,C). It is well known that A is the infinitesimal generator of a Cy-semigroup
and of a strongly continuous cosine function on E, which will be denoted by (C(t)). From [40], for all
x € H3([0, 7], R), t € R, ||C(*)llzy < 1. Define also the operator B : H([0, ], R) — E by

B(t)v(s) = y(H)v'(s),

where y : [0,1] — R is a Holder continuous function.

Consider the closed linear operator A(t) = B(t) + A. It has been proved by Henriquez in [25] that the
family {A(t) : t € |} generates an evolution operator {S(t, 5)}; sea. Moreover, 5(, -) is well defined and satisfies
the conditions (H;) with Ny = N, = A = 1.

Define x(1)(&) = x(1, &), x:(@)(&) = z(T + @, &). Denote

1y(é)|

N : ; — —-T
o E)=mn \/lnnf 1+ |y(éi)|

+

f In(1+77° |¢(m)(§)|)d@

0

Mt y()E) = f ot gg,

n
P e
L e f n “’lxt(SﬂE)I2 ds,
(In7) 0 Inm + |x(s, &)

P(@)(¢) = Y(@, &)

Thus, above nonlocal fractional partial differential equations with finite delay (1) can be written as the
abstract form (5).

(M(x)(@)(E) =

and
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Next, we verify the assumptions (IH;) — (Hy4) for the above system (5) one by one.

Verification of (IH): for a.e. t € J, the function N(¢,-,-) : I X QX E — E is continuous, and for each
(y1, y2) € Q X E, the function N is strongly measurable; By a simple computation, we have

NG, 9, y)(E) < (|<p(ca> O+t ). (6)

\/_

Then for any bounded sets W; € Q, W, C X, we get

P
e(f(t, W1, Wp)) < sup Be(V1(0)) + Be(W2) |-
pelf Vin 96[—50]‘8 p
We shall show that condition (H6) holds with
Tt Tt
WE(t) = VE+7it, Op(t) = , p(t) = ,
Vinn P Vinm
and ]
—d+3
lim inf —2~ N( ) _ mlpll 4 = T
r—+00 2(11’1 )2
The functions p € L*(3,R*), and ||p||r~ € (O, %]
Verification of (IHj3):
For each t € [0,d], ¢ € Q, we obtain
0 qrts
(s, <7 [ melpe)lto < T il @)

n
for any bounded and countable set V C Q
Be(M(t,s, V) <" sup Be(V(t)) foraete ]
te[-n,0]
From the above discussion, we obtain

,n—ts+q

LK =7

&t s) =

Inm

and

* ' T(,]
&= supjo~ &(t, s)ds = I < 400,

teJ

Verification of (IHs): For each f € [0,d], ¢ € Q, we obtain

0
0 < geos(slel) + 7 [ 7 Tt@iomo
—@=71
< o s (ol + el
< o (cos )+ IIqoll),
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and

1

|(hp2)(t) — (A1) ()] < Wfpzl(fb)(é) = p1(@)(&)]

- f T lpa@)(E) — pr(@)(E)ldd.
-1

Y (R [
“\5(nn)?2  7Ilnm P2 = pll

which implies for each t € [-7, 0], the operator I : €S, E) defined by I'+(y) = (fiy)(t) is continuous and the
subset fi(A) C Q is equicontinuous for each bounded set A c €(3J,E). Moreover, for any bounded and
countable set V C E

N+t 75— V(0)) fora.et e ]
ﬁg(ﬁ(V)_(5(lnn)2 + 71m)6€s[u§mﬁg( (0)) foraete€].
Hence (IH,) is satisfied with
1 1 1 1
Wy = cos(5t) 1, Ny = g and K”‘(W+m)'

W, satisfies lim,_, oo inf w =1€[0,(Inm)?*]and K;; € [0, %]
With all the parameters discussed above, it is easy to check that conditions stated in Theorem 3.2.
(1 —P)l_”||¢’1F||L;7 1 1] »
]F =
AP (In7)*  242(Inm)3

Now all the assumptions in Theorem 3.2 are satisfied, and so there is at least one solution of the problem
(5) on [-n,d].

NoNg Ay +

(®)
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