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Abstract. This paper is devoted to the analysis of the following linear parabolic equation d;u—du = f, sub-
ject to Robin type conditions dyu + fu = 0, on the lateral boundary, where coefficient 8 satisfies suitable non-
degeneracy assumptions and possibly depends on the time variable. The right-hand side f of the equation
is takenin L?,1 < p < co. The problem is set in a domain of the form Q = {(t,x) e R>: 0 <t < 1,0 < x < 7},

a > 1/2. We use Labbas-Terreni results [23] on the operator’s sum method in the non-commutative case.
This work is an extension of the Hilbertian case studied in [15].

1. Introduction

This work is devoted to the study of the following parabolic problem

o (t,x) — 2u (t,x) = f(t,x)
Ot + o (B u|_, =0 1)
It + B (2) u'x:ta =0,

set in the non-cylindrical domain

Q:{(t,x)e]R2:0<t<1,o<x<t“}.
Here, f € [P(Q), 1 + @ < p < oo with @ > 1/2 and the coefficients ;, i = 0,1, are real-valued functions on
[0,1] such that

Bo(t) <0and B (t) >0 forall t €[0,1],

2)
tei[l’(}/f” (ﬁo (t) + ﬁl (t)) > 0.
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We also assume that
Bi€C%([0,1]),0;€1]0,1[,i =0,1. 4)
Note that, for i = 0, 1, the Robin type condition
dxu+Bi(Hu=0,

is a perturbation by B; of the Neumann type one d,u = 0 and it is well known that Dirichlet and Neumann
type boundary conditions correspond to two extreme cases, namely 8; = oo and f; = 0, respectively.

Since the mid of the last century, classical results on the resolution of Problem can be found in [27],
[28] and [29] in the case of cylindrical domains. Some regularity results in the frameworks of anisotropic
Sobolev-Slobodetskii or Holder or Morrey spaces are given in [10], [11], [19], [30] and [31] and in the
references therein.

The L?-solvability of Problem (1) has been investigated in [15] by the a priori estimates technique. We
can find another study of Problem (1) in the case where Q is a disc in [17]. Hofmann and Lewis [13]
have considered the heat equation with Neumann boundary condition in non-cylindrical domains under
some conditions of Lipschitz’s type on the geometrical behavior of the boundary which cannot include our
domain. They showed that the optimal L” regularity holds for p = 2 and the situation gets progressively
worse as p approaches 1. The case of Robin-Neumann type boundary conditions is considered in [5]. We
can find in Savaré [36] an abstract study for parabolic problems with mixed (Dirichlet-Neumann) lateral
boundary conditions.

There are many works on the analysis of parabolic problems with Cauchy-Dirichlet boundary conditions
in non-cylindrical domains both in Hilbertian and non-Hilbertian spaces. We quote, for instance, a series
of papers by Sadallah and kheloufi et al. [33], [18], [35], [34], [16], [6], [7] where such problems were studied
by the domain decomposition method, Kozlov [21], [22], for domains with conical points, Aref’ev and
Bagirov [2], [3], Ivanova and Ushakov [14]. In the non-Hilbertian spaces, as LP-spaces, with p € (1, ),
p # 2 or Holder spaces, we can mention that optimal regularity results are obtained for Problem (1) with
Cauchy-Dirichlet boundary conditions, see [25] and [4] respectively. Further references are: [1], [20] and
[26].

The difficulty with the space L¥, p # 2, is that this space is not a Hilbert space. So, the Hilbertian
techniques used in the most of above mentioned papers cannot be generalized in this sense. An idea for
this extension (to the case L?, p € (1, o)) can be found in [25], in which Problem (1) with Cauchy-Dirichlet
boundary conditions is studied by another approach making use of the operators sum method.

In this work, we will prove that Problem (1) has a solution with optimal regularity, that is a solution u
belonging to the natural anisotropic Sobolev space

Hy? (Q) = {ue P (Q): dw,duelF(Q), j=1,2}.

The organization of this paper is as follows. In Section 3, by using a change of variables conserving the
spaces L” and H;’z, we transform Problem (1) into a degenerated parabolic problem in a cylindrical domain.
Section 4 is concerned with the resolution of the transformed problem. Our approach is different from that
used in [9]. It is based on the direct use of operators sums in a weighted L”-Sobolev space. For more details
and recent results concerning this method, see [8], [32] and the references therein. In Section 5 we return to
our initial problem by using an inverse change of variable.

Note that this approach may be extended at least in the following directions:

1. The function f on the right-hand side of the equation of Problem (1), may be taken in Holder or little
Holder spaces.

2. The unidimensional case in x, can be naturally extended to an upper dimension in x, such as, for
example, the following problem

At (t,x1,%2) — 95, (t, 1, %2) — D2, u (£, x1,%2) = f (¢, %1, %2)
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in the domain
{(t,xl,xz) eR3:0<t<1,x1,x>0and (x1/t% x/t%) € G},

where G is some given cylindrical domain in R?. These questions will be developed in forthcoming works.
In the following section we recall the essential of the sum theory we will have to apply.

2. On the sum of linear operators

Let A be a closed linear operator in a complex Banach space E. Then, A is said to be sectorial if
(i) D(A) and Im(A) are dense in E,

(if) ker(A) = {0},

(iii) ] — 00,0[C p (A) (p (A) is the resolvent set of A) and there exists a constant K > 1 such that

Vi >0, ||EA + D) <K

o

If A is sectorial it follows easily that p (—A) contains an open sector

Zq)={zeC:z¢O,

arg z( < (p} ,
with ¢ € 10, [
Consider two closed linear operators A and B with dense domains D(A) and D(B) respectively in E.

Assume that both operators satisfy the following assumptions of Da Prato-Grisvard type [8].
There exist positive numbers r, Ma, Mg, 64,05 such that

GA + 63 <T, (5)
p(=A) DXL, = {z eC:|zl =, argz| <Tm- GA} and
-1 MA (6)
VA€ Zng,, [(A+AD7T, < K
p(=B) D> Lr g, = {z eC:|zl 2, argz| <Tm- 93} and
4 Mg (7)
Vi€ Zagy, B +uD) 7|, < -

We also assume that there are constants m € IN*, C > 0, Ag > 0, (with Ag € p(=A)), 7; > 0and p; > 0, i =
1, ...,m such that

(i) H(A FAD (A+ADT [(A+ Aol (B + #I)’1]||L(E>

SCZ;‘ YA ep(-A),Yuep(-B), (8)
i=1 |A|1—T,' ) |H|1+P1

(@) 0<1<p; <1, Vi=1,..,m.

For more details concerning this last Labbas-Terreni commutator assumption see [23], [24].
Forany o € ]0,1[and 1 < p < +09, let us introduce the real Banach interpolation spaces D4 (o, p) between
D (A) and E (or Dg (0, p) between D (B) and E) which are characterized by

D4 (o,p) = {5 €E:tr |rAA-t) g, € L’f},

where L? denotes the space of p-integrable functions on (0, +c0) with the measure dt/t. For p = +oo,
Dy (0, +00) = {5 € E:sup ||t"A (A-tD)™ cE”E < oo}.
t>0

For these spaces, see [12]. Then the main result proved in Labbas-Terreni [23] is the following :

Theorem 2.1. Under the assumptions (5), (6), (7) and (8), there exists A* such that for any A > A* and for any
h € Da(o,p), equation Aw + Bw + Aw = h, has a unique solution w € D (A) N D (B) with the regqularities Aw,
Bw € D4 (6, p) and Aw € Dg (6, p) for any 6 verifying 6 < min (o, (p; — i) .

1
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3. Change of variables
The change of variables
(tx) = (Ly)=(tx/t)

transforms Q into the square Q = ]0,1[ x ]0, 1[. Putting u (t,x) = v (t,y) and f (t,x) = g(t, y), then Problem
(1) is transformed, in Q, into the degenerate evolution problem

Y9 (t,y) — dyo(ty) — at* ydyo (ty) = g (t,y) = h(t,y)

V=0 =0,

20 + 1o (] =0, ©)
dyv + By (o], = 0.

It is easy to see that f € ¥ (Q) if and only if t*/Pg € L7 (Q). Indeed

1 Y
P
felr@Q o fofo |ftof dtdx < +
1 1
o ff(g(t,y))pt“dtdy < 400
0 0

1

& ff(t“/”g(t,y)rdtdy < 4o
o Jo

o thrgelr(Q).

Consequently f € ¥ (Q) if and only if 20+ (@) e 1P (Q) which implies that h € L? (Q), since
W= (t—2a+(a/p)h) t2a—(a/p)

and 2a — (a/p) > 0. Then the function 1 = t**g lies in the closed subspace of L? (Q) defined by
E={helr (0,11 (0,1) : 2+ e 1P (0,117 (0, 1)}

This space is equipped with the norm

e = ||r=2e/o)n

LP(0,1;L7(0,1))

4. Resolution of Problem (9)

4.1. Writing Problem (9) in an operational form

Let & > 1/2 and assume

p>1+a. (10)
Set X = L”(0,1) and v (t) = v(t,.), then Problem (9) is equivalent to the following operational degenerate
Cauchy problem in X

P+ LMBvEt) = h(t), t€(0,1),
{ 0(0) =0, an
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where the family (L (t)),c[o,1) is defined by

D (L(#) {w e W2 (O, 1): ¢/ (j)+ 128,y () =0,j = 0,1},
LBV )

" (y) — at* 1y’ (y) forae. t€(0,1).
Observe that D (L (t)) = X. Set

w (t) = e~M 1020y (¢
k() = ef/\tlfz‘*/(l—m)h ),

where A is some positive number. Then w verifies

w(0) =0, (12)

{ ow' () +L(Ow )+ Awt) = k), te(0,1),
where k belongs to the space E. We obtain then the new operational form of the previous problem, mainly
Aw+ Bw + Aw =k,

where

D (A) ={weE:weD(L()), ae. t€(0,1)}
(Aw)(t) =L@®)w(®),te]0,1],

and

DB = {w €E: 2w e Eand w(0) = 0}
Bw)(t) =t*w' (t),t€][0,1].

Note that the trace w (0) is well defined in D (B). In fact, we have
P e LP (0,1; X), t*Pw’ € 17 (0,1; X),
and in virtue of (10) a/p + 1/p < 1. Then w is continuous on [0, 1], (see [38, Lemma, p. 42]).

4.2. Application of the sums

Now we are in position to apply the result of the sums of operators. For this purpose we must verify
the assumptions of Theorem 2.1. The spectral properties of A and B are as follows.

Proposition 4.1. A and B are linear closed operators and their domains are dense in E. Moreover, they satisfy
assumptions (5), (6) and (7).

Proof. 1. First, concerning operator B, the proof can be found in [26].
2. Now, we are concerned with the operator A which has the same properties as its realization L (f). The
study uses the following perturbation result due to Lunardi ([29, Proposition 2.4.3, p. 65]).

Proposition 4.2. Let Ly be a linear operator of domain D (Lg) dense in E. Assume that L is sectorial and P a linear
continuous operator on D (Lo) which is compact. Then operator Ly + P : D (L) — X is sectorial.

For each t € [0, 1] we write
LBHP)=Lo(Yy+PB)Y,

with

{umw -y
Do) = {peW>©O,1):¢ )+, (j)=0,j=0,1]
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and

—(sza_lylp’
W7 (0,1).

P(t)y
D (P ()

Note that the domains D (L ()) are variable and depend effectively on t.
It is well known that D (Lo (#)) = L” (0, 1). Let us prove that Ly(t) is sectorial. The spectral problem

w’ (0) + t*Bo (H) w (0) = 0,

w” (y) - Aw(y) = f(y),y€[0,1],
w (1) + 98 (Hw (1) = 0,

has the unique solution

1
w(ty) = fo Ki (1, y) f (1) dr,

where (assuming Re VA > 0)

Ki (Tr y) =
1 [\/Xcosh VAT — t9By (t) sinh \/XT] [\/Xcosh VA(1 = y) — 9B (t) sinh VA (1 - y)]
VA [t VA (Bo (8) + B (1)) cosh VA = (A + 126, (1) By (1)) sinh V| '
if0<t<y,
1 [\/Xcosh \/Xy — 1By (t) sinh \/Zy] [\/Xcosh VA(l-1)- t%B1 (f) sinh VA - T)]
VA [t“ VA (Bo (t) + 1 () cosh VA — (A + £22B, (£) 1 (1)) sinh «/K] '
ify<t<1l

Since (Kt (7, y)| = |Kt (v, 1)

, then in virtue of the Schur’s Lemma
1
|Co® - ADTY|, ., < sup | |Ki(zy)|de. (13)
L(E)
ye[0,1] Jo

Setting p = Re VA, 0 = Im VA, we have p > 0 and

1 | Vale's + 1o () |- | \/X| et + B (t)— coshptcoshp (1 —-y)
.| VA| |t VA (Bo (1) + 1 () cosh VA — (A + 1296, (1) B (1)) sinh VA|
|Kt(T,y)|S lfOSliS Y, ; N } )
1 |\/X ez +t%Bo () | |\/X| e’ +t*B1 (t)|| cosh pycoshp (1 — 1)

[VA] " [6 VA (Bo () + B () cosh VA — (A + 1256 (£) By () sinh VA|

ify<t<l
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hence

1 y 1
fo |Kt (7, y)| drt < (coshp (1- y)~[0 cosh ptdt + cosh pyL coshp(1-1) dT)
.“ Vale + 118 (1) |] [| Vale$ + g, (t)”

VA VA (Bo () + 1 (9) cosh VA~ (1 + 226 (0 1 () sinh VA
< [sinh pycosh p (1 — y) + cosh pysinh p (1 — y)]

‘” VA €% + £418o (£) |] ” Vale't + 9B, (t)]

g p| VA|[t* VA (Bo (B) + B1 (1)) cosh VA — (A + 1236y (¢) 1 (¢)) sinh V2|
_sinhp ‘H‘ﬁ ¢'% + 191y (1) |] [| Vale + g, (t)”

| VAT [t VA (Bo (8) + B (1) cosh VA = (A + 236y () 1 (1)) sinh VA|

On the other hand a direct calculation shows that (in the following estimation, we write ;,i = 0,1 instead
of Bi(t),i =0,1)

£ VA (B0 + 1) cosh VA = (1 + 2o ) sinh V|
VI 4 VA VI_ VA
ta\/_(ﬁ0+‘31)( +e ] (/\+f2a,30,31)(€ A 23 A]

| VAI(Bo + Br) e’ — A1 — 2*Bopy |

[tal VAl Al (Bo + B1)é S+ AL + fzaﬁoﬁl]
EIVA (Bo + B1) €4+ e + 2oy | -

\Y

(3

EIVA B+ e + e + g0
5 e 5 -
[\/_|62+t“ﬁ0”|\/_e2+t“ﬁ1]
W‘ezmmﬂ«ﬁ_ |\/_62+t“/31]
[\/_|e’2+“ +t“ﬁo]—\ﬁ62+t“51”
=£ _ep [ +H)+t“ﬁo][ﬁ62+t“ﬁ1]
_smhpm\/_ez +t“|ﬁol]”\/_ez +t“ﬁ1]

which implies

1l N|

le v%

(3N

NI

[\

(3N

NI

Ale

t* VA (Bo + B1) cosh VA — (/\ + tzaﬁoﬁl) sinh \//_\’
> [| Vet + t“lﬁol] H VA

and consequently

i t“ﬁl] sinh p,

sup [ K (@ y)de < S [ VAle + g [|VA] ¢ + 0]
ye[ol,:i] t N (\/_| |(\/_|ez + 12|Bo (t) |] [| \/_)ez +t0¢ﬁ1(t]'smhp,
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which gives

1
1 1
su K (t,y)dt < =
ye[olz] 0 +@y) p|VA| IAlcos6/2

with |arg )\‘ = 0. Hence
~ 1
||(Lo (£) = AI) 1HL(E) < [Alcos 0/2°

Moreover, thanks to Holder inequality, for ¢ € D (Lo (t)) € D (P (t)) we have

IP© ¥l

1 gz

= (fo |—at2a_1]/1l/ (y)r] dy)
1 1

_ (fo _atza—ly[j: sy” (s)ds _L (1-s)y” (s) ds]

1 Y p v 1

< atZa—l (f(; yjo\ Sl,[JN (S)dS d]/) +at2a—1 [L

Py
dy]

1
y fy (1- )y (5)ds

P\
dy)

< at*! [C1 ) | P ‘LV(O,l) +Ca(p) | [ LP(O,l)]
<G(p,a) ||17DH||D(Lg(t))'
On the other hand, let us set
m@): LF(0,1) — LF(0,1)
¥ = (mOY)(y) = - yy (y),
i W (0,1) — L(0,1)
% =,
d: W2 (0,1) — WY (0,1)
p B dy) =y

3898

(14)

Then one has P (t) = m(t) o i o d. Thus, P(t) is compact from D (Ly(t)) into E since i is compact and d, m (t)
are continuous. So for any f € [0, 1], operator L(f) is sectorial and consequently there exist some ry > 0 and

0, € ]O, %[ such that

p(=L(t) D Lrp, = {z z| = 1o, argz| <Tm- 91}.
Now, for k € E and z € L;_g, the spectral equation
Aw +zw =k,
is equivalent to
LA w(t) +zw(t) =k(t),t€[0,1],

which admits a unique solution,

w®) = LB +2)7Tk@®).
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Hence
K
llw (Dllr0,1) < ] Ik Dllr 0,1y -

which implies

! —2a+(a P w K
||w||E=( fo [ (Ww(t)HXdT) < 7 Kl

This ends the proof of Proposition 4.1. [

From the Agmon’s result, see Tanabe ([37, p. 83, Lemma 3.8.1]), we can deduce the following.

Proposition 4.3. For every t € [0, 1], the problem

w’ (0) + tBo () w (0) = go,

—w" — at** lyw’ + Aw = f €L (0,1),
w D)+ tpr(w () =g,

admits a unique solution w € W?? (0, 1), provided A belongs to a suitable sector (depending on p)

oo = {A € C:1A] 2 Ay,

arg /\| < (po},
with Ay > 0 and @g € 1n/2, [ . Moreover, the following estimate holds
(AWl p 0,1y + A2 10" 0,1y + 10" lero,1y
<CO{ Al + M7 (Gl + 1Gile)
+IGollwroo1) + Gl |
where Go =goony=0and Gi =g1ony = 1.
Let us prove now:

Proposition 4.4. A and B satisfy the Labbas-Terreni condition (8).

Proof. Fix ¢ and t such that
0<o<t<l.
Note that

LOCH+) (Lo -L™)
=LO+A)-LHECE+A) L)

=L@ +CLO+N)T+LO)TT-LOCBH+A)TL(0)
=L@ +LO+N)T+A+LO-LEO)YLBH +A)L(0)"
=L@ T+CLO+NT+ACH+N)TL0)!

= LOTT+CO+N) L@ +AN)LO) .

3899

(15)

LetgeL?(0,1) and setv =L (0)! g,u=(L(f)+ A7 (L (0) + A) v. We will estimate |[u — llrp(0,1)- We have

=" (y) —ac™ 'y’ (y) = g(y), y € (0,1),
v (0) + 0*Bo (0)v(0) =0,
v (1) +0%B1(0)v(1) =0,
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and
—u" (y) — at* 'y’ (y) + Au(y) = =0 (y) — ac®™yv’ (y) + Ao (y), y € 0,1),
uw (0) +t*Bo (Hu(0) =0,
W (1) + 181 (Hu (1) = 0;

therefore u — v is solution of the following problem

—w-0)" —at*lyu-v) +A(u-0v) =« [tza"l - 020"1] yo',y€(0,1),
(u = 0)" (0) + t*Bo () (u = 0) (0) = [t*Bo (t) = 0“Bo ()] v (0) = g0,
(u—0) (1) +t*B1 (t) (u — ) (1) = [t*B1 () = 0*B1 (@)] v (1) = 1.

Consider now two cut-functions @y, ®; € D (0, 1) such that

Do (y)=1ify <1/2,
Dy(y)=0if1/2 <y

and

Dy (y)=0if y <1/2,
D (y)=1if1/2 < y.

Applying estimate (15) in the previous proposition by taking
Go = Pogo, G1 = D191,

(which verify Gg = go on y = 0 and G; = g; on y = 1, by construction), we then obtain

20—1 2a-1 ’
Wi =vllpon < CE) (ol =y )|,

2 (||@0g0 ], 01y + 9181100
+ Hq)og‘)”wlfp(o,l) + Hq)lf]l”wlfp(o,l))‘

We have
2a-1 _ 2a-1 2a-1 _ 2a-1
|Ppa Oa]W/mm ale ?“'W”mm>
< M|t - gmin@2a-1) [0llw2r(0,1)
< M- G|m1n(1,2a—1) ||g||LP(0 b
M|1/2 ”(DOgO”LP(O,l)
< A2 {[#%Bo () = 0*Bo (0)] © (O)

< A2 |Bo (£) = £Bo (0) + £Bo (0) — 0B (0)| [0 (0)]
< CIAIM [[Bo (&) = Bo (0)] + 12 = 0°1| [0 (O)]
< CIAM2 (1t =l + It = o™ o (0))

< CIAM2 |t = omin@aB) 1 (0))

< CIAM2 |t = o™ @200 1] 01y
< CIAM2 |t = o™ ™20 1] 01y
< CIAM2 |t = o200 1] 2 01y

gcmwﬂbmWMM%WNmm>

and in the similar manner we get

AP @191l ) < CAI21E= o020 gl .
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Therefore

[ = 0l 0,1y

C ; _
<{= |i’ _ almln(l,Za 1) 7 |t _
A Al

c c
< {W T a|“2} ol

where a; = min (1,2a¢ — 1) and @, = min (1, «, 69, 01) .
To prove (8), it is sufficient to estimate

min(1,a,60,61) ” ”
ol } Niro,1)

||A A+ )7A B+ z)‘l]HL(E)

where A € p(-A) and z € p (—B). Let k € E, then

A = (FmA@A+ )T AT B+ KO
20 A@A+ )T (AT BT - B+ AT O
2L L+ )7 LT (B +2)7 k) () - (B +2)7 LK) (1)]
1
= LOLH+A)T f o 2+ @K, (t,0) (LB - L(0) ") k(o) do
0
1
= f o2+ (@)K, (t, o) L (8) (L () + A)~ (L®O™ -Lo))k(0)do
0
where
1 z o o |
K. (t,0) :{ T exp{(Za - (tl 20 _ 51-2 )} ift>o
Oift < o,

see [26]. Then
K 1
Il < f K, (1, 0)| I — ot 02+ [k o)l do
0

1
+|A|L”2 f Ky (¢, 0)[ 1t = 01 672+ I1) |k (0) do,
0

with ¢q = min (1, 2a — 1), @ = min (a, 6y, 61). and p = z/ (2 — 1). We have

1
f |Kp (t, a)| |t — o|* do
0

1 t
= Reut' ™2 f —alp (t — g)™ —Repo' ™) do.
2 (alh) exp( ey ) | o WP (t-o0) exp( euo ) o

Then by Holder inequality, one has
t
f o P (t — o)™ exp (—Reyal‘z‘*) do
0

t 1—&1
< ( f o P exp (—Reyol‘z") da)
0

t @
X (f o %P (t - o) exp (—Reyol_za)da)
0

and

1*0(1

Ji

t
(f ga-alp ;=2 exp (_Re”o_l—Za) dO')
0

20—a/, l-m
(t p) 1 (exp (—Reytl_z"‘))l_m

(20( _ 1)1—011 (REM)l_al
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t
(f 027 (t - 0) 0 exp (—Reyal_z"‘) do)
0

(tZa a/p
2a - 1)“1 (R u)“l (f (=) )

where x (0) = exp (—Reyal‘z"‘). Using an integration by parts, we obtain

ay

]2

t — 4 — t _ _ 1-2a
fo‘(t 0)x’ (o)do j(;(t a)exp( Reuo )do

t
f ** (t—0) o™ exp (—Reyal_z"‘) do
0

tza 1 R 1-2a
Qa—-1) (Rey)w1 exp (_ ept )

from which we deduce that

(tm—a/p)m 1 f2a o
J2 < (2a — D" (Reg)™ @a—1) (Rep)™ (eXp (—Reytl 2 )) )

Finally we have

1
f |Ky (t, a)( [t —o|* do
0

exp (Repu ) (Po=o17) ™" (exp (~Rept )

1—[&1

pa=(alp))  a-1)'™™ (Rew)' ™
(tz"‘—“/ P)al 1 f2a (exp (—Reluifl_z"‘))a1
“Ra-1" Rew)” @a-1)  (Rep)™

1
(za _ 1)1+[¥1 (Re‘u)1+a1 4

(2]

and

maxf |K (t, o)||t—a|“1 do< ——
te[0,1]

C
(Rep)™ "
In a similar manner we obtain
C

maxf |Ky t,o Ilif—ol”‘1 dt < ———
(Rep)™

0€[0,1

Now, using Schur interpolation Lemma together with (16) and (17), we obtain

C N C
LB A (Re) AT (Rep) ™
C C

IA

”A A+ A B+ z)‘l]H

AR A7 (Rez)
which implies

C N C
L(E) - M| |Z|1+a1 M|1/2 |Z|1+a2

HA A+ )7 A B+ z)_l]H

for any A € p (=A) and any z belonging to a suitable sectorial curve.
Then (8) is verified with (71, p1) = (0,a1) and (12, p2) = (1/2,a2). O

3902

(16)

(17)
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Using Theorem 2.1, we deduce the following result

Proposition 4.5. There exists A* such that for all A > A* and for all k € Dy (o, p) Problem (12) admits a unique
solution w € D (A) N D (B) such that for all O < min (0, 6) with 6 = min (oq,az

i)L()w € D4 (6,p),
ii) 0w’ € D (0,p),
iii) L(.)w € Dg (6, p).

2

Observe that we have a similar result when k € Dg(0,p). To make precise the time and the space
regularity of w we need to specify the space D4 (o, p). One has

Da(o,p) =
{weE: 2040y e 12(0,1, W27 (0,1)), 0/ (¢, j) + £°B; (D w (¢, j) = 0
j=0,1if20>1/p
fweE: 27y e 12(0,1, WP (0,1))} if 20 < 1/p.

Indeed we know that

Dy (o,p) = {w €eE: ”Cl_UAE_C’AZUHE € Lf},
because —A is a generator of the analytic semigroup {e_CA}czo' Now, w € D4 (o, p) implies
||C1‘“Ae‘CAwHE ell.

Or ”Cl“’Ae‘CAw” ;€ L! is equivalent to
ac

o pdC * —2a+(a -0 A =
f o< ae<lf, 2 f rtemocace K

[ el

< +oo.
On the other hand, thanks to the Dunford representation of the semigroup {e*CA}QO, we have

e L f A+ M)A,
2iTt y

where 7 is a sectorial curve lying in p (—A) such that Re (—A) < 0 for a larger A € . Moreover
(Ae™w) (B) = L (1) e (o (1))

Then, by Fubini’s Theorem, we obtain

At

0
f [f ”t—2a+(a/p)cl L) L) (w (t)) o ]dCC
- f [t [ f [ L@ 0w @), ﬂdt<+oo
0

which means that, for almost every t, the function

y 2y 1) ()
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is in Dy (0, p). It is well known that this last space is the following:
_ 2,p TP
Dy (o,p) = (W27 0,7 D),
with
W2 (0,1) = {w e W (0,1) 1w’ (j) + £B; (hw (j) = 0,j = 0,1}
and
2p .
WX on;ron)_
_ [ {wewrr©,1) 0 (j) + *8;(Hw (j) =0, = 0,1} if 20 > 1/p,
W27 (0,1) if 20 < 1/p.

Let o be a fixed positive number satisfying ¢ < 1/2p and ¢ < 0. From the above proposition, we deduce the
following result.

Proposition 4.6. For all h with t-20+(a/p)p € L (0, 1; W2o% (0, 1)), Problem(11) admits a unique solution fulfilling
the following regularity properties:
(hwe L (Q), 2w eLr (Q),w©) =0,

(ii) t—2a+(a/p)a§w e L7 (Q),

(iii) t“P9yw € LP (Q),

(iv) £2+ (W Pw e 17 (0,1, W7 (0,1)),

(0) £ 9w € L7 (0,1; W2 (0,1)).

Indeed, Problem (11) is equivalent to Problem (12).

5. Back to the initial problem (1)

We now return to our original problem. Let us recall that h(t,y) = t**g(t,y), g(t,y) = f(tx) and
v(t,y) = u(t,x) where (t,y) = ( txa)
The assumption 2+ (@) e 1 (O, 1; W29 (0, 1)) means that

[l
[

dt < oo.

el dt t“ 2ap
" lwee(o,1)
t |f t, x) n|P
20ap ’
f t f f g zw dxddt.

Let us introduce the following subspace of L” (Q) (with a slight abuse):

1 _ nI|P
20,p 20a 4 / ’
tm(o LW ) {feLP(Q) f £ Iﬂf f T dxdx dt<oo}.

Then, we are in position to prove the main result of this work.

d ydy/dt

20p+1
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1
Theorem 5.1. For given o € 10,1[ such that 0 < ¢ < 5 and o < 6, and for any f € L, (0, 1; Wtzf P ), Problem (1)

f2oa

200

has a unique solution u € H,l,’2 (Q) with the regqularities: u, dyu, dxu and d>u belong to L (O, 1; Wff’p).
The proof of Theorem 5.1 can be easily deduced from the following equivalences.

Proposition 5.2. (i) t2a+(alp)y € 1P (O, 1; W2 (0, 1)) ifand only if f € L’:m (0, 1; Wtzf b ),
(if) 224 (@/)yy € 17 (0,1; 17 (0, 1)) if and only if u € LP (Q),
(iti) 20+ 2 € L7 (0,1; W29 (0,1)) if and only if u € L, (0,1; Wii?),

foa

(iv) t*/PJyv € LP (O, 1; WP (0, 1)) if and only if dyu € L, (O, 1; Wff’p).

o

Note that the equivalence (iv) is a consequence of the equation du (t,x) = d%u(t,x) + f (t,x) and the
equivalences (i) and (iii) .
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