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Abstract. In this paper, we give known embedding theorems in Sobolev spaces and Sobolev-Morrey
spaces with dominant mixed derivatives. And as an application of the embedding theorems we study the
problem of existence, uniqueness and smoothness of solutions of p-type equation.

1. Introduction and preliminaries

In this paper we study a p - type equation in the form

∑
′D1e

(∣∣∣D1e
u
∣∣∣p−2

D1e
u
)
=

∑
′D1e

f , (1)

u|∂G = φ|∂G, (2)

where
∑
′ =

∑
∅,e⊆en

, en = {1, 2, ...,n}, ∅ , e any subset of the set en, 1e = {ωe
1, ω

e
2, . . . ω

e
n}, ω j = 1 ( j ∈ e), ωe

j = 0

( j ∈ en \ e = e′),
∣∣∣D1e u

∣∣∣ = (∑
′
(
D1e u

)2
) 1

2

, 1 ≤ p < ∞, u ∈ S1
pW(G) the Sobolev spaces with dominant mixed

derivatives is defined and studied in (see,[4, 22]), f ∈ Lp′ (G), 1
p +

1
p′ = 1 , G ⊂ Rn is a bounded domain, with

nonsmooth boundary. Denote by S1
pW(G) the Sobolev spaces with dominant mixed derivatives of locally

summable functions u(x) on G having the weak derivatives D1e u (e ⊆ en) with the finite norm

∥u∥S1
pW(G) =

∑
e⊆en

∥D1e
u∥Lp(G).
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More precisely in this paper using the variational method an existence and uniqueness of solution to
Dirichlet problem for p type equation (1)-(2) in space S1

pW(G). Also, using known embedding theorems in
the space Sl

p,a,κW(G) by the Riesz functional method we prove theorems that the solution of p -type equation
belong to the Hölder class inside the domain, and has a zero boundary to Dirichlet problem condition up
to bounds.

It should be noted that in [13] it was proved that the ”smoothness exponent” in the case of parameters
greater than in the non-parameters cases. Note that in this paper the smootness of solution of problem
(1)-(2) is also studied in the parametrized space Sl

p,a,κW(G) . ( see, Theorem 2.4 and Theorem 2.5).
The equation (1) in the case p = 2 takes the following form∑

′D2e
u =

∑
′D1e

f ,

and in the case p = n = 2 haw the form

∂2u
∂x2 +

∂2u
∂y2 +

∂4u
∂x2∂y2 =

∂ f
∂x
+
∂ f
∂y
+
∂2 f
∂x∂y

.

The existence and uniqueness of Dirichlet problem for the p-harmonic equation in the form

div
(
|∇u|p−2

∇u
)
= div f ,

were studied in [1, 3, 5, 10, 11, 12, 19, 20, 27, 28]. Also, a similar and various problems of partial differential
equations were studied in [6, 7, 8, 9, 10, 13-18, 21, 23-26, 29, 30] and soon.

Definition 1.1. A weak solution of the Dirichlet problem (1)-(2) on G is a function u(x) ∈ S1
pW(G), if

u − φ ∈
◦

S1
pW(G) such that

∑
′

∫
G

∣∣∣D1e
u
∣∣∣p−2

D1e
uD1e

ψdx =
∑

′

∫
G

f D1e
ψdx (3)

for every ψ ∈
◦

S1
pW(G).

2. Main results

In this section we give main results of the paper.
Theorem 2.1. Let G ⊂ Rn be a bounded domain, 1 ≤ p < ∞ , 1, h ∈ S1

pW(G) , φ ∈ S1
pW(G) and f ∈ Lp′ (G).

Then the Dirichlet problem for p type equation (1) has a unique weak solution in S1
pW(G).

Proof. Let 1, h ∈ S1
pW(G). Then we consider the bilinear functional as the form

E(1, h) =
∑

′

∫
G

∣∣∣D1e
1
∣∣∣p−2

D1e
1D1e

hdx −
∑

′

∫
G

f D1e
hdx =

= A(1, h) −
∑

′

∫
G

f D1e
hdx = A(1, h) − ( f , h). (4)

Therefore, we have

∣∣∣A(1, 1)
∣∣∣ = ∣∣∣A(1)

∣∣∣ ≤
∣∣∣∣∣∣∣∣
∑

′

∫
G

∣∣∣D1e
1
∣∣∣p−2

D1e
1D1e
1dx

∣∣∣∣∣∣∣∣ ≤
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≤

∑
′

∫
G

∣∣∣D1e
1
∣∣∣p−2 ∣∣∣D1e

1
∣∣∣2 dx =

∑
′

∫
G

∣∣∣D1e
1
∣∣∣p dx < ∞,

∣∣∣A(1)
∣∣∣ ≤ ∥1∥p

S1
pW(G)

.

The variational problem is stated as follows. Find a function 1 ∈ S1
pW(G) such that which gives the

minimum value to the functional let E(1, 1) = E(1) and is unique. The Euler-Lagrange equation for the
variational problem (4) is the equation (1), and we have

∣∣∣E(1)
∣∣∣ =

∣∣∣∣∣∣∣∣A(1) −
∑

′

∫
G

f D1e
1dx

∣∣∣∣∣∣∣∣ ≥
∣∣∣A(1)

∣∣∣ −
∣∣∣∣∣∣∣∣
∑

′

∫
G

f D1e
1dx

∣∣∣∣∣∣∣∣ ≥
≥

∣∣∣A(1)
∣∣∣ −∑

′

∣∣∣∣∣∣∣∣
∫
G

f D1e
1dx

∣∣∣∣∣∣∣∣ ≥
∣∣∣A(1)

∣∣∣ −∑
′

∫
G

∣∣∣ f D1e
1
∣∣∣ dx ≥

≥ C∥1∥S1
pW(G) −

∑
′



∫
G

| f |p′dx


1
p′


∫
G

∣∣∣D1e
1
∣∣∣p dx


1
p
 = C∥1∥S1

pW(G)−

−

∑
′
(
∥ f ∥Lp′ (G) + ∥D1e

1∥Lp (G)
)
≥ C∥1∥S1

pW(G) −M0 − ∥1∥S1
pW(G) = −M∗,

∣∣∣E(1)
∣∣∣ ≥ −M∗, M∗ = const.

This means that E(1) is lower bounded on S1
pW(G). So there exists 10 ∈ S1

pW(G) such that E(10) = minE(1).
Fix some sequence {1m} ∈ S1

pW(G) (m = 1, 2, ...) such that lim
m→∞

E(1m) = m0. Let δ > 0 choose mδ so m ≥ mδ

and s = 1, 2, ... it holds E(1m+s) < m0 + δ. Then noting that 1
2
(
1m+s + 1m

)
∈ S1

pW(G) we have E
(
1m+s+1m

2

)
≥ m0,

and by direct calculations we show that A
(
1m+s−1m

2

)
< 4δ, then we have ∥1m+s + 1m∥S1

pW(G) ≤ C1. This means
that the sequence {1m} is fundamental in the spaces S1

pW(G). Thus there exist a function 10 ∈ S1
pW(G) such

that lim
m→∞

∥1m − 10∥S1
pW(G) = 0. By theorem on trace in S1

pW(G) (see[4]), we get

|E(1m) − E(10)| ≤ C2∥1m − 10∥S1
pW(G),

and hence it follows that m0 = lim
m→∞

E(1m) = E(10). Show that the function delivering minimum to the

functional E(1) is unique and satisfies equation (1) in the space S1
pW(G). Then 1 ∈ S1

pW(G) and E(10) = m0.
We have

0 ≤ A
(
1 − 10

2

)
=

1
2

E(1) +
1
2

E(10) − E
(
1 + 10

2

)
≤

m0

2
+

m0

2
−m0 = 0,

A
(
1 − 10

)
= 0.

By ∥1m − 10∥S1
pW(G) → 0 (m → ∞), it follows that the function 1 coincides with 10 as an element of the

space S1
pW(G). And with the help of the theorem on trace in S1

pW(G) in [4], we have

∥
(
1m − 10

)
|∂G∥Lp(∂G) ≤ C∥1m − 10∥S1

pW(G) → 0 (m→∞),

and

∥1m|∂G − φ|∂G∥Lp(∂G) → 0 (m→∞),
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then

∥10|∂G − φ|∂G∥Lp(∂G) → 0 (m→∞).

Taking into account the condition d
dλ

(
E(10 + λω)

)
λ=0 = 0, show that the function10 ∈ S1

pW(G), minimizing
the integral E(1), satisfies the equation

A
(
10, ω

)
−

(
f , ω

)
= 0, (5)

where

ω(x) = γ
( r

l1

)
− γ

( r
l2

)
, 0 < l1 < l2 < δ, r = ρ(x, x0)

is a infinitely differentiable finite function with a support lying on a annular domain l1
2 < r < l2, and

therefore γ, ω ∈ C∞0 (G), and D(s)ω|∂G = 0 for all s = 1, 2, ....
Now prove that the function 10 ∈ S1

pW(G) minimizing the integral E(1) is the weak solution of the
Drichlet problem (1)-(2).

For the function 10(x) we can constucted Sobolev‘s [31] averaging 10,li , i = 1, 2 on the ball li (i = 1, 2) with
centered at the point x as

10,li (x) =
1
τnlni

∫
Rn

K
(
|z − x|

li

)
10(z)dz, i = 1, 2.

Note that the function

K
( r

li

)
=

∑
′D1e

(∣∣∣∣∣D1e
γ
( r

li

)∣∣∣∣∣p−2

D1e
γ
( r

li

))
−

∑
′D1e

f i = 1, 2.

Satisfy the following properties:

1. is an infinitelly differentiable function with support in the ball r ≤ li;
2. all its derivatives on sphere R = h are zero;
3.

1
τnlni

∫
G

K
( r

li

)
dx = 1

τn =
2π

n
2

Γ
(

n
2

) 1∫
0

ξn−1K(ξ)dξ

 .
Then by (5), we can rewrite equality

∫
G

K
( r

l1

)
1(x)dx =

∫
G

K
( r

l2

)
1(x)dx

in the form 10,l1 (x) = 10,l2 (x). Thus for l1 < l2 < δ

10,l1 (x) = 10,l2 (x).

Since the average functions 10,li (x), i = 1, 2 are continuous and have continuous derivatives for any order,
then 10(x) is a kernel. Integrating by parts in the equality A(10, ω) − ( f , ω) = 0, whence is the limit case
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∑
′

∫
G

ω(x)D1e
(∣∣∣D1e

10

∣∣∣p−2
D1e
10

)
dx =

∑
′

∫
G

ω(x)D1e
f dx.

Hence by the arbitrariness of the functions ω(x) it follows that∑
′D1e

(∣∣∣D1e
10

∣∣∣p−2
D1e
10

)
=

∑
′D1e

f .

Thus, solution of the variational problem (4) in the space S1
pW(G) is also solution of Dirichlet problem

(1)-(2) and this solution is unique.
Thus completed the proof of Theorem 2.1 .
Now let‘s prove the next two theorems in order to study the problem of smoothness of the solution of

the equation (1) with the help of the known embedding theorems in Sl
p,a,κW(G) in ( see, [13], l = l1, . . . , ln,

l j ∈ N, κ = (κ1, . . . ,κn), κ j ∈ (0,∞), j ∈ en, a ∈ [0, 1]).
Theorem 2.2 [13] Let G ⊂ Rn be a domain satisfies the condition of flexible horn [2, 13]; 1 ≤ p ≤ q ≤ ∞;

κ = cκ, 1
c = max

j∈en

l jκ j; ν = (ν1, ν2, . . . , νn), ν j ≥ 0 are integers, j ∈ en; f ∈ Sl
p,a,κW(G) and let

ε j = l j − ν j −
(
1 − κ ja

) (1
p
−

1
q

)
> 0, j ∈ en.

Then

∥Dν f ∥q,G ≤ c1

∑
e⊆en

∏
j∈en

Tse, j

j ∥D
le f ∥Lp,a,χ(G)

∥Dν f ∥q,b,κ;U ≤ c2∥ f ∥Sl
p,a,κW(G), p ≤ q < ∞.

In patricular, if

ε j,0 = l j − ν j −
(
1 − κ ja

) 1
p
> 0, j ∈ en

then Dν f is continuous on G and

sup
x∈G

∣∣∣Dν f (x)
∣∣∣ ≤ c1

∑
e⊆en

∏
j∈en

Tse, j,0

j ∥D
le f ∥Lp,a,κ(G) ,

where

∥ f ∥Sl
p,a,κW(G) =

∑
e⊆en

∥Dle f ∥Lp,a,χ(G) ,

∥ f ∥Lp,a,κ(G) = sup
x∈G,
t j>0,
j∈en


1∏

j∈en

[t j]
κ ja

p

1

∥ f ∥p,Gtκ (x)

 ,
Gtκ (x) = G ∩ Itκ (x) = G ∩

{
y :

∣∣∣y j − x j

∣∣∣ < 1
2

tκ j

j , j ∈ en

}
,

se, j =


ε j, j ∈ e

−ν j − (1 − κ ja)
(

1
p
−

1
q

)
, j ∈ e′
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
ε j,0, j ∈ e

−ν j − (1 − κ ja)
1
p
, j ∈ e′

 ,
[t j]1 = min{1, t j}, T j ∈ (0,min(1, t0, j)), j ∈ en; t0 is a fixed positive vector, c1, c2 are constants, indepen-

dent of f and c1 is also independent of T.
Theorem 2.3 [13] Let all conditions of Theorem 2.2 be satisfied. If ε j > 0 ( j ∈ en), then Dν f satisfies the

Hölder condition in Lq(G) with exponent δ j. Moreover

∥△(ξ,G)Dν f ∥q,G ≤ C∥ f ∥Sl
p,a,κW(G)

∏
j∈en

|ξ j|
δ j ,

where

0 ≤ δ j ≤ 1, i f ε j > 1, j ∈ e,
0 ≤ δ j < 1, i f ε j = 1, j ∈ e; 0 ≤ δ j ≤ 1, j ∈ e,
0 ≤ δ j < ε j, i f ε j < 1, j ∈ e.

If ε j,0 > 0 ( j ∈ en), then

sup
x∈G

∣∣∣△(ξ,G)Dν f (x)
∣∣∣ ≤ C∥ f ∥Sl

p,a,κW(G)

∏
j∈en

|ξ j|
δ j,0 ,

where δ j,0 , j ∈ en satisfy the similar conditions as δ j, with ε j,0 instead of ε j.
Theorem 2.4. If p > n, then every weak solution to (1) in S1

pW(G) belongs to the space Cδ0 (Gb),Gb ⊂ G.
First of all, let‘s note that we will prove the theorem by the Riesz method, and accordingly, we set the

right side of (1) equal to zero, i.e. f ≡ 0. Suppose that Id(x0) =
{
x : |x j − x j,0| < dκ j

j , j ∈ en

}
and let x0 ∈ Gd, if

Id(x0) ⊂ G. By the principle of variation∑
′

∫
Id(x0)

∣∣∣D1e
(θ(x)(u(x) − v(x)))

∣∣∣p−2
D1e

(θ(x)(u(x) − v(x))) D1e
(θ(x)(u(x) − v(x))) dx ≥

≥

∑
′

∫
Ia(x0)

∣∣∣D1e
(u(x) − v(x))

∣∣∣p−2
D1e

(u(x) − v(x)) D1e
((u(x) − v(x)) dx ≥

≥

∑
′

∫
Ia(x0)

∣∣∣D1e
(u(x) − v(x))

∣∣∣p−2 ∣∣∣D1e
(u(x) − v(x))

∣∣∣2 dx =

=
∑

′

∫
Ia(x0)

∣∣∣D1e
(u(x) − v(x))

∣∣∣p dx = A (u(x) − v(x), Ia(x0))

we can write, for every 0 < a j ≤ d j < 1, j ∈ en,

θ(x) = 1 −
∏
j∈en

r j

(
x j − x j,0

a j

)
such that θ(x) ≡ 1 in a neighborhood of Ia(x0) and for every polynomial v(x) =

∑
e⊆en

cexe. Let r j(t j) = 1 for

|t j| < 1
2 ; r j(t j) = 0, t j ≥

1
2 , j ∈ en, and 0 ≤ r j(t) ≤ 1, j ∈ en.

It is clear that Θ(x) ≡ 0 in I a
2
(x0), we choose the coefficients of v(x) so that.

Now let‘s prove the next two theorems in order to study the problem of smoothness of the solution of
the equation (1) with the help of the embedding theorems in Sl

p,a,χW(G) (see, [13]).



A. M. Najafov et al. / Filomat 38:11 (2024), 3907–3916 3913

∫
Ia(x0)\I a

2
(x0)

(u(x) − v(x)) xedx = 0.

Therefore

A(u(x) − v(x) ≤ qA
(
u(x) − v(x), Ia(x0) \ I a

2
(x0)

)
,

and since A(u(x) − v(x),G) = A(u(x),G),

A
(
u(x), I a

2
(x0)

)
≤ A (u(x), Ia(x0)) − A

(
u(x), Ia(x0) \ I a

2
(x0)

)
≤

≤ A (u(x), Ia(x0)) −
1
q

A (u(x), Ia(x0)) =
(
1 −

1
q

)
A (u(x), Ia(x0)) ,

and hence, by inducation, we get

A
(
u(x), I a

2k
(x0)

)
≤

(
1 −

1
q

)k

A (u(x), Ia(x0)) .

Let 0 < σ j <
a j

2k , j ∈ en, 0 <
∏
j∈en

σ j <

∏
j∈en

a j

2k , then Iσ(x0) ⊂ I a
2k

(x0), and k ln 2 < ln
∏
j∈en

a j

σ j
. Let

k =


ln

∏
j∈en

a j

σ j

ln2


and let s = 1 − 1

q . Then for every x0 ∈ Gd

A (u(x), Iσ(x0)) ≤ skA (u(x),G) < s
ln

∏
j∈en

aj
σ j

ln2 −1A (u(x),G) =

= e
ln

∏
j∈en

aj
σ j

ln2 ln s−ln sA (u(x),G) =

e
ln

∏
j∈en

aj
σ j


 ln s

ln 2−
ln s

ln
∏

j∈en

aj
σ j


A (u(x),G) ≤

≤

(
e

ln
∏
j∈en

1
σ j

) ln s
ln 2−

ln s

ln
∏

j∈en

aj
σ j A (u(x),G) =

=

∏
j∈en

1
σ j


 ln s

ln 2−
ln s

ln
∏

j∈en

aj
σ j


A (u(x),G) =

=

∏
j∈en

σ j


∣∣∣∣∣∣∣∣∣ ln s

ln 2−
ln s

ln
∏

j∈en

aj
σ j

∣∣∣∣∣∣∣∣∣
A (u(x),G) ,

A (u(x), Iσ(x0)) ≤
∏
j∈en

σ
ξ j

j A (u(x),G) ,
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j∈en

(
1
σ j

)ξ j ∫
Iσ(x0)

|D′eu(x)|p dx ≤ CA(u(x),G).

It follows that ξ j = κ ja, j ∈ en, D1e
∈ Lp,a,κ(Gd), e ⊆ en. Since p > n, then ε j > 0 and ε j,0 > 0 ( j ∈ en). So

the conditions of Theorem 2.2 and Theorem 2.3 are satisfied. Thus by Theorem 2.2 a weak solution u(x) is
continuous on Gd and by Theorem 2.3 is satisfied the Hölder condition.

We consider a non-homogeneous p- type equations corresponding to (1), and let ua,x0 be a solution to
equation (1) in S1

pW (Ia(x0)). Putting ψ ≡ ua,x0 in (3), we have∫
Ia(x0)

∑
′
∣∣∣D1e

ua,x0

∣∣∣p dx ≤
∫

Ia(x0)

∑
′
∣∣∣ f ∣∣∣ ∣∣∣D1e

ua,x0

∣∣∣ dx ≤

≤ C1 (mesIa(x0))
1
p′ ≤ C2

∏
j∈en

aζ j

j ,

∫
Ia(x0)

∑
′
∣∣∣ f D1e

ua,x0

∣∣∣p dx ≤


∫

Ia(x0)

1p′


1
p′ ∑

′


∫

Ia(x0)

∣∣∣ f D1e
ua,x0

∣∣∣p dx


1
p

≤

≤ C1 (mesIa(x0))
1
p′ ≤ C2

∏
j∈en

aζ j

j ,

where ζ j ≤
κ j

ρ′ , j ∈ en, therefore,

A (u(x), Ia(x0)) ≤ C2

∏
j∈en

aζ j

j ,

C2 is a constant independent of u and x0. The function u(x) = u(x)− ua,x0 is a solution to the equation (1)
in Ia(x0) an so u(x) satisfies the inequality

A (u(x), Iσ(x0)) ≤ C2

∏
j∈en

(
σ j

a j

)ζ j

A (u(x),G) ,

and for every σ j ≤ a j ( j ∈ en), x0 ∈ Gd, we have

A (u(x), Iσ(x0)) ≤ C3A (u(x), Iσ(x0)) + C4A
(
uσ,x0 , Iσ(x0)

)
≤≤ C5

∏
j∈en

(
σ j

a j

)ζ j

A (u(x),G) ,

therefore,∑
′

∏
j∈en

1
σ j

∫
Iσ(x0)

∣∣∣D1e
u
∣∣∣p dx ≤ C1A (u(x),G) ,

for all x0 ∈ Gd. Applying Theorem 2.2 and Theorem 2.3 we find that u(x) is continuous and satisfied the
Hölder condition.

This completed the proof of Theorem 2.4.
Theorem 2.5. Let G ⊂ Rn be a domain such that there exists m > 0 for any x0 ∈ ∂G and the number k0 < 1

there exists a parallelepiped∏
mk0 (x1) ⊂

∏
k0 (x0) ∩ (Rn

\ G)
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and u(x) is a weak solution to (1) from the space
◦

S 1
pW(G). If p > n, then u(x) belongs to the space Cδ0 (G),

(Cδ0 (G) is Hölder‘s space).
Proof: Let x0 ∈ ∂G and f ≡ 0 in Iσ(x0), u(x) ≡ 0 outside of G. From the variational principle it follows

that

A (u(x), Ia(x0)) ≤ A (Θ(x)u(x), Ia(x0)) .

Let σ j < a j < 1 ( j ∈ en), for all x0 ∈ ∂G, f ≡ 0 in Ia(x0). Since Θ(x) ≡ 0 in I σ
2 (x0), then by Theorem 2.4, we

have

A (u(x), Iσ(x0)) ≤ C1

∏
j∈en

σ j
ζ j A (u(x),G) . (6)

Let for all 0 < σ j < a j, x0 ∈ G and we consider two cases:

1. x0 ∈ G√σ;
2. x0 < G√σ.

1) In this case for all σ j < a j ( j ∈ en) assuming that a j =
√
σ j ( j ∈ en), we have

A (u(x), Iσ(x0)) ≤ C2

∏
j∈en

σ j
ζ j A (u(x),G) . (7)

2) In this case there is x1
∈ ∂G such that I2

√
σ(x1) ⊃ I√σ(x0). Let a j > 2

√
σ ( j ∈ en), ua,x1 is a solution of

equation (1) in the space
◦

S 1
pW

(
Ia(x1) ∩ G

)
. Then the inequality

A
(
ua,x1 , Ia(x0)

)
≤ C3

∏
j∈en

a j
ζ j (8)

is hold, if assuming that ua,x1 ≡ 0 outside of Ia(x1) ∩ G.
The function u(x)− ua,x1 is a solution of equation (1) in Ia(x1) and f = 0. From the inequalities (6)-(8), we

have

A
(
u(x), I2

√
σ(x1)

)
≤ C4A

(
u(x) − ua,x1 , I2

√
σ(x1)

)
++C5A

(
ua,x1 , I2

√
σ(x1)

)
≤ C6

∏
j∈en

σ j
ζ j A (u(x),G) ,

A (u(x), Iσ(x0)) ≤ C7

∏
j∈en

σ j
ζ j A (u(x),G) .

Therefore,∑
′

1∏
j∈en

σ j
ζ j

∫
Iσ(x0)

∣∣∣D1e
u(x)

∣∣∣p dx ≤ CA (u(x),G) ,

for all x0 ∈ G . It implies that u ∈ S1
p,a,χW(G) and by the conditions of Theorem 2.2 and Theorem 2.3 it follows

that u ∈ Cδ0 (G).
This completed the proof of Theoerem 2.5.
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