
Filomat 38:11 (2024), 3917–3927
https://doi.org/10.2298/FIL2411917C

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. In this paper, we investigate the existence and uniqueness for a new class of impulsive fractional
boundary value problems with nonlocal and boundary hybrid conditions. Our main theorem regarding
existence and uniqueness is established by applying fixed-point theorems, specifically the Banach fixed-
point theorem and the Leray-Schauder alternative fixed-point theorem. Additionally, Two examples are
included to show the applicability of our results.

1. Introduction

Fractional calculus involves the integration or differentiation of any order, and it has a history that
dates back to the origins of calculus. Despite its significance, it was not given much attention for a long
time. However, in recent decades, the study of fractional differential equations has gained momentum as
it has proven to be a useful tool in various fields such as technical sciences, economics, and physics (see for
example [1, 4–6, 9, 11, 13]).

Impulsive effects are a common occurrence resulting from short-term disturbances that are considerably
shorter in duration than the original process [10]. These disturbances can be reasonably approximated as
sudden changes in state or impulses. The equations that govern such phenomena can be modeled as
impulsive differential equations. Recently, the exploration of impulsive differential equations has provided
a practical framework for the mathematical modeling of a wide range of real-life phenomena across various
domains such as physics, control theory, chemistry, biotechnology, population dynamics, economics, and
medicine.

Dhage and Lakshmikantham [3], examined a first-order hybrid differential equation, which can be ex-
pressed as follows: d

dt

(
v(t)

φ(t,v(t))

)
= ψ(t, v(t)), t ∈ J = [0,T],

v(t0) = v0 ∈ R,
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where φ ∈ C(J×R,R\0) and ψ ∈ C(J×R,R). They contributed to the study of hybrid differential equations
by demonstrating the existence and uniqueness of solutions, as well as establishing fundamental differen-
tial inequalities for these systems. Additionally, they demonstrated the existence of extremal solutions and
comparison results by using the theory of inequalities.

Benchohra et al.[2] investigated boundary value problems associated with fractional-order differential
equations.cDδv(t) = ψ(t, v(t)), t ∈ J = [0,T], 0 < δ < 1,

av(0) + bv(T) = c,

where cDδ denote the Caputo fractional derivative, ψ : [0,T] ×R −→ R is a continuous function and a ,b, c
are real constants with a + b , 0.

Zhao, Sun, Han, and Li [16] investigated fractional hybrid differential equations involving the Riemann-
Liouville differential operator.Dδ

(
v(t)

φ(t,v(t))

)
= ψ(t, v(t)), t ∈ J = [0,T],

v(0) = 0 ∈ R,

where φ ∈ C(J × R,R\{0}) and ψ ∈ C(J × R,R). The study presented an existence theorem for fractional
hybrid differential equations and established several fundamental differential inequalities. Additionally,
the existence of extremal solutions was demonstrated.

In [8], K. Hilal and A. Kajouni investigated the boundary value problems for hybrid differential equa-
tions with the Caputo differential derivative of order 0 < δ < 1.Dδ

(
v(t)

φ(t,v(t))

)
= ψ(t, v(t)), t ∈ J = [0,T],

a v(0)
φ(0,v(0)) + b v(T)

φ(T,v(T)) = c,

where ψ ∈ C(J ×R,R) and φ ∈ C(J ×R,R\{0}), and real constants a, b, c are with a + b , 0.

Motivated by recent research on hybrid fractional differential equations, we investigate the following
boundary value problem for nonlinear equations of hybrid fractional differential equations.


e
cDδ

0

(
v(t)

φ(t,v(t))

)
= ψ(t, v(t)) , t ∈ J = [0, 1] , t , tk, k = 1, 2, ....,n, 0 < δ < 1,

v(t+k ) = v(t−k ) + Ik(v(t−k )),
v(0)

φ(0,v(0)) = Φ(v),

(1)

where e
cDδ

η is the exponential fractional derivatives of Caputo type of order δ , φ ∈ C(J × R,R\{0}),

ψ ∈ C(J × R,R) and Φ(v) : C(J,R) −→ R are continuous functions such that Φ(v) =
n∑

i=1

λiv(ζi), where

ζi ∈ (0, 1) for i = 1, 2, ...,n, and Ik : R −→ R with v(t−k ) = lim
ε→0−

v(tk + ε) and v(t+k ) = lim
ε→0+

v(tk + ε) represent the

left and right limits of v(t) at t = tk, k = i.

In the following part of this study, we assume that
n∑

i=1

λiv(ζi)δ−1 < 1.

The structure of this paper is as follows: Section 2 reviews the important tools and key results concerning
fractional calculus. Section 3 presents the main results, while Section 4 provides examples of applications
of the main results.
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2. Preliminaries

In this section, we present introductory definitions, facts, and notations that will be used in the rest of
this paper.
Let J0 = [0, t1], J1 = (t1, t2], ..., Jn−1 = (tn−1, tn], Jn = (tn, 1], n ∈N, n > 1.
For tk ∈ (0, 1) such that t1 < t2 < < tn, we define the following spaces:
J′ = J\{t1, t2, ..., tn},
Y = {v ∈ C([0, 1],R) : v ∈ C(J′) and left v(t+i ) and right limit v(t−k ) exist and v(t−k ) = v(tk), 1 ≤ k ≤ n}.
Then, (Y, ∥ . ∥) is a Banach space under the norm ∥v∥ = max

t∈[0,1]
{|v(t)|}.

Definition 2.1. [12] The exponential type fractional integral of a function h ∈ L1(E) of order δ > 0 is defined by

e Jδη+h(θ) =
1
Γ(δ)

∫ θ

η

(
eθ − eµ

)δ−1
h(µ)eµdµ f or each θ ∈ E.

Let ACn
e [k,m] = {h : [k,m] −→ C : eDn−1h(x) ∈ AC[k,m], eD = e−x d

dx }. For h ∈ ACn
e [k,m], where

−∞ ≤ k < m ≤ +∞, we define the exponential fractional derivatives of Caputo and Riemann-Liouville
types as follow.

Definition 2.2. [12] The exponential fractional derivatives of Caputo type of order δ ≥ 0 for a function h : R −→ R
is defined as

e
cD

δ
ηh(θ) =

1
Γ(n − δ)

∫ θ

η

(
eθ − eµ

)n−δ−1
(
e−µ

d
dµ

)n

h(µ)
dµ
eµ
.

Definition 2.3. [12] The exponential fractional derivatives of Riemann-Liouville type of order δ ≥ 0 for a function
h : R −→ R is defined as

e
cD

δ
ηh(θ) =

1
Γ(n − δ)

(
e−µ

d
dµ

)n ∫ θ

η

(
eθ − eµ

)n−δ−1
h(µ)

dµ
eµ
.

Lemma 2.4. [12] Let h ∈ ACn
e [k,m] and δ > 0. Then,

e Jδη+
(e

c
Dδ
ηh(θ)

)
= h(θ) −

n−1∑
k=0

(eθ − eη)k

k!
,

where n = δ + 1.

Lemma 2.5. [12] Let δ > 0. The solution of the differential equation:

e
cD

δ
ηh(θ) = 0

is given by h(θ) = σ0 + σ1(eθ − eη) + σ2(eθ − eη)2 + ..... + σn−1(eθ − eη)n−1.
Where n = [δ] + 1 and σi ∈ R, i = 1, ...,n.

Theorem 2.6. Leray-Schauder alternative [7]
Let a completely continuous operator P : Ξ −→ Ξ ( a restricted map is compact for any bounded set in Ξ).
Let M(P) = {v ∈ Ξ : v = ρPv f or some 0 < ρ < 1}. Then either the set M(P) is unbounded or P has at least one
fixed point.
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3. Results

In this section, we prove the existence of a solution for Cauchy problem (1). To do so, we will need the
following assumptions.
(H0) The function v −→ v

φ(t,v) is increasing in R for every t ∈ [0, 1].
(H1) The function φ is continuous and bounded, there exists a number l > 0 such that

|φ(t, v)| ≤ l, for all (t, v) ∈ [0, 1] ×R.

(H2) There exists a constant λ > 0 such that

|ϕ(v)| ≤ λ, for all v ∈ Y.

(H3) There exists a constant d > 0, such that

Ii(v) ≤ d, for i = 1, 2, .....,n and v ∈ R.

(H4) There exists a β0, β1 > 0, such that

|ψ(t, v)| ≤ β0 + β1∥v∥, for all v ∈ Y.

(H5) There exists a constants Kϕ > 0 and KI > 0, such that

|ϕ(v)|≤ Kϕ∥v∥ , |Ii(w)|≤ KI |w|, i = 1, 2....,n,

for all v ∈ C([0, 1],R) and w ∈ R.
(H6) There exists a constant Kψ > 0, such that

|ψ(t, v) − ψ(t, v)|≤ Kψ|v − v|, for allv, v ∈ R, and t ∈ [0, 1].

(H7) There exists a constant ∆ > 0 , such that

|Ii(v) − Ii(v)|≤ ∆|v − v| f or i = 1, 2, .....,n and v, v ∈ R.

(H8) There exists a constant Dϕ > 0, such that

|Φ(v) −Φ(v)|≤ Dϕ∥v − v∥ for all v, v ∈ C([0, 1],R).

Lemma 3.1. Assume that hypotheses (H0) and (H1) hold. A function v ∈ C(J,R) is a solution of the integral equation

v(t) = φ(t, v(t))
(
Φ(v) + η(t)

k=n∑
k=1

Ik

(
v(t−k )

)
φ(tk, v(tk))

+
1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ

)
, (2)

t ∈ [tk, tk+1[.

Where

η(t) =

0 , t ∈ [t0, t1[,
1 , t < [t0, t1[.

If and only if v is the solution to the fractional problem of the following form:
e
cDδ

0

(
v(t)

φ(t,v(t))

)
= ψ(t, v(t)) , t ∈ [0, 1] , t , tk,

v(t+k ) = v(t−k ) + Ik(v(t−k )),
v(0)

φ(0,v(0)) = Φ(v).

(3)
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Proof. We assume that v satisfies (3). If t ∈ [t0, t1[, hence we get

e
cD

δ
0

( v(t)
φ(t, v(t))

)
= ψ(t, v(t)) , t ∈ [t0, t1[, (4)

v(0)
φ(0, v(0))

= Φ(v). (5)

Applying e Jδ0 on both of side the equation (4), we obtain

v(t)
φ(t, v(t))

=
v(0)

φ(0, v(0))
+

1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ.

Then,

v(t) = φ(t, v(t))
( v(0)
φ(0, v(0))

+
1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ

)
.

Hence,

v(t) = φ(t, v(t))
(
Φ(v) +

1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ

)
.

for t ∈ [t1, t2[, we have

e
cD

δ
0

( v(t)
φ(t, v(t))

)
= ψ(t, v(t)), (6)

v(t+1 ) = v(t−1 ) + I1(v(t−1 )). (7)

According to the continuity of t −→ φ(t, v(t)), we obtain

v(t)
φ(t, v(t))

=
v(t+1 )

φ(t1, v(t1))
−

1
Γ(δ)

∫ t1

0

(
et1 − eµ

)δ−1
ψ(µ, v(µ))eµdµ

+
1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ

=
v(t−1 ) + I1(v(t−1 )))
φ(t1, v(t1))

−
1
Γ(δ)

∫ t1

0

(
et1 − eµ

)δ−1
ψ(µ, v(µ))eµdµ

+
1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ.

Since,

v(t−1 ) = φ(t1, v(t1))
(
Φ(v) +

1
Γ(δ)

∫ t1

0

(
et1 − eµ

)δ−1
ψ(µ, v(µ))eµdµ

)
.

Then,

v(t)
φ(t, v(t))

= Φ(v) +
1
Γ(δ)

∫ t1

0

(
et1 − eµ

)δ−1
ψ(µ, v(µ))eµdµ

)
+

I1(v(t−1 )))
φ(t1, v(t1))

−
1
Γ(δ)

∫ t1

0

(
et1 − eµ

)δ−1
ψ(µ, v(µ))eµdµ +

1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ.

Hence, for t ∈ [t1, t2[, we get

v(t) = φ(t, v(t))
(
Φ(v) +

I1(v(t−1 )))
φ(t1, v(t1))

+
1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ

)
.
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For t ∈ [t2, t3[, we obtain

v(t)
φ(t, v(t))

=
v(t+2 )

φ(t2, v(t2))
−

1
Γ(δ)

∫ t2

0

(
et2 − eµ

)δ−1
ψ(µ, v(µ))eµdµ

+
1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ

=
v(t−2 ) + I2(v(t−2 )))
φ(t2, v(t2))

−
1
Γ(δ)

∫ t2

0

(
et2 − eµ

)δ−1
ψ(µ, v(µ))eµdµ

+
1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ.

And

v(t−2 ) = φ(t2, v(t2))
(
Φ(v) +

I1(v(t−1 )))
φ(t1, v(t1))

+
1
Γ(δ)

∫ t2

0

(
et2 − eµ

)δ−1
ψ(µ, v(µ))eµdµ

)
.

Therefore, for t ∈ [t2, t3[, we have

v(t) = φ(t, v(t))
(
Φ(v) +

I1(v(t−1 )))
φ(t1, v(t1))

+
I2(v(t−2 )))
φ(t2, v(t2))

+
1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ

)
= φ(t, v(t))

(
Φ(v) +

k=2∑
k=1

Ik(v(t−k )))

φ(tk, v(tk))
+

1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ

)
.

Using the same technique for t ∈ [tk, tk+1[, k = 3, 4, ...,n, we get

v(t) = φ(t, v(t))
(
Φ(v) +

i=k∑
i=1

Ii(v(t−i )))

φ(ti, v(ti))
+

1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ

)
.

Inversely, we assume that v satisfies the equation (2), then for t ∈ [t0, t1[, we get

v(t) = φ(t, v(t))
(
Φ(v) +

1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ

)
. (8)

Afterward, divide by φ(t, v(t)) and applying e
cDδ

0, we obtain (4).
By replacing t = 0 in (8), we get (5).
If t ∈ [t1, t2[, we obtain

v(t) = φ(t, v(t))
(
Φ(v) +

I1(v(t−1 )))
φ(t1, v(t1))

+
1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ

)
. (9)

Hence, divide by φ(t, v(t)) and applying e
cDδ

0, we get (6). By (H1) replacing t = t1 in (8) and using the limite
in (9), then (9) minus (8) gives (7).

Now, we have the ability to prove our result concerning the existence of an integral solution for problem
(1). This result was established based on the Leray-Schauder alternative theorem. So, we define the operator
P by

P(v)(t) = φ(t, v(t))
(
Φ(v) + η(t)

k=n∑
k=1

Ik

(
v(t−k )

)
φ(tk, v(tk))

+
1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ

)
.

Theorem 3.2. Given that assumptions (H0)-(H4) are satisfied, we further assume that (e1
−1)δ

Γ(δ+1) β1 < 1. Then the
fractional Cauchy problem (1) has at least one solution.
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Proof. The operator P : Y −→ Y will be demonstrated to satisfy the conditions of the Leray-Schauder
alternative theorem.
Step 1: We demonstrate that the operator P is completely continuous. It is evident that the continuity of
the functions φ, ϕ, and ψ implies that the operator P is continuous.
Let B ⊂ Y be bounded, then, we can show that there exists a positive constant K such that |ψ(t, v(t))| ≤ K.
Then, we get

|P(v)(t)| ≤ l

λ + n∑
k=1

d + K
1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
eµdµ


≤ l

λ + nd + K
(
et
− 1

)δ
Γ(δ + 1)


≤ l

λ + nd + K

(
e1
− 1

)δ
Γ(δ + 1)

 .
Then,

∥P(v)∥ ≤ l

λ + nd + K

(
e1
− 1

)δ
Γ(δ + 1)

 . (10)

From the inequality (10), we conclude that P is uniformly bounded.
Now, we prove that the operator P is equicontinuous.
For ξ1, ξ2 ∈ [0, 1] with ξ1 < ξ2, we obtain

|P(v)(ξ2) − P(v)(ξ1)| ≤ l
( ∣∣∣∣∣∣∣(η(ξ2) − η(ξ1)

) n∑
k=1

Ik

(
v(t−k )

)
φ(tk, v(tk))

∣∣∣∣∣∣∣
+ K

∣∣∣∣∣∣ 1
Γ(δ)

∫ ξ2

0

(
eξ2 − eµ

)δ−1
eµdµ −

1
Γ(δ)

∫ ξ1

0

(
eξ1 − eµ

)δ−1
eµdµ

)∣∣∣∣∣∣ )
≤ l

( ∣∣∣∣∣∣∣(η(ξ2) − η(ξ1)
) n∑

k=1

Ik

(
v(t−k )

)
φ(tk, v(tk))

∣∣∣∣∣∣∣
+ K

∣∣∣∣∣∣∣∣
∫ ξ1

0

(
eξ2 − eµ

)δ−1
−

(
eξ1 − eµ

)δ−1

Γ(δ)
eµdµ +

∫ ξ2

ξ1

(
eξ2 − eµ

)δ−1

Γ(δ)
eµdµ

∣∣∣∣∣∣∣∣
)
.

Therefore, the operator P(v) is equicontinuous, thus, based on the previous result, we can conclude that the
operator P(v) is completely continuous.
Step 2: Now, we prove that the set M(P) = {v ∈ Y : v = ρP(v), 0 < ρ < 1} is bounded.
For v ∈M, we obtain v = ρP(v). Hence, for any t ∈ [0, 1], we obtain v(t) = ρP(v)(t). Then, we get

∥v∥ ≤ l

λ + nd +

(
e1
− 1

)δ
Γ(δ + 1)

(
β0 + β1∥v∥

)
≤ l

λ + nd +

(
e1
− 1

)δ
Γ(δ + 1)

β0

)
+

(
e1
− 1

)δ
Γ(δ + 1)

β1∥v∥

 .
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Then, we get

∥v∥ ≤
l
(
λ + nd + (e1

−1)δ
Γ(δ+1) β0

)
1 − (e1−1)δ

Γ(δ+1) β1

.

This prove that the set M(P) is bounded. Therefore, all assumptions of Leray-Schauder alternative theorem
are satisfied. Then, the operator P has at least one fixed point, wisch is a solution of fractional Cauchy
problem 3.

In our second result, we discuss the uniqueness of solutions for Cauchy problem (1) by means of Banach
point fixe theorem.

Theorem 3.3. Assume that assumptions (H1)-(H2) and (H5)-(H8) hold and also the function ψ : [0, 1] ×R −→ R
is continuous. Then fractional Cauchy problem (1) has an unique integral solution provided that

M = l

Dϕ + n∆ +

(
e1
− 1

)δ
Γ(δ + 1)

kψ

 < 1.

Proof. Let us sup
t∈[0,1]

ψ(t, 0) = F < ∞, we define S a closed ball as follows

S = {v ∈ Y : ∥v∥ ≤ r}.

Where,

r ≥

l(e1
−1)δF
Γ(δ+1)

1 − l
(
Kϕ + nKI +

(e1−1)δ
Γ(δ+1) Kψ

) . (11)

We prove that P(S) ⊂ S for v ∈ S, we obtain

|P(v)(t)| ≤ l


∣∣∣∣∣∣∣Φ(v) + η(t)

n∑
k=1

Ik

(
v(t−k )

)
φ(tk, v(tk))

+
1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ

∣∣∣∣∣∣∣


≤ l

kϕ∥v∥ + nkI∥v∥ +

(
e1
− 1

)δ
Γ(δ + 1)

(
Kψ∥v∥ + F

)
≤ l

(
kϕr + nkIr +

(
e1
− 1

)δ
Γ(δ + 1)

(
Kψr + F

))
.

Hence,

∥P(v)∥ ≤ l

kϕr + nkIr +

(
e1
− 1

)δ
Γ(δ + 1)

(
Kψr + F

) .
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Then, by using inequality (11), we get ∥P(v)∥ ≤ r.
For (v, v) ∈ Y2, for any t ∈ [0, 1], we get

|P(v)(t) − P(v)(t)| = |φ(t, v(t))
(
Φ(v) + η(t)

k=n∑
k=1

Ik

(
v(t−k )

)
φ(tk, v(tk))

+
1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ

)
− φ(t, v(t))

(
Φ(v) + η(t)

k=n∑
k=1

Ik

(
v(t−k )

)
φ(tk, v(tk))

+
1
Γ(δ)

∫ t

0

(
et
− eµ

)δ−1
ψ(µ, v(µ))eµdµ

)
|

≤ l

Dϕ∥v − v∥ + n∆|v − v| +

(
e1
− 1

)δ
Γ(δ + 1)

kψ|v − v|

 .
Then,

∥P(v) − P(v)∥ ≤ l

Dϕ + n∆ +

(
e1
− 1

)δ
Γ(δ + 1)

kψ

 ∥v − v∥ =M∥v − v∥.

Since M < 1, this implies that P is a constraction operator. Then the operator P has an unique fixed point,
which is solution of fractional Cauchy problem (1).

4. Examples

Example 4.1. Consider the hybrid differential equation with the Caputo’s exponential fractional derivative


e
cD

1
2
0

(
w(τ)
e−τ+τ

40+τ2+|w(τ)|

)
=

e−τ+|sin(w(τ))|
40 , τ ∈ [0, 1]\, {τ1}

w(τ+1 ) = w(τ−1 ) + (−2w(τ−1 )) , τ1 , 0, 1,
w(0)

1
40+|w(0)|

=
∑n

k=1 λiw(τi).

(12)

Here, we get

φ(τ,w(τ)) =
e−τ + τ

40 + τ2 + |w(τ)|
,

ψ(τ,w(τ)) =
e−τ + |sin(w(τ))|

40
,

|ψ(τ,w1(τ)) − ψ(τ,w2(τ))|≤
1
40
|w1 − w2| , τ ∈ [0, 1] and w1, w2 ∈ R,

M = l
(
Dϕ + n∆ +

(
e1
− 1

)δ
Γ(δ + 1)

kψ
)
= 0, 2343835178 < 1.

Given that all the assumptions of Theorem 3.3 have been met, we can confidently apply our results to the Cauchy
problem (12).
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Example 4.2. Consider a different example of hybrid fractional differential equations of the following format
e
cD

1
2
0

(
w(τ)

eτ

72+τ2+|w(τ)|

)
=

e−3τ+cos2(w(τ))
100 , τ ∈ [0, 1]\, {τ1}

w(τ+1 ) = w(τ−1 ) + (−2w(τ−1 )) , τ1 , 0, 1,
w(0)

1
72+|w(0)|

=
∑n

k=1 λiw(τi).

(13)

Here, we get

φ(τ,w(τ)) =
eτ

72 + τ2 + |w(τ)|
,

ψ(τ,w(τ)) =
e−3τ + cos2(w(τ))

100
,

|ψ(τ,w1(τ)) − ψ(τ,w2(τ))|≤
1

100
|w1 − w2| , τ ∈ [0, 1] and w1, w2 ∈ R,

And

M = l
(
Dϕ + n∆ +

(
e1
− 1

)δ
Γ(δ + 1)

kψ
)
= 0, 0770852262 < 1.

Since all the assumptions of Theorem 3.3 are satisfied. We can utilize the results of our analysis to the Cauchy problem
(13)

5. Conclusion

In this study the existence and uniqueness of solutions for exponential Caputo fractional differential
equations with impulsive boundary conditions are demonstrated . These results are established using fixed
point theorems, specifically, the Leray-Schauder alternative fixed point theorem and the Banach fixed point
theorem. Finally, an appropriate example is utilized to illustrate the investigation of our theoretical result.
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