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Abstract. A classical result of Calkin [3] says that the inner derivation maps the algebra of all bounded
operators on a Hilbert space into the ideal of all compact operators if and only if the induced operator
is a compact perturbation of the scalar operator. On the generalized Fock spaces, we use the compact
intertwing relations to study the range of the inner derivations induced by the composition operators Cφ

and the Volterra type operators J1 and I1.

1. Introduction

Let A be a Banach algebra over the complex field. A linear map D : A → A is a derivation if
D(xy) = xD(y) +D(x)y for all x, y ∈ A . Over the last half century, there are lots of results giving conditions
on a derivation of a Banach algebra implying that its range is contained in some ideal. One of the famous
results given by Singer and Wermer [14] is that a continuous derivation on a commutative Banach algebra
has the range contained in the Jacobson radial of the algebra. In [3], Calkin proved that an inner derivation
S 7→ [T,S] := TS−ST maps the algebra of all bounded operators on a Hilbert space to the ideal of all compact
operators if and only if T is a compact perturbation of a scalar operator. But this conclusion fails to hold
on the Banach spaces in general. See [13] for example. In this paper, we are interested in the composition
inner derivations and Volterra inner derivations on the generalized Fock spaces.

Let C be the complex plane and denote by H(C) the space of all entire functions on C. We consider a
class of smooth radial weights that increase faster than the standard Gaussian weight |z|2/2. Precisely, let
ψ : [0,+∞)→ [0,+∞) be an increasing function such that ψ(0) = 0 and limr→∞ ψ(r) = +∞. Extend ψ to C by
setting ψ(z) = ψ(|z|). Moreover, we assume that ψ is twice continuously differentiable such that inf∆ψ > 0
and

τ(z) ≃

1, 0 ≤ |z| < 1
(△ψ(|z|))−1/2, |z| ≥ 1
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Here τ(z) is a radial positive differentiable function that decreases to zero as |z| → ∞ and limr→∞ τ′(r) = 0.
And there exists a constant C > 0 such that τ(r)rC increases for large r or

lim
r→∞

τ′(r) log
1
τ(r)
= 0.

The above class of rapidly increasing functions ψ will be denoted by I and τ is called the associated
function of ψ. The power functions ψ(r) = rα, α > 2, the exponential functions ψ(r) = eβr, β > 0 and
the super exponential functions ψ(r) = eer

are all typical examples of such weight functions. Let ψ1(z) =
ψ(z) + log(1 + ψ′(z)) and I1 = {ψ ∈ I : ∆ψ1 ≃ ∆ψ}. Notice that ψ ∈ I1 implies ψ1 ∈ I.

For 0 < p < ∞, the generalized Fock space induced by ψ is defined by

F
p
ψ =

{
f ∈ H(C) : ∥ f ∥pp,ψ =

∫
C

| f (z)|pe−pψ(z)dA(z) < ∞
}
,

where dA is the Lebesgue measure on C. Furthermore,

F
∞

ψ =

{
f ∈ H(C) : ∥ f ∥∞,ψ = sup

z∈C
| f (z)|e−ψ(z) < ∞

}
.

For a given φ ∈ H(C), the composition operator Cφ on H(C) is defined by Cφ f = f ◦φ. The boundedness
and compactness of composition operators on various holomorphic function spaces have been studied
intensively in the past few decades. One can refer to the books [4, 12] for the theory of composition
operators on various specific spaces of holomorphic functions. And interested readers may also refer to the
recent papers [1, 5, 8–10] and the references therein for properties of (weighted) composition operators on
classical or generalized Fock spaces. Let B(F p

ψ ) be the Banach algebra of all bounded linear operators on

F
p
ψ . The composition inner derivation induced by Cφ is defined by

D(Cφ) : B(F p
ψ )→ B(F p

ψ ) T 7→ [Cφ,T] = CφT − TCφ.

Our first result about composition inner derivation reads as follows.

Theorem A . Suppose ψ(r) = rm with m ∈ N and m > 2, or ψ(r) = eβrm with β > 0 and m ∈ N, or ψ(r) = eer . Let
0 < p ≤ ∞, then the composition inner derivation D(Cφ) on B(F p

ψ ) ranges into the ideal of compact operators if and
only if φ(z) = z or φ(z) = az + b with |a| < 1.

For a given 1 ∈ H(C), the Volterra-type operator J1 and its companion operator I1 with symbol 1 are
defined by

J1 f (z) =
∫ z

0
f (w)1′(w)dw and I1 f (z) =

∫ z

0
f ′(w)1(w)dw.

The discussion of Volterra-type operators first arose in connection with the semigroup of composition
operators. One can refer to [15] for more backgrounds. Constantin [6] studied the boundedness and
compactness of Volterra-type operators on the classical Fock spaces. Later, Peleàz [7] and Mengestie [11]
characterized the boundedness and compactness of Volterra-type operators on generalized Fock spaces.
Two classes of Volterra inner derivation induced by 1 ∈ H(C) are defined as follows.

D(J1) : B(F p
ψ )→ B(F p

ψ ) T 7→ [J1,T] = J1T − TJ1.

and
D(I1) : B(F p

ψ )→ B(F p
ψ ) T 7→ [I1,T] = I1T − TI1.

Our results about Volterra inner derivations read as follows.
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Theorem B . Let 0 < p ≤ ∞ and ψ ∈ I. Then the Volterra inner derivation D(J1) on B(F p
ψ ) ranges into the ideal of

compact operators if and only if

lim
|z|→∞

|1′(z)|
1 + ψ′(z)

= 0.

Theorem C . let 0 < p ≤ ∞ and ψ ∈ I1. Then the Volterra inner derivation D(I1) on B(F p
ψ ) ranges into the ideal

of compact operators if and only if 1 is a constant.

Indeed, Theorem C is trivial since the boundedness of I1 implies that 1 is a constant function by [11] and
I1 − id is compact when 1 is a constant.

Let X and Y be two metric linear spaces, the symbol B(X,Y) denotes the collection of all continuous
linear operators from X to Y. LetK (X,Y) be the collection of all compact elements of B(X,Y) and Q(X,Y) =
B(X,Y)\K (X,Y).

For A ∈ B(X,X), B ∈ B(Y,Y) and T ∈ B(X,Y), the phrase “T intertwines A and B in Q(X,Y)” (or “T
intertwines A and B compactly”) means that

TA − BT ∈ K (X,Y) where T , 0.

To be more intuitive, the compact intertwining relation means the following commutative diagram,

X A
−−−−−→ XyT

yT

Y B
−−−−−→ Y

mod K (X,Y).

In the series papers [16–18], Yuan, Tong and Zhou investigated the intertwining relations for Volterra-type
operators and composition operators on the Bergman spaces, bounded analytic function spaces and Bloch
spaces over the unit disk.

When X = Y and A = B it is easy to see the following two assertions are equivalent:

• T intertwines every A ∈ B(X) compactly.

• The inner derivation D(T) on B(X) ranges into the compact ideal.

In this point of view, we will study the compact intertwing relations for composition operators and Volterra-
type integral operators between different generalized Fock spaces. And our main results will follow
immediately as direct corollaries.

Throughout this paper, for two non-negative real-valued functions U and V, we write U ≲ V if there
exists a positive constant C > 0 independent of the essential argument such that U ≤ CV. And we write
U ≃ V if both U ≲ V and V ≲ U.

2. Preliminaries

In this section, we collect some basic properties of generalized Fock spaces and auxiliary lemmas which
will be used latter.

We say that a positive function τ belongs to L if there exists a constant cτ > 0 such that

|τ(z) − τ(w)| ≤ cτ|z − w|

for all z,w ∈ C. It is obvious that the associated function τ of ψ belongs to L as ψ ∈ I. We will use the
notation mτ =

max{1,c−1
τ }

4 . Let D(w, r) be the Euclidean disc centered at w with radius r > 0. For simplicity,
write D(δτ(w)) for the disc D(w, δτ(w)) with δ > 0. The following lemmas can be found in [7].
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Lemma 2.1. Suppose τ ∈ L and 0 < δ ≤ mτ. Then

1
2
τ(w) ≤ τ(z) ≤ 2τ(w)

whenever z ∈ D(δτ(w)).

Lemma 2.2. Let 0 < p ≤ q < ∞, ψ ∈ I and µ be a finite positive Borel measure on C. Then

(i) The embedding id : F p
ψ → Lq(µ) is bounded if and only if

Kµ,ψ := sup
a∈C

1
τ(a)2q/p

∫
D(δτ(a))

eqψ(z)dµ(z) < ∞

for some δ > 0. Moreover, if any of the two equivalent conditions holds, then

Kµ,ψ ≃ ∥id∥
q
F

p
ψ→Lq(µ)

.

(ii) The embedding id : F p
ψ → Lq(µ) is compact if and only if

lim
|a|→∞

1
τ(a)2q/p

∫
D(δτ(a))

eqψ(z)dµ(z) = 0

for some δ > 0.

Lemma 2.2 is known as the Carleson embedding theorem for F p
ψ . Notice that if ψ ∈ I1, then Lemma 2.2

still holds for F p
ψ1

.

By Lemma 7 and Lemma 20 in [7], we have the following pointwise estimate for functions in F p
ψ , which

is an important ingredient in our subsequent consideration. See also [19, Lemma 3.1].

Lemma 2.3. Let ψ ∈ I and τ be the associate function of ψ. Suppose 0 < p < ∞ and α, β ∈ R, then

| f (z)|pe−βψ(z)

(1 + ψ′(z))α
≲

1
τ(z)2

∫
D(δτ(z))

| f (w)|pe−βψ(w)

(1 + ψ′(w))α
dA(w)

for all f ∈ H(C) and z ∈ C.

According to the results in [7, 11], the following Littlewood-Paley type estimates hold for all 0 < p ≤ ∞,
providing a natural description of the generalized Fock spaces in terms of the first derivatives.

Lemma 2.4. Let ψ ∈ I, then for 0 < p < ∞,

∥ f ∥pp,ψ ≃ | f (0)|p +
∫
C

| f ′(z)|pe−pψ1(z)dA(z)

for all f ∈ H(C). And when p = ∞,

∥ f ∥∞,ψ ≃ | f (0)| + sup
z∈C
| f ′(z)|e−ψ1(z).

Lemma 2.3 tells us that the point evaluations are bounded linear functionals on F p
ψ . In particular, F 2

ψ is
a Hilbert space with the following inner product

⟨ f , 1⟩ =
∫
C

f (z)1(z)e−2ψ(z)dA(z),
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which is equivalent to

⟨ f , 1⟩∗ = f (0)1(0) +
∫
C

f ′(z)1′(z)e−2ψ1(z)dA(z)

by Lemma 2.4. It follows the Riesz representation theorem in Hilbert space theory that for each z ∈ C, there
exists a unique function Kψ,z in F 2

ψ such that

f (z) = ⟨ f ,Kψ,z⟩

for all f ∈ F 2
ψ . Kψ,z is the reproducing kernel function in F 2

ψ at z. Let K[1]
ψ,z = ∂Kψ,z/∂z be the first-order

reproducing kernel function in F 2
ψ , then

f ′(z) = ⟨ f ,K[1]
ψ,z⟩

for all f ∈ F 2
ψ . By the equivalence of the inner product, (K[1]

ψ,z)′ is the reproducing kernel function of F 2
ψ1

.
Unlike the classical Fock space, the explicit expression for Kψ,z is still unknown. Recently, Yang and Zhou
[19] characterized the important pointwise and norm estimate for the reproducing kernel Kψ,z.

Lemma 2.5. Let ψ ∈ I and τ be the associated function of ψ, then for 0 < p < ∞,

∥Kψ,z∥p,ψ ≃ eψ(z)τ(z)2(1−p)/p

for all z ∈ C. Moreover, let kp,ψ,z =
Kψ,z
∥Kψ,z∥p,ψ

be the normalized reproducing kernel in F p
ψ , then

|kp,ψ,z(w)|τ(z)
2
p ≃ |kq,ψ,z(w)|τ(z)

2
q

for all z,w ∈ C. And there exists a small δ0 > 0 such that

|kp,ψ,z(w)|pe−pψ(w)
≃ τ(z)−2

whenever w ∈ D(δτ(z)) and δ ≤ δ0.

Through a similar argument as in [1], we obtain the following Berezin-type transform for a positive
measure µ.

Lemma 2.6. Suppose ψ ∈ I and τ is the associated function of ψ. Let µ be a positive Borel measure on C. Then for
0 < p ≤ q < ∞,

(i) supz∈C
µ(D(δτ(z)))
τ(z)2q/p < ∞

⇔ supz∈C

∫
C
|kp,ψ,z(w)|qe−qψ(w)dµ(w) < ∞.

(ii) lim|z|→∞
µ(D(δτ(z)))
τ(z)2q/p = 0

⇔ lim|z|→∞
∫
C
|kp,ψ,z(w)|qe−qψ(w)dµ(w) = 0.

We end this section with a key result which helps us to obtain the characterization of composition inner
derivatives.

Proposition 2.7. Let s > 0 and f , φ ∈ H(C) such that f (0) , 0. Suppose ψ : [0,+∞) → [0,+∞) is a radial
differentiable function such that ψ′(r)

r1+ε increases to +∞ as r→∞ for some ε > 0. If

sup
z∈C
| f (z)|

eψ(φ(z))−ψ(z)

(1 + ψ′(z))s < ∞, (2.1)

then φ(z) = az + b for some |a| ≤ 1 and b = 0 whenever |a| = 1.
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Proof. Taking logarithms on both sides of (2.1), there exists a M > 0 such that

ψ(φ(z)) − ψ(z) + log | f (z)| − s log(1 + ψ′(z)) ≤M

for all z ∈ C. For any R > 0, putting z = Reiθ and integrating with respect to θ on [0, 2π] yields∫ 2π

0
ψ(φ(Reiθ))

dθ
2π
− ψ(R) +

∫ 2π

0
log | f (Reiθ)|

dθ
2π
− s log(1 + ψ′(R)) ≤M.

By Mean-value property of harmonic function, we have∫ 2π

0
log | f (Reiθ)|

dθ
2π
= log | f (0)|.

It follows that ∫ 2π

0
ψ(φ(Reiθ))

dθ
2π
− ψ(R) − s log(1 + ψ′(R)) ≤M

for any R > 0. Since ψ is radial, there exists a radial function h on C such that ψ(|z|) = h(|z|2) and h′(r2)/rε

increases to +∞ as r→∞ by our assumption. Then Jensen’s inequality gives

h
(∫ 2π

0
|φ(Reiθ)|2

dθ
2π

)
− h(R2) − s log(1 + 2Rh′(R2)) ≤M.

Now consider the power expansion φ(z) =
∑
∞

n=0 anzn for z ∈ C. Then∫ 2π

0
|φ(Reiθ)|2

dθ
2π
=

∞∑
n=0

|an|
2R2n.

Notice that log(1 + 2Rh′(R2)) ≤ log(1 + 2R) + log(1 + h′(R2)). Then by Langrange’s Differential Mean Value
Theorem, we obtain

h′(ζR)

 ∞∑
n=0

|an|
2R2n

− R2

 − s log(1 + 2R) − s log(1 + h′(R2)) ≤M

for some ζR. If |a1| > 1 or an , 0 for some n ≥ 2, then ζR > R2 and

lim
R→∞

h′(ζR)

 ∞∑
n=0

|an|
2R2n

− R2

 − s log(1 + 2R) − s log(1 + h′(R2)) = +∞,

which is a contradiction. Therefore φ(z) = a0 + a1z with |a1| ≤ 1. Moreover, if |a1| = 1 and a0 , 0, then we
also have

lim
R→∞
|a0|

2h′(ζR) − s log(1 + 2R) − s log(1 + h′(R2)) = +∞,

which is also a contradiction. Thus a0 = 0 whenever |a1| = 1. The proof is complete.

3. D(Cφ) and D(J1)

In this section, we give the proof for Theorem A and Theorem B. To this end, we first study the
compact intertwing relations for composition operator Cφ and Volterra-type operator J1 between different
generalized Fock spaces.

For φ, 1 ∈ H(C), let
Tφ,1 = Cφ J1 − J1Cφ = [Cφ, J1].

Suppose Tφ,1 : F p
ψ → F

q
ψ is bounded, then it is obvious that 1 ◦ φ − 1 = Tφ,11 ∈ F

q
ψ .
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Theorem 3.1. Let ψ ∈ I, 0 < p ≤ q ≤ ∞ and 1 ◦ φ − 1 ∈ F q
ψ , then

(i) If 0 < p ≤ q < ∞, then Tφ,1 : F p
ψ → F

q
ψ is bounded if and only if

sup
z∈C

∫
C

|kp,ψ,z(φ(w))|q|(1 ◦ φ − 1)′(w)|qe−qψ1(w)dA(w) < ∞. (3.1)

(ii) If 0 < p < q = ∞, then Tφ,1 : F p
ψ → F

∞

ψ is bounded if and only if

sup
z∈C
|(1 ◦ φ − 1)′(z)|∆ψ(φ(z))

1
p eψ(φ(z))−ψ1(z) < ∞. (3.2)

(iii) If p = q = ∞, then Tφ,1 : F ∞ψ → F
∞

ψ is bounded if and only if

sup
z∈C
|(1 ◦ φ − 1)′(z)|eψ(φ(z))−ψ1(z) < ∞.

Proof. We begin with the proof of (i). By Lemma 2.4, we have

∥Tφ,1 f ∥qq,ψ ≃ |Tφ,1 f (0)|q +
∫
C

|(Tφ,1 f )′(w)|qe−qψ1(w)dA(w)

= |Tφ,1 f (0)|q +
∫
C

| f ◦ φ(w)|q|(1 ◦ φ − 1)′(w)|qe−qψ1(w)dA(w)

for all f ∈ F p
ψ . Taking f = kp,ψ,z, the “only if part” of (i) follows immediately. To prove the “if part”, we

consider the weighted pullback measure µφ,1 defined by

µφ,1(E) =
∫
φ−1(E)

|(1 ◦ φ − 1)′(z)|qe−qψ1(z)dA(z),

where E is any Borel subset ofC. Then ∥Tφ,1 f −Tφ,1 f (0)∥q,ψ ≃ ∥ f ∥Lq(µφ,1) for any f ∈ F p
ψ . Let dνφ,1 = eqψ(z)dµφ,1,

by Lemma 2.6, condition (3.1) implies that

sup
z∈C

νφ,1(D(δ(τ(z)))

τ(z)2q/p < ∞.

This, together with Lemma 2.2, shows that id : F p
ψ → Lq(µφ,1) is bounded. Thus, ∥Tφ,1 f −Tφ,1 f (0)∥q,ψ ≲ ∥ f ∥p,φ

for all f ∈ F p
ψ . On the other hand, by Lemma 2.3,

|Tφ,1 f (0)| =

∣∣∣∣∣∣
∫ φ(0)

0
f (w)1′(w)dw

∣∣∣∣∣∣ ≤ |φ(0)| sup
|w|≤|φ(0)|

| f (w)||1′(w)|

≲ |φ(0)| sup
|w|≤|φ(0)|

|1′(w)|
eψ(φ(0))

τ(φ(0))
2
p

∥ f ∥p,φ.
(3.3)

Therefore, the boundness of Tφ,1 : F p
ψ → F

q
ψ is established.

Now we proceed to prove (ii). If Tφ,1 : F p
ψ → F

∞

ψ is bounded, then by Lemma 2.4, we have

∥Tφ,1∥ ≥ ∥Tφ,1kp,ψ,z∥∞,ψ ≳ |(Tφ,1kp,ψ,z)′(w)|e−ψ1(w)

≃ |(1 ◦ φ − 1)′(w)||kp,ψ,z(φ(w))|e−ψ1(w)
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for all z,w ∈ C. In particular, taking z = φ(w) and by Lemma 2.5, we have

sup
w∈C
|(1 ◦ φ − 1)′(w)|τ(φ(w))−

2
p eψ(φ(w))−ψ1(w) < ∞.

This is exactly (3.2) since τ(φ(w))−2
≃ ∆ψ(φ(w)). Conversely, suppose (3.2) holds, then by Lemma 2.4 and

(3.3), we have

∥Tφ,1 f ∥∞,ψ ≃ |Tφ.1 f (0)| + sup
z∈C
|(1 ◦ φ − 1)′(z)|| f (φ(z))|e−ψ1(z)

≲ ∥ f ∥p,ψ + sup
z∈C
|(1 ◦ φ − 1)′(z)|eψ(φ(z))−ψ1(z)τ(φ(z))−

2
p

(∫
D(δτ(φ(z)))

| f (w)|pe−pψ(w)dA(w)
) 1

p

≲ ∥ f ∥p,ψ + ∥ f ∥p,ψ sup
z∈C
|(1 ◦ φ − 1)′(z)|∆ψ(φ(z))

1
p eψ(φ(z))−ψ1(z)

≲ ∥ f ∥p,ψ

for all f ∈ F p
ψ , which estalishes the boundedness of Tφ,1 : F p

ψ → F
∞

ψ .
The proof for (iii) is similar to that for (ii) and we omit the routine details.

The condition in (3.1) is difficult to apply. In fact, under the assumption of Proposition 2.7, the bound-
edness of Tφ,1 : F p

ψ → F
q
ψ will imply that φ(z) = az + b with |a| ≤ 1.

Proposition 3.2. Let ψ ∈ I and τ be the associated function of ψ. If Tφ,1 : F p
ψ → F

q
ψ is bounded, then

sup
z∈C

τ(z)2/q

τ(φ(z))2/p

|(1 ◦ φ − 1)′(z)|
1 + ψ′(z)

eψ(φ(z))−ψ(z) < ∞. (3.4)

Furthermore, suppose ψ′(r)
r1+ε increases to +∞ for some ε > 0 as r → ∞, then φ(z) = az + b with |a| ≤ 1 and b = 0

whenever |a| = 1.

Proof. If Tφ,1 : F p
ψ → F

q
ψ is bounded, then by Lemma 2.3 and Lemma 2.4, we have

∥Tφ,1∥ ≥ ∥Tφ,1kp,ψ,z∥q,ψ

≳ |(Tφ,1kp,ψ,z)′(w)|τ(w)
2
q e−ψ1(w)

= τ(w)2/q
|(1 ◦ φ − 1)′(w)||kp,ψ,z(φ(w))|e−ψ1(w)

for all z,w ∈ C. In particular, taking z = φ(w) and using Lemma 2.5, we obtain

sup
w∈C

τ(w)2/q

τ(φ(w))2/p

|(1 ◦ φ − 1)′(w)|
1 + ψ′(w)

eψ(φ(w))−ψ(w) < ∞.

Since limr→∞ τ(r)ψ′(r) = +∞ by [7, Lemma 18] and τ(r) ≲ 1 for all r, then (3.4) implies that

sup
w∈C

|(1 ◦ φ − 1)′(w)|

(1 + ψ′(w))1+ 2
q

eψ(φ(w))−ψ(w) < ∞.

Thus according to Proposition 2.7, φ(z) = az + b with |a| ≤ 1 and b = 0 whenever |a| = 1.

Remark 3.3. Note that if 0 < p ≤ q = ∞, then condition (3.4) is exactly sufficient for the boundedness of Tφ,1 :
F

p
ψ → F

∞

ψ by Theorem 3.1. In fact, if 0 < p ≤ q < ∞ and ψ(r) = rα with α > 2, then the condition in Proposition
3.2 is also sufficient for the boundedness of Tφ,1 : F p

ψ → F
q
ψ .
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Proof. Without loss of generality, assume φ(z) = az + b with 0 < |a| ≤ 1. Let

M = sup
z∈C

τ(z)2/q

τ(φ(z))2/p

|(1 ◦ φ − 1)′(z)|
1 + ψ′(z)

eψ(φ(z))−ψ(z) < ∞

and νφ,1 be defined as in Theorem 3.1, then

νφ,1(D(δτ(z)))

τ(z)2q/p =

∫
D(δτ(z)) |(1 ◦ φ − 1)

′(w)|qeqψ(φ(w))−qψ1(w)dA(w)

τ(z)2q/p

≤M

∫
D(δτ(z))

τ(φ(w))2q/p

τ(w)2 dA(w)

τ(z)2q/p

≲
τ(φ(z))2q/p

τ(z)2q/p ,

where the last inequality follows from Lemma 2.1. Since ψ(r) = rα with α > 2 and φ(z) = az + b, we have

lim
|z|→∞

τ(φ(z))
τ(z)

= aα−2.

Thus,

sup
z∈C

νφ,1(D(δτ(z)))

τ(z)2q/p < ∞.

Then via a similar argument as in Theorem 3.1, Tφ,1 : F p
ψ → F

q
ψ is bounded.

Theorem 3.4. Let ψ ∈ I and 0 < p ≤ q ≤ ∞. Suppose φ(z) = az + b with 0 < |a| ≤ 1 and 1 ◦ φ − 1 ∈ F q
ψ , then

(i) If 0 < p ≤ q < ∞, then Tφ,1 : F p
ψ → F

q
ψ is compact if and only if

lim
|z|→∞

∫
C

|kp,ψ,z(φ(w))|q|(1 ◦ φ − 1)′(w)|qe−qψ1(w)dA(w) = 0. (3.5)

(ii) If 0 < p < q = ∞, then Tφ,1 : F p
ψ → F

∞

ψ is compact if and only if

lim
|z|→∞

|(1 ◦ φ − 1)′(z)|∆ψ(φ(z))
1
p eψ(φ(z))−ψ1(z) = 0. (3.6)

(iii) If p = q = ∞, then Tφ,1 : F ∞ψ → F
∞

ψ is compact if and only if

lim
|z|→∞

|(1 ◦ φ − 1)′(z)|eψ(φ(z))−ψ1(z) = 0.

Proof. We begin with the proof of (i). Assume 0 < p ≤ q < ∞ and Tφ,1 : F p
ψ → F

q
ψ is compact, then

lim
|z|→∞

∥Tφ,1kp,ψ,z∥q,ψ = 0. (3.7)

By Lemma 2.4,

∥Tφ,1kp,ψ,z∥
q
q,ψ ≃ |Tφ,1kp,ψ,z(0)|q +

∫
C

|kp,ψ,z(φ(w))|q|(1 ◦ φ − 1)′(w)|qe−qψ1(w)dA(w).
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Thus the “only if part” follows directly. Conversly, let { fn} be any bounded sequence in F p
ψ the converges

to 0 uniformly on compact subsets of C, then by (3.3),

|Tφ,1 fn(0)| ≤ |φ(0)| sup
|w|≤|φ(0)|

|1′(w)|| fn(w)| → 0 (3.8)

as n→∞. Consider the positive measures µφ,1 and νφ,1 appearing in Theorem 3.1, then by Lemma 2.6 and
Lemma 2.2, condition (3.5) implies that

∥Tφ,1 fn − Tφ,1 fn(0)∥q,ψ ≃ ∥ fn∥Lq(µφ,1) → 0

as n→∞. This, together with (3.8), shows that ∥Tφ,1 fn∥q,ψ → 0, which implies the compactness of Tφ,1.
Now we proceed to prove (ii). Assume 0 < p < q = ∞ and Tφ,1 : F p

ψ → F
∞

ψ is compact, then by (3.7) and
the proof of (ii) in Theorem 3.1, we have

lim
|φ(w)|→∞

|(1 ◦ φ − 1)′(w)|∆ψ(φ(w))
1
p eψ(φ(w))−ψ1(w) = 0.

Since φ(z) = az + b with 0 < |a| ≤ 1, then |φ(w)| → ∞ as |w| → ∞. Thus condition (3.6) holds. Conversely, let

M(w) = |(1 ◦ φ − 1)′(w)|∆ψ(φ(w))
1
p eψ(φ(w))−ψ1(w),

which converges to 0 as |w| → ∞. Let { fn} be any bounded sequence in F p
ψ that converges to 0 uniformly on

compact subsets of C, then by Lemma 2.4 and Lemma 2.3, we have

∥Tφ,1 fn − Tφ,1 fn(0)∥∞,ψ ≲ sup
w∈C

M(w)
(∫

D(δτ(φ(w)))
| fn(z)|pe−pψ(z)dA(z)

) 1
p

≲ sup
|w|>R

M(w)∥ fn∥p,ψ + sup
|w|≤R

M(w)
(∫

D(δτ(φ(w)))
| fn(z)|pe−pψ(z)dA(z)

) 1
p

.

Letting R→∞ and then n→∞, and combining (3.8), we have

lim
n→∞
∥Tφ,1 fn∥∞,ψ = 0,

which establishes the compactness of Tφ,1 : F p
ψ → F

∞

ψ .
The proof for (iii) is similar to that for (ii) and we omit the routain details.

Proposition 3.5. Let ψ ∈ I and τ be the associated function of ψ. If Tφ,1 : F p
ψ → F

q
ψ is compact, then

lim
|z|→∞

τ(z)2/q

τ(φ(z))2/p

|(1 ◦ φ − 1)′(z)|
1 + ψ′(z)

eψ(φ(z))−ψ(z) = 0.

Furthermore, if 0 < p ≤ q < ∞ and ψ(r) = rα with α > 2, or 0 < p < q = ∞, or p = q = ∞, then the above condition
is also sufficient for the compactness of Tφ,1 : F p

ψ → F
q
ψ .

Proof. The proof is just a modification of Proposition 3.2 and Remark 3.3, the details are left to interested
readers.

Now we are ready to prove Theorem A and Theorem B.

Proof of Theorem A . The “if part” is trivial since Cφ = id if φ(z) = z and Cφ is compact if φ(z) = az+ b with
|a| < 1 according to [9, Theorem 2.1] and [10, Theorem 2.2].
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Now we proceed to prove the “only if part”. It suffices to show that Cφ compactly interwines all
bounded Volterra-type operators J1 only if φ(z) = z or φ(z) = az + b with |a| < 1.

Let Tφ,1 = Cφ J1−J1Cφ. By Proposition 3.2, the compactness (boundedness) of Tφ,1 implies thatφ(z) = az+b
with |a| ≤ 1 and b = 0 whenever |a| = 1. In the latter case, we only need to show that a = 1.

Suppose Tφ,1 is compact and |a| = 1, then by Proposition 3.5, we have

lim
|z|→∞

|a1′(az) − 1′(z)|
1 + ψ′(z)

= 0. (3.9)

Choose 1 ∈ H(C) satisfying that

lim
r→+∞

|1′(r)|
1 + ψ′(r)

= 1 and lim
r→+∞

|1′(reiθ)|
1 + ψ′(r)

< 1

for any 0 < θ < 2π. Then by [7, Theorem 3], J1 is bounded on F p
ψ but is not compact. For such 1, (3.9) holds

only if a = 1. The proof is complete.

Proof of Theorem B . The “if part” is trivial since J1 is compact on F p
ψ if |1′(z)|

1+ψ′(z) → 0 as |z| → ∞ by [7,
Theorem 3]. To prove the “only if part”, we assume that J1 compactly intertwines all bounded composition
operators Cφ.

Let φ(z) = eiθz, by [9] and [10], Cφ is bounded but not compact on F p
ψ for any θ ∈ [0, 2π]. Then

Proposition 3.5 tells us that

lim
|z|→∞

|eiθ1′(eiθz) − 1′(z)|
1 + ψ′(z)

= 0.

Suppose 1(z) =
∑
∞

n=0 anzn and integrating with respect to θ from 0 to 2π, we get∫ 2π

0

|eiθ1′(eiθz) − 1′(z)|
1 + ψ′(z)

dθ =
1

1 + ψ′(z)

∫ 2π

0

∣∣∣∣∣∣∣
+∞∑
n=1

nanzn−1(einθ
− 1)

∣∣∣∣∣∣∣ dθ
≥

1
1 + ψ′(z)

∣∣∣∣∣∣∣
+∞∑
n=1

nanzn−1
∫ 2π

0
(einθ

− 1)dθ

∣∣∣∣∣∣∣
=

2π|1′(z)|
1 + ψ′(z)

.

Thus the “only if part” follows immediately. The proof is complete.

In fact, Theroem B tells us that D(J1) on B(F p
ψ ) ranges into the ideal of compact operators if and only if

J1 is compact. However, there exist non-compact Cφ and J1 such that Tφ,1 is compact.

Example 3.6. Let φ(z) = iz, 1(z) = z4 and ψ(z) = |z|4, then neither Cφ nor J1 is compact on F p
ψ but Tφ,1 is compact

according to Theorem 3.4.
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