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Abstract. In the paper, the authors present several inequalities for bounding the sums of two sine cardinal
functions and the sums of two hyperbolic sine cardinal functions. These inequalities improve previously-
known results.

1. Introduction

For x ∈ R, the functions

sinc x =


sin x

x
, x , 0;

1, x = 0,
sinhc x =


sinh x

x
, x , 0;

1, x = 0,

tanc x =


tan x

x
, x , 0;

1, x = 0,
tanhc x =


tanh x

x
, x , 0;

1, x = 0

are called the sinc function, the tanc function, the hyperbolic sinc function, and the hyperbolic tanc function,
respectively. The function sinc x is also called the sine cardinal or sampling function, as well as the function
sinhc x is also called hyperbolic sine cardinal, see the papers [12, 33]. The sinc function sinc x arises frequently
in signal processing, the theory of the Fourier transforms, and other areas in mathematics, physics, and
engineering.

Inequalities involving the sinc function, the tanc function, the hyperbolic sinc function, and the hyper-
bolic tanc function, such as Wilker’s inequality, Huygen’s inequality, Jordan’s inequality, Caus–Huygen’s
inequality, Becker–Stark’s inequality, and so on, arouse great enthusiasm of researchers, see the litera-
tures [1, 5–11, 13–32, 35–37, 39], for examples, and closely-related references therein.

In [2], Bagul and Chesneau proved two double inequalities

1 + 2 cos x ≤ sinc(2x) + 2 sinc x ≤ 2 + cos2 x, |x| <
π
2

(1.1)
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and

1 + 2 cosh x ≤ sinhc(2x) + 2 sinhc x ≤ 2 + cosh2 x, x ∈ (−∞,∞). (1.2)

Meanwhile, these two authors also posed two open problems which can be restated as the following four
problems:

i) For x ∈
(
0, π2

)
and t ≥ 2, prove

t + cost x > sinc(tx) + t sinc x. (1.3)

ii) For x ∈
(
0, π2

)
and p ∈ (0, 2], prove

sinc(px) + p sinc x > 1 + p cos x. (1.4)

iii) For x ∈ R \ {0} and s ∈ (0, 2], prove

s + coshs x > sinhc(sx) + s sinhc x. (1.5)

iv) For x ∈ R \ {0} and q ≥ 2, prove

sinhc(qx) + q sinhc x > 1 + q cosh(x). (1.6)

The Fourier series technology to approximate inequalities involving the functions sinc x, tanc x, sinhc x,
and tanhc x has attracted the attention of many researchers. In 2019, Bercu [3] used the cosine polynomials
for the even functions sinc x and tanc x and obtained some new inequalities of the Wilker–Cusa–Huygens
type. In 2021, Wu and Bercu [34] used the power series expansions of sin x and cos x and employed the
Fourier series technology to approximate the function 1 − sinc x and tanc x − 1. In 2021, Zhu [38] used the
power series expansion technique and established two new sharp bound for inequalities involving sin x and
tan x in terms of the functions x2[sinc(λx)]α and x2[tanc(µx)]β. In 2022, Bercu [4] refined several inequalities
of the Huygens–Wilker–Lazarović type by using the hyperbolic cosine polynomials.

The goals of this paper are to refine the inequalities (1.1) and (1.2) and to verify the inequality (1.6).

2. Inequalities

Now we are in a position to state and prove our main results.

Theorem 1. For |x| < π2 , we have

4
15

(
cos x +

11
4

)2

−
3
4
≤ sinc(2x) + 2 sinc x ≤

4
15

(
cos x +

11
4

)2

−
3
4
+

1
1260

x6. (2.1)

Proof. For x ∈
(
0, π2

)
, using the power series expansions

sin x =
∞∑

k=0

(−1)k x2k+1

(2k + 1)!
and cos x =

∞∑
k=0

(−1)k x2k

(2k)!
,

we acquire

sinc(2x) + 2 sinc x −
4

15

(
cos x +

11
4

)2

+
3
4

=

∞∑
k=0

(−1)k 22kx2k

(2k + 1)!
+ 2

∞∑
k=0

(−1)k x2k

(2k + 1)!
−

22
15

∞∑
k=0

(−1)k x2k

(2k)!
−

2
15

∞∑
k=0

(−1)k 22kx2k

(2k)!
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=
4
15

∞∑
k=3

(−1)k+1 11k − 2 + 22k−2(4k − 13)
(2k + 1)!

x2k.

Let

ak =
11k − 2 + 22k−2(4k − 13)

(2k + 1)!
, k ≥ 3. (2.2)

In order to prove Theorem 1, it suffices to prove that the positive sequence ak is decreasing in k ≥ 3, that is,

11k − 2 + 22k−2(4k − 13)
(2k + 1)!

>
11k + 9 + 22k(4k − 9)

(2k + 3)!
, k ≥ 3.

This inequality is equivalent to

22k−1
[
8(k − 4)3 + 90(k − 4)2 + 275(k − 4) + 151

]
+ 44(k − 3)3 + 498(k − 3)2 + 1835(k − 3) + 2190 > 0,

which is clearly valid for k ≥ 3. The proof of Theorem 1 is complete.

Remark 1. Since

4
15

(
cos x +

11
4

)2

−
3
4
− (1 + 2 cos x) =

4(1 − cos x)2

15
≥ 0

and

2 + cos2 x −
[ 4
15

(
cos x +

11
4

)2

−
3
4
+

x6

1260

]
=

11
10
−

x6

1260
−

22
15

cos x +
11
30

cos 2x

=
11
10
−

x6

1260
−

22
15

∞∑
k=0

(−1)k

(2k)!
x2k +

11
30

∞∑
k=0

(−1)k22k

(2k)!
x2k

=
x4

2520

[
462 − 79x2 + 924

∞∑
k=4

(−1)k(4k
− 4)

(2k)!
x2k−4

]

=
x4

2520

(
462 − 79x2 + 924

∞∑
k=4

λkx2k−4

)
,

where λk =
(−1)k(4k

−4)
(2k)! . For |x| < π2 and k ≥ 4, we have x2 < 5

2 , 462 > 79x2, and∣∣∣∣∣λk+1

λk
x2

∣∣∣∣∣ = x2

(2k + 2)(2k + 1)
4k+1
− 4

4k − 4
<

5
(k + 1)(2k + 1)

(
1 +

12
4k+1 − 16

)
≤

1
9

(
1 +

12
45 − 16

)
< 1.

This implying that 2 + cos2 x −
[

4
15

(
cos x + 11

4

)2
−

3
4 +

x6

1260

]
> 0 for |x| < π

2 . So, the double inequality (2.1)
improves the double inequality (1.1).
Remark 2. For n ≥ 1 and 0 < x < π2 , we have

4
15

(
cos x +

11
4

)2

−
3
4
+

4
15

2n∑
k=2

(−1)k+1akx2k < sinc(2x) + 2 sinc x

<
4
15

(
cos x +

11
4

)2

−
3
4
+

4
15

2n+1∑
k=2

(−1)k+1akx2k

where ak is defined by (2.2) in the proof of Theorem 1.
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Theorem 2. For x ∈ R and n ≥ 2, we have

1 + 2 cosh x +
n∑

k=2

bkx2k
≤ sinhc(2x) + 2 sinhc x ≤

4
15

(
cosh x +

11
4

)2

−
3
4
, (2.3)

where bk =
22k
−4k

(2k+1)! for k ≥ 2.

Proof. Using the power series expansions

sinh x =
∞∑

k=0

x2k+1

(2k + 1)!
and cosh x =

∞∑
k=0

x2k

(2k)!
, (2.4)

we obtain

sinhc(2x) + 2 sinhc x − 1 − 2 cosh x −
n∑

k=2

bkx2k

=

∞∑
k=0

22kx2k

(2k + 1)!
+ 2

∞∑
k=0

x2k

(2k + 1)!
− 1 − 2

∞∑
k=0

x2k

(2k)!
−

n∑
k=2

(
22k
− 4k

)
x2k

(2k)!

=

∞∑
k=2

(
22k
− 4k

)
x2k

(2k + 1)!
−

n∑
k=2

(
22k
− 4k

)
x2k

(2k + 1)!

=

∞∑
k=n+1

bkx2k.

From the positivity bk > 0 for k ≥ 2, it follows that

sinhc(2x) + 2 sinhc x − 1 + 2 cosh x +
n∑

k=2

bkx2k > 0.

The left-hand side inequality in (2.3) is thus proved.
Making use of the series expansions in (2.4) once again leads to

sinhc(2x) + 2 sinhc x −
4
15

(
cosh x +

11
4

)2

+
3
4

=

∞∑
k=0

22kx2k

(2k + 1)!
+ 2

∞∑
k=0

x2k

(2k + 1)!
−

22
15

∞∑
k=0

x2k

(2k)!
−

2
15

∞∑
k=0

22kx2k

(2k)!

= −
4
15

∞∑
k=3

akx2k,

where the positive sequence ak is defined by (2.2). This implies that the right-hand side inequality in (2.3)
is valid. The proof of Theorem 2 is complete.

Remark 3. Since bk > 0 and

cosh2 x −
4

15

(
cosh x +

11
4

)2

+
11
4
=

11(1 − cosh x)2

15
≥ 0,

the double inequality (2.3) is tighter than the double inequality (1.2).
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Theorem 3. Let

q0 =
1
2
+

√
33
6
= 1.457 · · ·

and

ck =
3q2k
− 2q(1 + q)k + q(2 − q)

3(2k + 1)!
, k ≥ 2.

For x ∈ R \ {0}, q > q0, and n ≥ 2, we have

1 +
q(2 − q)

3
+

q(1 + q)
3

cosh x < 1 +
q(2 − q)

3
+

q(1 + q)
3

cosh x +
n∑

k=2

ckx2k < sinhc(qx) + q sinhc x. (2.5)

Proof. Let

Gq(x) = sinhc(qx) + q sinhc x −
q(1 + q)

3
cosh x −

q(2 − q)
3

− 1.

Utilizing the power series expansions in (2.4), we obtain

Gq(x) =
∞∑

k=0

q2kx2k

(2k + 1)!
+

∞∑
k=0

qx2k

(2k + 1)!
−

q(1 + q)
3

∞∑
k=0

x2k

(2k)!
−

q(2 − q)
3

− 1

=
1
3

∞∑
k=2

3q2k
− 2q(q + 1)k + q(2 − q)

(2k + 1)!
x2k.

For x ≥ 2 and q ≥ q0, let u(x, q) = 3q2x
− 2q(q + 1)x + q(2 − q). Then

u(2, q) = q(q + 1)
(
3q2
− 3q − 2

)
= q(q + 1)(q − q0)

[
q −

(1
2
−

√
33
6

)]
> 0,

u′x(x, q) = 6(ln q)q2x
− 2q(q + 1),

u′′xx(x, q) = 12(ln q)2q2x

> 0.

Thus, the first derivative u′x(x, q) is increasing in x ≥ 2. Since

u′x(2, q) = 2q4
(
3 ln q −

1
q2 −

1
q3

)
,

u′x(2, q0) =

√
33 + 3
18

[(
5
√

33 + 27
)

ln

√
33 + 3

6
−

√

33 − 9
]

= 3.033 · · · ,

and (
3 ln q −

1
q2 −

1
q3

)′
=

3q3 + 2q + 3
q4 > 0,

we derive u′x(x, q) > 0 for x ≥ 2 and q ≥ q0. Hence, the function u(x, q) is increasing in x ≥ 2 for q ≥ q0.
Accordingly, we obtain u(x, q) > 0 for x ≥ 2 and q ≥ q0. Consequently, we conclude Gq(x) > 0 for x ≥ 2 for
q ≥ q0. The proof of Theorem 3 is complete.
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Remark 4. When q = 2, the inequality (2.5) can be written as

sinhc(2x) + 2 sinhc x > 1 + 2 cosh x,

which is equivalent to the left-hand side inequality in (1.2)

Remark 5. For x ∈ R \ {0} and q ≥ 2, we have

q(1 + q)
3

cosh x − q cosh x +
q(2 − q)

3
=

q(q − 2)
3

(cosh x − 1) ≥ 0.

So, the double inequality (2.5) improves the double inequality (1.6).

3. Conclusions

In this paper, we presented our main results in Theorems 1, 2, and 3. These main results are three
inequalities (2.1), (2.3), and (2.5). These three inequalities refined the double inequality (1.1), the double
inequality (1.2), and the inequality (1.6).

In future, we wish to verify another three inequalities (1.3), (1.4), and (1.5).

Acknowledgements. The authors are grateful to anonymous referees for their careful corrections, valuable
comments, and help suggestions to the original version of this paper.
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[4] G. Bercu, Refinements of Huygens–Wilker–Lazarović inequalities via the hyperbolic cosine polynomials, Appl. Anal. Discrete Math. 16
(2022), no. 1, 91–110; available online at https://doi.org/10.2298/AADM200403004B.

[5] C.-P. Chen, Sharp Wilker- and Huygens-type inequalities for inverse trigonometric and inverse hyperbolic functions, Integral Transforms
Spec. Funct. 23 (2012), no. 12, 865–873; available online at https://doi.org/10.1080/10652469.2011.644851.

[6] C.-P. Chen and W.-S. Cheung, Wilker- and Huygens-type inequalities and solution to Oppenheim’s problem, Integral Transforms Spec.
Funct. 23 (2012), no. 5, 325–336; available online at https://doi.org/10.1080/10652469.2011.586637.

[7] C.-P. Chen and F. Qi, Inequalities of some trigonometric functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 15 (2004), 71–78;
available online at http://dx.doi.org/10.2298/PETF0415071C.

[8] C.-P. Chen, J.-W. Zhao, and F. Qi, Three inequalities involving hyperbolically trigonometric functions, Octogon Math. Mag. 12 (2004),
no. 2, 592–596.
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