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Abstract. This study investigates the dynamical properties of real projective transformations from a
topological viewpoint. We study properties like periodicity, topological mixing, topological transitivity,
distality and proximality. Regarding periodicity, we give a complete characterisation of the sets of periods.
We show that projective transformations are not topologically mixing and that it is only the isometries
among them that are distal.

1. Introduction

The dynamics of real projective transformations is the main topic of this paper. By definition, a topological
discrete dynamical system (briefly, a dynamical system) is a pair (X, f ), where X is a topological space and f is
a continuous self map of X. The trajectory of x ∈ X is defined as the sequence (x, f (x), f 2(x), f 3(x), ...), where
f k(x) = f ◦ f ◦ ... ◦ f (x) (k times) for k ∈N and f 0(x) = x. The forward orbit of x is defined as the set { f k(x) : k
is a non-negative integer}. The study of dynamics is primarily concerned with the behavior of trajectories
in the long run. If (X, f ) and (Y, 1) are two dynamical systems and ϕ : X→ Y is a surjective continuous map
such that ϕ ◦ f = 1 ◦ ϕ, then ϕ is called a topological semiconjugacy from f to 1 and (Y, 1) is called a factor of
(X, f ). If ϕ is a homeomorphism, then ϕ is called a topological conjugacy; in this case (X, f ) and (Y, 1) are said
to be topologically conjugate.

In this paper, our dynamical system is
(
Pn(R), T̃

)
, where Pn(R) and T̃ are defined as follows. Let n ∈N

and for x, y ∈ Rn+1
\
{
0̄
}
, if there exists a non-zeroλ ∈ R such that x = λy, then define x ∼ y. Then the quotient

space Rn+1
\
{
0̄
}
/∼, denoted by Pn(R) is called the n-dimensional real projective space. The quotient map is

denoted by π and for an x ∈ Rn+1
\
{
0̄
}
, π(x) is also denoted as [x]. It is well known that Pn(R) is compact

and connected. Besides, note that any open subset of Rn+1
\ {0̄} is open in Rn+1 as well. Given a linear map

T ∈ GLn+1(R), its associated projective transformation denoted by T̃, is defined as T̃(π(x)) = π(Tx), for every
x ∈ Rn+1

\
{
0̄
}
. It can be easily observed that

(
Pn(R), T̃

)
is a factor of

(
Rn+1

\
{
0̄
}
,T

)
.

The literature on the dynamics of projective transformations is extensive. See for example [5], [8] and
[11]. In the present article, we investigate some dynamical properties of projective transformations. In the
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next section, we define these properties followed by related known results in some cases and then our main
results. We refer to [3] for most of the definitions.

Before proceeding to the results, we will now define a metric dp on Pn(R). A metric on Pn(R) may be
already well known but we will define a metric that is convenient for our calculations and show that it does
induce the topology of Pn(R). We finally mention some notations and terms that we are going to use. The
cardinality of any set A is denoted by |A|. T denotes an invertible linear transformation of Rn+1 and T̃, its
associated projective transformation on Pn(R) for any non-negative integer n. We also identify T with the
matrix associated to it. By an eigenvector of T, we mean an eigenvector corresponding to a real eigenvalue,
unless otherwise mentioned. We use ||x|| to denote the Euclidean norm of x ∈ Rm for any m ∈N.

Definition 1.1. For any [x], [y] ∈ Pn(R), define dp([x], [y]) = min
{∥∥∥∥ x
||x|| −

y
||y||

∥∥∥∥ , ∥∥∥∥ x
||x|| +

y
||y||

∥∥∥∥}.

Proposition 1.2. dp is a metric on Pn(R).

Proof. If dp([x], [y]) = 0, then either x
||x|| =

y
||y|| or x

||x|| = −
y
||y|| and in either case [x] = [y]. Also, if [x] = [y],

then x = λy for some non-zero λ ∈ R and thus x
||x|| = ±

y
||y|| ; hence dp([x], [y]) = 0. Obviously, for any

[x], [y] ∈ Pn(R), we have dp([x], [y]) = dp([y], [x]). So, it remains to verify the triangle inequality. For any
[x], [y], [z] ∈ Pn(R), since there are two possibilities for each of the values of dp([x], [y]) and dp([y], [z]), we
have four possibilities for the sum dp([x], [y])+dp([y], [z]). It can be easily verified that each of them is atleast
the value of either

∥∥∥ x
||x|| −

z
||z||

∥∥∥ , or
∥∥∥ x
||x|| +

z
||z||

∥∥∥ and hence dp([x], [z]) ≤ dp([x], [y]) + dp([y], [z]).

Proposition 1.3. dp induces the topology of Pn(R).

Proof. To avoid ambiguity, we refer to the topology of Pn(R) as the quotient topology, as it is a quotient
space of Rn+1

\
{
0̄
}

and the topology induced by dp as metric topology. Let U be an open set in Pn(R) with
respect to the quotient topology and [x] ∈ U. Thenπ−1(U) is open inRn+1

\
{
0̄
}

and {λx | λ ∈ R\{0}} ⊂ π−1(U);
in particular, x

||x|| ∈ π
−1(U). Choose ϵ > 0 such that the Euclidean open ball BE( x

||x|| , ϵ) centered at x
||x|| with

radius ϵ is contained in π−1(U). Now, consider Bdp ([x], ϵ), the open ball in Pn(R), centered at [x] and radius

ϵ with respect to the metric dp. If [y] ∈ Bdp ([x], ϵ), then either
∥∥∥∥ x
||x|| −

y
||y||

∥∥∥∥ < ϵ or
∥∥∥∥ x
||x|| +

y
||y||

∥∥∥∥ < ϵ. Then
y
||y|| ∈ Bdp ( x

||x|| , ϵ) ⊂ π
−1(U) or − y

||y|| ∈ Bdp ( x
||x|| , ϵ) ⊂ π

−1(U) and in either case [y] ∈ U. Hence U is open in metric
topology.

Conversely, consider Bdp ([x], ϵ), the open ball inPn(R) centered at [x] with radius ϵ. Now,π−1
(
Bdp ([x], ϵ

)
=

ϕ−1
(
BE( x

||x|| , ϵ)
)
∪ ϕ−1

(
BE( −x

||x|| , ϵ)
)
, where ϕ : Rn+1

\ {0̄} → Sn is the map given by ϕ(z) = z
||z|| . Since ϕ is contin-

uous, the set π−1
(
Bdp ([x], ϵ)

)
is open in Rn+1

\
{
0̄
}

and thus Bdp ([x], ϵ) is open in the quotient topology.

2. Main Results

2.1. Periodicity

A point x ∈ X is said to be periodic if there is a k ∈N such that f k(x) = x; the least such k is termed as the
period of x. A periodic point of period one is called a fixed point. There have been several papers that study
various aspects of periodic points of dynamical systems. In this paper, we are concerned with two of them,
namely the characterization of the sets of periodic points and the sets of periods, i.e. we try to describe
{Per( f ) : f ∈ F}, where Per( f ) = {n ∈ N : f has a periodic point in X of period n} and {P( f ) : f ∈ F}, where
P( f ) = {x ∈ X : x is a periodic point of f } for a family F of continuous maps on a space X. The problems
of characterizing these sets have been well-studied in the literature. The articles [2],[4],[6],[7] and [13] are
some such papers and [10] is a nice survey of these results.

In the present case, i.e. (Pn(R), T̃), P(T̃) can be easily found as described in one of the following
paragraphs and Per(T̃) as described in Theorem 1. Beside these characterisations, an another well studied
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notion is a dynamical invariant, called the zeta function. If the number of fixed points of f k, denoted
by |Fix( f k)| is finite for every k ∈ N in a dynamical system (X, f ), we define the zeta function ζ f (z) of
f as the formal power series ζ f (z) = exp(

∑
∞

k=1
1
k |Fix( f k)|zk). The dynamical zeta function for a projective

transformation was found in [8].
We will now describe the periodic points of

(
Pn(R), T̃

)
. If v ∈ Rn+1

\
{
0̄
}

is an eigenvector of T with

eigenvalue λ, then T̃([v]) = [Tv] = [λv] = [v], and therefore [v] is a fixed point. Conversely, if [v] is a
periodic point with period k, it is a fixed point of T̃k, and therefore [Tkv] = [v], i.e. Tkv = λ′v for some
scalar λ′ ∈ R \ {0}. As a result, v is an eigenvector of Tk. To summarize, [v] is periodic if and only if v is an
eigenvector of Tk for some k ∈N.

We now state and prove our theorem about the sets of periods. We introduce the following notation
to make the statement of theorem simpler. For an n ∈ N, ℑn =

{
A ⊂N | |A| ≤ n

2

}
, if n is even and ℑn ={

A ⊂N | 1 ∈ A and |A| ≤ n+1
2

}
, if n is odd.

Theorem 2.1. {Per(T̃) | T̃ is a projective transformation on Pn(R)} = ℑn, for any n ∈N.

Proof. If [x] is a periodic point of T̃ with period k, then x is an eigenvector of Tk. Also, Tl(x) = λx for some
non-zero λ ∈ R will imply that T̃l([x]) = [x]. Hence, k ∈ Per(T̃) if and only if Tk has an eigenvector x such
that x is not an eigenvector of Tl for any l < k.

If µ ∈ C is a complex eigenvalue of T and µk
∈ R for some k ∈ N, then denote by kµ to be the least

positive integer such that µkµ ∈ R. Note that kµ = 1 if and only if µ ∈ R. By the above argument, it follows
that kµ ∈ Per(T̃). Conversely, if k ∈ Per(T̃), then Tkx = λx for some non-zero λ ∈ R. It is very well known
that k√

λ is a complex eigenvalue of T and hence k = kµ, where µ = k√
λ. Therefore, Per(T̃) = {kµ | µ is a

complex eigenvalue of T}.
Since T has atmost n

2 or n−1
2 complex eigenvalues which are not conjugates of each other, depending on

whether n is even or odd respectively, we have |Per(T̃) |≤ n
2 , when n is even and |Per(T̃)| ≤ n+1

2 , when n is
odd. In case n is odd, T has at least one real eigenvalue; so 1 ∈ Per(T̃). Hence Per(T̃) ∈ ℑn.

Conversely, for any A ∈ ℑn, say A \ {1} = {m1,m2, · · · ,ml} ⊂ N. Define µ j = e
i πmj , where 1 ≤ j ≤ l. Let

Rθ =
(

cosθ sinθ
− sinθ cosθ

)
and T be the block diagonal matrix with the diagonal blocks as R π

m1
,R π

m2
, · · · ,R π

ml
if

l = n
2 and R π

m1
,R π

m2
, · · · ,R π

ml
, In−2l if l < n

2 , where In−2l is the identity matrix of size n − 2l. Then, the set of
eigenvalues of T is

{
µ1, µ1, µ2, µ2, · · · , µl, µl

}
∪ U, where U = ϕ or U = {1}. Note that m j = kµ j and hence

Per(T̃) \ {1} = {kµ | µ is a non-real eigenvalue of T} = {m j|1 ≤ j ≤ l}. Therefore, Per(T̃) = A.

2.2. Transitivity and Mixing

In this section, we will consider topological transitivity and topological mixing. A dynamical system
(X, f ) is said to be topologically transitive if for any pair of non-empty open sets U and V in X, there exists
a non-negative integer n for which f n(U) ∩ V , ϕ. In addition, if there exists an integer N > 0 with
f n(U) ∩ V , ϕ for every n ≥ N, then (X, f ) is called topologically mixing. In the contrapositive sense, no
topological transitivity ensures no topological mixing. Note that a factor of a mixing system is also mixing
(see [3]).

On the other hand, (X, f ) is said to have point transitivity if it has an element whose forward orbit is dense
in X. It is known that if X has no isolated point, then any point transitive system (X, f ) is topologically
transitive (see [1]) and they are equivalent under some conditions on X; for instance, if X is locally compact
perfect Hausdorff (see [3]). In fact, the authors in [3] consider the latter notion (i.e., point transitivity) as
the definition of topological transitivity. Since Pn(R) is a connected, compact Hausdorff space, we will use
these two notions without any distinction under the name transitivity.

There are several papers in literature on transitivity and mixing, particularly [9] and [12] are related to
the current problem. In fact, the author in [12] hinted that the methods in that paper may help in discussing
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topological transitivity for projective transformations. Though the paper [9] does not mention the term
transitivity explicitly, the concept of supercyclic vectors discussed in it is closely related to the transitivity
of a projective transformation. We will be using that here and hence quote the necessary results. Let X be a
real Banach space and B(X) be the set of linear continuous mappings from X onto itself. A vector x ∈ X is
called a supercyclic vector of T ∈ B(X) if {λTk(x) | λ ∈ R and k ∈N0} = X. It is proved in Theorem 1 of [9]
that there exist operators in B(X) having supercyclic vectors if and only if dim X ∈ {0, 1, 2} or dim X = ∞.
We now state and prove our result about the relation between the existence of supercyclic vectors for T and
the transitivity of T̃.

Proposition 2.2. Let T ∈ GLn+1(R). T has a supercyclic vector if and only if T̃ is transitive on Pn(R).

Proof. Assume that T has a supercyclic vector, say x i.e., {λTk(x)|λ ∈ R and k ∈N0} = Rn+1. Let U be a
non-empty open set in Pn(R). Then, π−1(U) is open in Rn+1

\
{
0̄
}
. So, λTk(x) ∈ π−1(U) for some λ ∈ R and

for some k ∈N0. Thus, T̃k([x]) ∈ U.
For the converse, let [x] ∈ Pn(R) whose forward orbit is dense inPn(R) and let V be a non-empty open set

inRn+1. Choose y ∈ V and an Euclidean ball B1 = BE(y, ϵ) such that B1 ⊂ V. Define W = {tz|t ∈ R\{0}, z ∈ B1}.
The mapϕt : Rn+1

→ Rn+1 for any t , 0, defined byϕt(u) = 1
t u is continuous and thus the set Wt := {tz|z ∈ B1},

being the pre-image of B1 under ϕt is open. Since W = ∪t,0Wt, W is open. Also, W is saturated with respect
to the map π i.e if π−1([u]) ∩W , ϕ for some [u] ∈ Pn(R) then π−1([u]) ⊂W. Hence, π(W) is open in Pn(R).
Then, T̃k([x]) ∈ π(W) for some k, implying that λTk(x) ∈W for every non-zero λ ∈ R; in particular Tk(x) ∈W
and thus Tk(x) = tz for some non-zero t ∈ R and z ∈ B1. It then follows that 1

t Tk(x) = z ∈ B1 ⊂ V and hence
{λTk(x)| λ ∈ R and k ∈N0} is dense in Rn+1.

Corollary 2.3. Pn(R) admits a transitive projective transformation if and only if n = 1.

The proof of the corollary follows from the above Proposition and Theorem 1 of [9].
Since every topologically mixing system is topologically transitive, it is enough to check the existence of

topological mixing maps only onP1(R). We prove in Theorem 2 that there exist no projective transformations
on P1(R) that are topologically mixing; hence Pn(R) does not admit a topologically mixing projective
transformation for any n ∈ N. However, Example 1 is of some interest, because it is a continous map of
P1(R) which is mixing; but is not a projective transformation i.e., not induced by a linear transformation of
R2.

Theorem 2.4. P1(R) does not admit a topologically mixing projective transformation.

Proof. Let T ∈ GL2(R). We can assume that T is equal to one of the following matrices:

(i)
(
a 0
0 b

)
, where a and b are distinct real eigenvalues of T.

(ii)
(
a 0
0 a

)
or

(
a 1
0 a

)
, where a is a real eigenvalue of T.

(iii) aRθ where a ∈ R \ {0} and Rθ =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
for some θ ∈ R.

Case (i): When T =
(
a 0
0 b

)
, let U′ =

{
(x, y) ∈ R2

| x > 0 and y > 0
}

and consider the open set U = π(U′) in

P1(R). If ab > 0, then for any
[
(x, y)

]
∈ U, T̃k(

[
(x, y)

]
) =

[
(akx, bky)

]
∈ U for every k ∈N. If V = π(V′), where

V′ =
{
(x, y) ∈ R2

| x < 0 and y > 0
}
, then V is a non-empty open set such that T̃k(U)∩V = ϕ for every k ∈N.

Thus T̃ is not mixing. If ab < 0, then for any even k, T̃k(
[
(x, y)

]
) ∈ U and thus again T̃ is not mixing.

Case (ii): If T =
(
a 0
0 a

)
then T̃([x]) = [ax] = [x], i.e. T̃ is the identity map and hence not mixing. If
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T =
(
a 1
0 a

)
then T̃k(

[
(x, y)

]
) =

[
(akx + nak−1y, aky)

]
. Consider the open sets U = π(U′) and V = π(V′), where

U′ =
{(

x, y
)
| x > 0 and y > 0

}
and V′ =

{(
x, y

)
| x < 0 and y > 0

}
. If a > 0, then T̃k(U) ∩ V = ϕ, for any k ∈ N

and if a < 0, then T̃k(U) ∩ V = ϕ for large enough odd values of k. Hence T̃ is not mixing.
Case (iii): In this case, T̃ is an isometry and hence it is not mixing.

We thus have the following corollary.

Corollary 2.5. Pn(R) does not admit a topologically mixing projective transformation for any n ∈N.

Though there are no projective transformations on P1(R) that are mixing, we can still have a mixing
continuous map, as shown in the following example.

Example 2.6. Consider the expanding endomorphism E3 : S1
→ S1 given by E3(eiθ) = ei3θ. Since E3 is mixing in

S1 (refer to [3]), Ẽ3 being a factor of E3 is also mixing.

2.3. Distality and Proximality
We finally consider distality and proximality which are asymptotic dynamical attributes based on the

distance between comparable positions on pairs of orbits. They are also dichotomic in nature. Let X be a
compact Hausdorff topological space with a homeomorphism f : X → X and x, y be any two points of X.
We define the diagonal set in X×X as ∆ = {(z, z) ∈ X×X : z ∈ X} and the orbit of (x, y) under f × f is denoted
by O(x, y). A pair of points x, y ∈ X are called proximal if their orbit closure i.e. O(x, y) has a non-empty
intersection with the diagonal set ∆, else they are known as distal. A homeomorphism on a space X is
called distal if any two distinct points x, y ∈ X are distal. If d is a metric on X, then x, y ∈ X are proximal if
and only if there exists a sequence nk of integers such that d( f nk (x), f nk (y)) goes to zero as k tends to infinity.
Note that an isometry is distal. We will also need the fact that a factor of a distal homeomorphism of a
compact Hausdorff space is also distal (See Corollary 2.7.7, [3]).

Let T be an invertible linear transformation on Rn+1. If T̃ is an isometry on Pn(R), then it is obviously
distal. We now prove in the following theorem that T̃ is not distal in all other cases (with respect to dp).
We continue to assume that T ∈ GLn+1(R) and also use the following notations in the next theorem and its
proof. A denotes an arbitary matrix of an appropriate order, I2 stands for the identity matrix of order 2 × 2.

Theorem 2.7. T̃ is distal on Pn(R) if and only if T̃ is an isometry with respect to dp.

Proof. An isometry is obviously distal; so, we now assume that T̃ is distal and show that it is an isometry.
We first claim that T is of the form T =

⊕k
l=1 αlTl, where each αl ∈ R, |αi| =

∣∣∣α j

∣∣∣ for any i, j ∈ {1, 2, · · · , k} and
each Tl is an isometry (with respect to Euclidean norm) of either R or R2.

In case T is not of this form, we can assume that T is equal to one of the following :

(i)

 J I2 O
O J · · ·

O O A

, where J = α.Rθ for some α ∈ R \ {0} and θ ∈ R.

(ii)

λ 1 O
0 λ · · ·

O O A

, where λ ∈ R \ {0}.

(iii)

 a 0 · · ·

0 b · · ·

O O A

, where a, b ∈ R \ {0}, with |a| , |b|.

(iv)

J1 O · · ·

O J2 · · ·

O O A

, where each Ji = αi.Rθi , θi ∈ R and αi ∈ R \ {0} such that |α1| , |α2|.

(v)

λ O · · ·

O J · · ·

O O A

, where λ ∈ R \ {0}, J = α.Rθ such that α ∈ R \ {0}, θ ∈ R and |λ| , |α|.
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In the first case, where T =

 J I2 O
O J · · ·

O O A

, consider an element
(
x, y, 0, · · · , 0

)
∈ Rn+1, such that x, y ∈

R2
\ {(0, 0)}. Note that Tn (

x, y, 0, · · · , 0
)
=

(
αnRn

θx + nαn−1Rn−1
θ y, αnRn

θy, 0, · · · , 0
)

and Tn
(

R−1
θ y

∥R−1
θ y∥
, 0, · · · , 0

)
=

(
αnRn

θR−1
θ y

∥R−1
θ y∥
, 0, · · · , 0

)
.

Then, T̃n [(
x, y, 0, · · · , 0

)]
=

 α
n Rn
θx+Rn−1

θ y√
∥
α
n Rn
θx+Rn−1

θ y∥
2
+∥

α
n Rn
θy∥

2
,

αRn
θy√

∥αRn
θx+nRn−1

θ y∥
2
+∥αRn

θy∥
2
, 0, · · · , 0


and T̃n

[(
R−1
θ y

∥R−1
θ y∥
, 0, · · · , 0

)]
=

[(
Rn−1
θ y

∥Rn−1
θ y∥
, 0, · · · , 0

)]
.

Note that, as n→∞,∥∥∥∥∥∥∥∥∥
α
n Rn
θx + Rn−1

θ y√∥∥∥αn Rn
θx + Rn−1

θ y
∥∥∥2
+

∥∥∥αn Rn
θy

∥∥∥2
−

Rn−1
θ y∥∥∥Rn−1
θ y

∥∥∥
∥∥∥∥∥∥∥∥∥→ 0

and

∥∥∥∥∥∥∥∥∥
αRn
θy√∥∥∥αRn

θx + nRn−1
θ y

∥∥∥2
+

∥∥∥αRn
θy

∥∥∥2

∥∥∥∥∥∥∥∥∥→ 0.

Hence, dp

(
T̃n [(

x, y, 0, · · · , 0
)]
, T̃n

[(
R−1
θ y

∥R−1
θ y∥
, 0, · · · , 0

)])
→ 0 and therefore T̃ is not distal.

For the second case, where T =

λ 1 O
O λ · · ·

O O A

, let
(
x, y, 0, · · · , 0

)
∈ Rn+1, such that x, y ∈ R \ {0}.

Then, T̃n [(
x, y, 0, · · · , 0

)]
=

[
(λx+ny, λy, 0,··· ,0)
√

(λx+ny)2+(λy)2

]
and T̃n

[(
y

∥y∥
, 0, 0, · · · , 0

)]
= [(1, 0, 0, · · · , 0)].

Now,

∥∥∥∥∥∥∥T̃n [(
x, y, 0, · · · , 0

)]
− T̃n

 y∥∥∥y
∥∥∥ , 0, 0, · · · , 0


∥∥∥∥∥∥∥

=

√√ λx + ny√
(λx + ny)2 + (λy)2

− 1

2

+

 λy√
(λx + ny)2 + (λy)2

2

→ 0 as n→∞.

Hence, T̃ is not distal in this case also.
In the remaining cases, T is of the form T =

⊕k
l=1 αlTl, where each Tl is an isometry (with respect to

Euclidean norm) of either R or R2 and |αi| ,
∣∣∣α j

∣∣∣ for some i and j. Without loss of generality, we assume
that i < j and |αi| <

∣∣∣α j

∣∣∣. Let ηl be the projection of Rn+1 on to the domain of Tl for each l ∈ {1, 2, · · · , k}; note
that the range of each ηl is either either R or R2.

Take two elements x, x′ ∈ Rn+1 such that ηl(x) = 0 for every l < {i, j}, ηl(x′) = 0 for every l , j,
ηi(x) , 0 , η j(x) and finally η j(x′) = η j(x). Say ηi(x) = xi and η j(x) = η j(x′) = x j.

Then, T̃n([x]) =


(
0, · · · , 0, αn

i Tn
i xi, 0, · · · , 0, αn

j Tn
j x j, 0, · · · , 0

)
√∥∥∥αn

i Tn
i xi

∥∥∥2
+

∥∥∥∥αn
j Tn

j x j

∥∥∥∥2


and T̃n([x′]) =


0, · · · , 0,

Tn
j x j∥∥∥∥Tn
j x j

∥∥∥∥ , 0, · · · , 0

 .
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Note that, as n→∞,

∥∥∥∥∥∥∥∥ αn
i Tn

i xi√
∥αn

i Tn
i xi∥

2
+
∥∥∥∥αn

j Tn
j x j

∥∥∥∥2

∥∥∥∥∥∥∥∥→ 0 and

∥∥∥∥∥∥∥∥ αn
j Tn

j x j√
∥αn

i Tn
i xi∥

2
+
∥∥∥∥αn

j Tn
j x j

∥∥∥∥2
−

Tn
j x j∥∥∥∥Tn
j x j

∥∥∥∥
∥∥∥∥∥∥∥∥→ 0.

Hence dp(T̃n([x]), T̃n([x′]))→ 0 and thus T̃ is not distal.

Therefore, T =
⊕k

l=1 αlTl, where each αl ∈ R, each Tl is an isometry (with respect to Euclidean distance)
of either R or R2 and |αi| =

∣∣∣α j

∣∣∣ = |α| (say) for every i, j ∈ {1, 2, · · · , k}. If x = (x1, x2, · · · , xk) and y =
(y1, y2, · · · , yk) are in Rn+1, with ∥x∥ =

∥∥∥y
∥∥∥ = 1 and xl, yl belong to the domain of Tl for each l, then

Tx
∥Tx∥ =

1
|α| (α1T1x1, α2T2x2, · · · , αkTkxk) and Ty

∥Ty∥
= 1
|α|

(
α1T1y1, α2T2y2, · · · , αkTkyk

)
.

Thus ,

∥∥∥∥∥∥∥ Tx
∥Tx∥

±
Ty∥∥∥Ty

∥∥∥
∥∥∥∥∥∥∥ = 1
|α|

∥∥∥α1T1
(
x1 ± y1

)
, α2T2

(
x1 ± y2

)
, · · · , αkTk

(
xk ± yk

)∥∥∥
=

1
|α|

√
|α1|

2
∥∥∥x1 ± y1

∥∥∥2
+ |α2|

2
∥∥∥x2 ± y2

∥∥∥2
+ · · · + |αk|

2
∥∥∥xk ± yk

∥∥∥2

=
∥∥∥x ± y

∥∥∥ .
Hence dp

(
T̃ [x] , T̃

[
y
])
= dp([x], [y]) and therefore T̃ is an isometry with respect to dp.

The above result is not true for all equivalent metrics i.e., a distal projective transformation need
not be an isometry with respect to every metric that is equivalent to dp. We now give an example to
show this. As mentioned in the introduction, let ||.|| denote the Euclidean metric on Rm for any m. On
Rn+1, define ||(x1, x2, ..., xn+1)||1 = |x1| + |x2| + ... + |xn+1| and for any [x], [y] ∈ Pn(R), define dt([x], [y]) =

min
{∥∥∥∥ x
||x|| −

y
||y||

∥∥∥∥
1
,
∥∥∥∥ x
||x|| +

y
||y||

∥∥∥∥
1

}
. The map (x, y) 7→ ||x − y||1 for every x, y ∈ Rn+1 gives the well-known taxi

cab metric on Rn+1 and thus dt can be shown to be a metric on Pn(R) using the ideas of the proof given for
Proposition 1.2.

Note that ||x − y|| ≤ ||x − y||1 ≤
√

n + 1.||x − y|| for every x, y ∈ Rn+1. Now, for any [x], [y] ∈ Pn(R),
without loss of generality, we may assume that ||x|| = ||y|| = 1. Therefore ||x − y|| ≤ ||x − y||1 ≤

√
n + 1.||x − y||

and ||x + y|| ≤ ||x + y||1 ≤
√

n + 1.||x + y|| imply that min{||x − y||, ||x + y||} ≤ min{||x − y||1, ||x + y||1} ≤√
n + 1.min{||x − y||, ||x + y||}. Hence dp([x], [y]) ≤ dt([x], [y]) ≤

√
n + 1.dp([x], [y]). This shows that dp and dt

are two equivalent metrics on Pn(R).
Consider T = R π

4
and take [(1, 0)], [(0, 1)] ∈ P1(R). Then dt(T̃[(1, 0)], T̃[(0, 1)]) =

√
2 but dt([(1, 0)], [(0, 1)]) =

2. Therefore, T̃ is not an isometry with respect to dt. On the other hand, it can be shown through usual
arguments that it is an isometry with respect to dp and hence distal. Since dp and dt are equivalent, it follows
that T̃ is distal with respect to dt also.
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