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Abstract. Let G be one of Sp(3), Spin(7) or Spin(8). Also, let Pk be the principal G-bundle over S8 and Gk(G)
be the gauge group of Pk classified by kε, where ε a generator of π8(B(G)) � Z. In this article, localized at
an odd prime p, we partially classify the homotopy types of Gk(G).

1. Introduction

Let G be a simply-connected, simple compact Lie group and B be a connected finite complex. Also let
P → B be a principal G-bundle over B. We denote by G(P) the gauge group of this principal G-bundle,
which is the group of G-equivariant automorphisms of P which fix B.

While there are countably many inequivalent principal G-bundles, Crabb and Sutherland [4] showed
that their gauge groups have only finitely many distinct homotopy types. Let Pk → S4 represent the
equivalence class of principal G-bundle whose second Chern class is k and Gk(G) be the gauge group of
this principal G-bundle. In recent years there has been considerable interest in determining the precise
number of homotopy types of these gauge groups and explicit classification results have been obtained.
Also, many classifications for gauge groups of principal bundles with various base spaces and different
structure groups have been done in these years. (for example, see [7], [14], [20], [24]).

For two integers a and b, let (a, b) be the their greatest common divisor. T. Cutler in [2] was studied
the homotopy types of Gk(Sp(3)). He showed that when localized at an odd prime p there is a homotopy
equivalence Gk(Sp(3)) ≃ Gk′ (Sp(3)) if and only if (21, k) = (21, k′). Also, he gave a lower bound and an upper
bound on the number of 2-local homotopy types of Gk(Sp(3)) and proved two following cases.
(i) if there is a homotopy equivalence Gk(Sp(3)) ≃ Gk′ (Sp(3)) then (84, k) = (84, k′),
(ii) if (336, k) = (336, k′) then there is a local homotopy equivalenceGk(Sp(3)) ≃ Gk′ (Sp(3)) after rationalisation
or localisation at any prime.

B. Harris in [6] showed that for odd primes p there is a homotopy equivalence

Spin(2n + 1) ≃(p) Sp(n).
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In 1975, E. M. Friedlander in [5] improved this result and showed that localized at odd primes there is a
homotopy equivalence between corresponding classifying spaces, that is

BSpin(2n + 1) ≃(p) BSp(n).

Therefore to study the homotopy type of Gk(Spin(7)) it suffices to study Gk(Sp(3)). Recently, S. Rea in [18]
studied the homotopy type of Gk(Spin(n)) when n = 7 and 8. He for n = 7 and 8 partially classified the
homotopy types of Gk(Spin(n)) by showing the following cases.
(i) if there is a homotopy equivalence Gk(Spin(7)) ≃ Gk′ (Spin(7)) then (84, k) = (84, k′),
(ii) if (168, k) = (168, k′) then there is a local homotopy equivalence

Gk(Spin(7)) ≃ Gk′ (Spin(7))

after rationalisation or localisation at any prime,
(iii) if there is a homotopy equivalence Gk(Spin(8)) ≃ Gk′ (Spin(8)) then (28, k) = (28, k′),
(iv) if (168, k) = (168, k′) then there is a local homotopy equivalence

Gk(Spin(8)) ≃ Gk′ (Spin(8))

after rationalisation or localisation at any prime.
The purpose of this article is to extend results in the direction of [2] and [18] by considering B = S8 and

G = Sp(3),Spin(7) and Spin(8). Let Pk be the principal G-bundle over S8 classified by kε, where ε a generator
of π8(B(G)) � Z. Also, let Gk(G) be the gauge group of this principal G-bundle. We partially classify the
homotopy types of Gk(G) for G = Sp(3),Spin(7) and Spin(8), when localized at an odd prime p. We don’t
study the 2-local homotopy types of these gauge groups, which is very hard and realistically out of reach.
We will prove the following theorem.

Theorem 1.1. Let G be one of Sp(3), Spin(7) or Spin(8) . The following hold:
(a) if Gk(G) is homotopy equivalent to Gk′ (G) then (105, k) is equal to (105, k′),
(b) if (2835, k) is equal to (2835, k′) then Gk(G) is homotopy equivalent to Gk′ (G).

2. Preliminaries

Let BG and BGk(G) be the classifying spaces of G and Gk(G) respectively. Also, let Mapk(S8,BG) be the
component of the space of continuous unbased maps from S8 to BG which contains the map inducing P,
similarly let Map∗k(S8,BG) be the component of the space of pointed continuous maps from S8 and BG which
contains the map inducing P. We know that there is a fibration

Map∗k(S8,BG)→Mapk(S8,BG) ev
−→ BG,

where the map ev is evaluation map at the basepoint of S8. M. Atiyah and R. Bott in [1] have shown that
there is a homotopy equivalence

BGk(G)) ≃Mapk(S8,BG).

The evaluation fibration therefore determines a homotopy fibration sequence

G −→Map∗k(S8,BG)→ BGk(G) ev
−→ BG. (2.1)

By [19], it is well known that there is a homotopy equivalence

Map∗k(S8,BG) ≃Map∗0(S8,BG).

We write Ω7
0G for Map∗0(S8,BG), so we get the following fiber sequence

G
αk
−→ Ω7

0G −→ BGk(G) ev
−→ BG, (2.2)
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where αk is the fibration connecting map.
Let H be a topological group. The commutator of H is the map C : H ×H→ H defined by sending (h, h′)

to hh′h−1h′−1. The restriction of C to H∨H is trivial, so induces a map c : H∧H→ H. The Samelson product
of two maps f : X→ H and 1 : Y→ H denoted by ⟨ f , 1⟩ is defined to be the composition

⟨ f , 1⟩ : X ∧ Y
f∧1
−→ H ∧H c

−→ H.

Let ε : S7
→ G represent a generator of π8(BG) � π7(G) and let 1 : G → G be the identity map on G. For an

H-space X, let k : X→ X be the kth-power map. By [12], we have the following lemma.

Lemma 2.1. The adjoint of the connecting map G
αk
−→ Ω7

0G is homotopic to the Samelson product S7
∧ G

⟨kε,1⟩
−→ G.

□

The linearity of the Samelson product implies that ⟨kε, 1⟩ ≃ k⟨ε, 1⟩. Taking adjoints therefore implies the
following.

Corollary 2.2. The connecting map αk satisfies αk ≃ k ◦ α1. □

Let Y be an H-space with a homotopy inverse, and let k : Y → Y be the kth-power map. S. Theriault in [23]
proved the following lemma that is very important in the determining the number of homotopy types of
gauge groups.

Lemma 2.3. Let X be a space and Y be an H-space with a homotopy inverse. Suppose there is a map X
f
→ Y of order

m, where m is finite. Let Fk be the homotopy fiber of map k ◦ f . If (m, k) = (m, k′) then Fk and Fk′ are homotopy
equivalent when localized rationally or at any prime. □

In the following lemmas, we collect some information from [17] and [8] regarding the homotopy groups of
Sp(3), respectively. We use these homotopy groups throughout the article.

Lemma 2.4. The following hold:

π7(Sp(3)) � Z, π10(Sp(3)) � 0, π11(Sp(3)) � Z,
π14(Sp(3)) � Z2·7!, π17(Sp(3)) � 0, π18(Sp(3)) � Z3·7!,

π21(Sp(3)) � Z2 ⊕Z12, π22(Sp(3)) � Z 11!
5!
⊕Z2. □

Lemma 2.5. The following hold:
(i) localized at 3, we have
π24(Sp(3)) � Z3, π25(Sp(3)) � Z3, π28(Sp(3)) � Z3,
(ii) localized at 5, we have π25(Sp(3)) � 0 and π28(Sp(3)) � 0. □

The organization of this article is as follows. In Sections 3 and 4, we will give a lower bound and an upper
bound for the number of homotopy types of gauge groups of principal Sp(3)-bundles over S8, respectively.
In Section 5, we will study the homotopy types of gauge groups of principal Spin(8)-bundles over S8.

3. Lower bound on the number of homotopy types of Gk(Sp(3))

Recall that the symplectic quasi projective space Q2 has the cellular structure

Q2 = S3
∪v1 e7,

where v1 is the attaching map for the top cell of Q2 and represents a generator of π6(S3) � Z12. Our main
goal in this section is to study the group [Σ7Q2,Sp(3)]. Then we get a lower bound for the number of
homotopy types of Gk(Sp(3)) over S8.
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Since the dimension of Q2 is equal to 7, we have

[Q2,BSp(3)] � [Q2,BSp(∞)] � K̃Sp(Q2).

The cofibration sequence S3
→ Q2 → S7 induces the following exact sequence

→ K̃Sp(S7)→ K̃Sp(Q2)→ K̃Sp(S3)→ · · · .

Since K̃Sp(S4i−1) = 0 for all i ≥ 1, this implies that K̃Sp(Q2) = 0. Thus we get the following lemma.

Lemma 3.1. There is an isomorphism [Q2,BSp(3)] � 0. □

Consider the homotopy fibration sequence

Sp(3)
αk
−→ Ω7

0Sp(3) −→ BGk(Sp(3)) ev
−→ BSp(3). (3.1)

Apply the functor [Q2,−] to fibration (3.1) to obtain the exact sequence

[Q2,Sp(3)]
(αk)∗
−→ [Q2,Ω

7
0Sp(3)]→ [Q2,BGk(Sp(3))]→ [Q2,BSp(3)], (3.2)

where by Lemma 3.1 we have [Q2,BSp(3)] � 0. Note that

[Q2,Sp(3)] � [ΣQ2,BSp(3)] � K̃Sp(ΣQ2).

Also by adjunction we have [Q2,Ω7
0Sp(3)] � [Σ7Q2,Sp(3)]. Thus the exact sequence becomes

K̃Sp(ΣQ2)
(αk)∗
−→ [Σ7Q2,Sp(3)]→ [Q2,BGk(Sp(3))]→ 0. (3.3)

Note that localized at an odd prime, Q2 is a co-H-space at primes p ≥ 3, but it is known not to be homotopy
coassociative at p = 3, so [Q2,BGk(Sp(3))] is only a set. Therefore we get the following lemma.

Lemma 3.2. The set [Q2,BGk(Sp(3))] is equal to Coker(αk)∗. □

The author in [15] has proved the following lemma.

Lemma 3.3. Localized at an odd prime p, there is an isomorphism of sets

[Q2,BGk(Sp(3))] � Z(105,k). □

We write |H| for the cardinality of set H. In the following we prove the part (a) of Theorem 1.1 when
G = Sp(3).
Proof of part (a) of Theorem 1.1 for G = Sp(3)
Consider the homotopy cofibration sequence

S6 v1
−→ S3 i

−→ Q2
q
−→ S7 Σv1

−→ S4, (⋆)

where the map i is the inclusion of the bottom cell and the map q is the pinch map to the top cell. Now
apply the functor [−,BGk(Sp(3))] to cofibration (⋆) to obtain the exact sequence of pointed sets

[S4,BGk(Sp(3))]
(Σv1)∗
−→ [S7,BGk(Sp(3))]

q∗
−→ [Q2,BGk(Sp(3))] −→ [S3,BGk(Sp(3))].

First, we show that [S3,BGk(Sp(3))] is equal to zero. Apply π3 to homotopy fibration (3.1). By Lemma
2.4, we have π3(Ω7

0Sp(3)) � π10(Sp(3)) � 0. Also, we know that π3(BSp(3)) is zero, therefore we obtain
π3(BGk(Sp(3))) � 0. So we get the following exact sequence of pointed sets

[S4,BGk(Sp(3))]
(Σv1)∗
−→ [S7,BGk(Sp(3))]

q∗
−→ [Q2,BGk(Sp(3))] −→ 0.

Note that [S4,BGk(Sp(3))] and [S7,BGk(Sp(3))] are groups and the map (Σv1)∗ is a group homomorphism.
Therefore we get the following lemma.
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Lemma 3.4. There is a bijection between the set [Q2,BGk(Sp(3))] and the group Coker(Σv1)∗. □

Suppose that Gk(Sp(3)) is homotopy equivalent to Gk′ (Sp(3)). Consider the commutative diagram

[S4,BGk(Sp(3))] [S7,BGk(Sp(3))] [Q2,BGk(Sp(3))] 0

[S4,BGk′ (Sp(3))] [S7,BGk′ (Sp(3))] [Q2,BGk′ (Sp(3))] 0

(Σv1)∗

�

q∗

�

(Σv1)∗ q∗

where the top and bottom rows are exact sequences of pointed sets and the vertical isomorphisms are
induced by adjunction. In the top and bottom rows, by Lemma 3.4 we have the set [Q2,BGk(Sp(3))] bijects
with Coker(Σv1)∗ and the set [Q2,BGk′ (Sp(3))] bijects with Coker(Σv1)∗, respectively. Therefore there is a
bijection of sets

[Q2,BGk(Sp(3))] � [Q2,BGk′ (Sp(3))].

Thus we have |[Q2,BGk(Sp(3))]| = |[Q2,BGk′ (Sp(3))]|. Now by Lemma 3.3 we have that the set [Q2,BGk(Sp(3))]
is isomorphic toZ(105,k). Similarly, we have [Q2,BGk′ (Sp(3))] is isomorphic toZ(105,k′). Therefore the bijection
between [Q2,BGk(Sp(3))] and [Q2,BGk′ (Sp(3))] implies that (105, k) = (105, k′). □

4. Upper bound on the number of homotopy types of Gk(Sp(3))

In this section, localized at an odd prime p, we will study the order of Samelson product S7
∧ Sp(3) →

Sp(3). This helps us to obtain an upper bound for the number of homotopy types of Gk(Sp(3)). We denote
the free abelian group with a generator e byZ{e}. In the following, we obtain the p-local order of Samelson
product S7

∧ Sp(3)→ Sp(3), for p = 3, 5 and 7, respectively.
3-primary
In this part, all spaces and maps are to be localized at 3. We will use Toda notations α1(n) and α2(n) for the
nontrivial maps Sn+3

→ Sn and Sn+7
→ Sn, respectively. Consider the following cofibration sequence

(S7
∧Q3) ∨ S17 f2

−→ S7
∧ Sp(3)

f3
−→ (S21

∪α1(21) e25) ∨ S28. (4.1)

Note that this cofibration comes from including the 17-skeleton into S7
∧ Sp(3) and by cellular structure of

S7
∧ Sp(3) the 17-skeleton is homotopy equivalent to (S7

∧ Q3) ∨ S17. Now, apply [−,Sp(3)] to cofibration
(4.1), we get the following long exact sequence

f4∗
→ [(S21

∪α1(21) e25) ∨ S28,Sp(3)]
f3∗
−→ [S7

∧ Sp(3),Sp(3)]
f2∗
−→ [(S7

∧Q3) ∨ S17,Sp(3)]
f1∗
→ .(⋆⋆)

First, we calculate the groups [(S7
∧Q3) ∨ S17,Sp(3)] and [(S21

∪α1(21) e25) ∨ S28,Sp(3)].

Lemma 4.1. The order of the group [(S7
∧Q3) ∨ S17,Sp(3)] is at most 27.

Proof. Note that [(S7
∧ Q3) ∨ S17,Sp(3)] � [(S7

∧ Q3),Sp(3)] ⊕ π17(Sp(3)), where by Lemma 2.4 we have
π17(Sp(3)) is zero. By [2], there is a cofibration sequence

S3 j
−→ Q3

q
−→ S7

∨ S11 (α1(4),α2(4))
−→ S4, (4.2)

where the map j is the inclusion of the bottom cell. Now by applying [S7
∧ −,Sp(3)] to cofibration (4.2), we

get the exact sequence

π11(Sp(3))
α1(11)∗⊕α2(11)∗
−→ π14(Sp(3)) ⊕ π18(Sp(3))

q∗
−→ [S7

∧Q3,Sp(3)]
j∗
−→ π10(Sp(3)),

thus by Lemma 2.4 we obtain the exact sequence

Z
α1(11)∗⊕α2(11)∗
−→ Z9 ⊕Z27

q∗
−→ [S7

∧Q3,Sp(3)]→ 0.

Therefore we can conclude that the image of q∗ has order at most 27, implying that the order of [S7
∧Q3,Sp(3)]

is at most 27.
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Lemma 4.2. The group [(S21
∪α1(21) e25) ∨ S28,Sp(3)] is annihilated by multiplication by 3.

Proof. We have [(S21
∪α1(21) e25)∨S28,Sp(3)] � [(S21

∪α1(21) e25),Sp(3)]⊕π28(Sp(3)), where by Lemma 2.5 we have
π28(Sp(3)) is isomorphic toZ3. Put A = S21

∪α1(21) e25. By applying [−,Sp(3)] to the cofibration S21
→ A→ S25,

we get the exact sequence

π22(Sp(3))
α1(22)∗
−→ π25(Sp(3))→ [A,Sp(3)]→ π21(Sp(3))

α1(21)∗
−→ π24(Sp(3)).

Therefore by Lemmas 2.4 and 2.5 we get the exact sequence

Z27
α1(22)∗
−→ Z3 → [A,Sp(3)]→ Z3

α1(21)∗
−→ Z3.

We can by short exact sequences of homotopy groups of spheres and Symplectic groups show that the
composition ε3

21 ◦ α1(21) is nontrivial. By applying π21 to the homotopy fibration Sp(2)→ Sp(3)
q
−→ S11, we

get the following short exact sequence
0→ Z3

q∗
−→ Z3 → 0.

Therefore we obtain the composition q ◦ ε3
21 is nontrivial. On the other hand, by stable homotopy groups

of spheres we have that the composition S24 α1(21)
−→ S21 β1

−→ S11 is nontrivial, where π24(S21) � Z3{α1(21)}
and π21(S11) � Z3{β1}. Therefore as β1 ◦ α1(21) is nontrivial stably, it must be the case that the composition
ε3

21 ◦ α1(21) is nontrivial. Hence, as α1(21) has order 3, so do ε3
21 ◦ α1(21). Thus ε3

21 ◦ α1(21) generate
π24(Sp(3)) � Z3{ε3

24}. Since the map α1(21)∗ sends ε3
21 to ε3

24, so α1(21)∗ is injective. Now, ignoring the image
of α1(22)∗, this leaves an exact sequence

Z3 → [A,Sp(3)]→ 0,

implying that [A,Sp(3)] has order at most 3. Asπ28(Sp(3)) is isomorphic toZ3, this implies that [A∨S28,Sp(3)]
is annihilated by multiplication by 3.

Thus we rewrite (⋆⋆) as the following exact sequence

H −→ [S7
∧ Sp(3),Sp(3)] −→ G, (⋆ ⋆ ⋆)

where H is annilhilated by multiplication by 3 and G has order at most 27. Therefore we obtain the following
proposition.

Proposition 4.3. The 3-local order of Samelson product S7
∧ Sp(3)→ Sp(3) is at most 81.

Proof. The proof follows immediately from exactness in (⋆ ⋆ ⋆).

Here, we study the 5-local order of Samelson product S7
∧ Sp(3)→ Sp(3).

5-primary
In this part, all spaces and maps are to be localized at 5. M. Mimura, G. Nishida and H. Toda in [16] showed
that there is a following 5-local homotopy equivalence

Sp(3) ≃ B2
1 × S7,

where B2
1 is an S3-bundle over S11. Therefore we have the following isomorphism

[Σ7Sp(3),Sp(3)] � [Σ7(B2
1 × S7),Sp(3)]

� [S14
∨ Σ7B2

1 ∨ Σ
14B2

1,Sp(3)]

� π14(Sp(3)) ⊕ [Σ7B2
1,Sp(3)] ⊕ [Σ14B2

1,Sp(3)].

Thus, to calculate the 5-local order of the Samelson product S7
∧ Sp(3) → Sp(3), we need the following

lemma.
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Lemma 4.4. For k = 7 and 14, the group [ΣkB2
1,Sp(3)] is equal to zero.

Proof. According to the [9], it is known that B2
1 has a cell decomposition

B2
1 ≃ S3

∪ e11
∪ e14.

By method in [3], we have that the top cell splits off after a single suspension. This then gives us Σ7B2
1 ≃

(S10
∪ e18) ∨ S21 and Σ14B2

1 ≃ (S17
∪ e25) ∨ S28. Put A1 = S10

∪ e18 and A2 = S17
∪ e25, thus we get

[Σ7B2
1,Sp(3)] � [A1 ∨ S21,Sp(3)] � [A1,Sp(3)] ⊕ π21(Sp(3)),

[Σ14B2
1,Sp(3)] � [A2 ∨ S28,Sp(3)] � [A2,Sp(3)] ⊕ π28(Sp(3)).

Now apply [−,Sp(3)] to the cofibrations

S10
→ A1 → S18 α2(11)

−→ S11,

S17
→ A2 → S25 α2(18)

−→ S18,

respectively. So we get the following exact sequences

π11(Sp(3))
α2(11)∗
−→ π18(Sp(3))→ [A1,Sp(3)]→ π10(Sp(3)),

π18(Sp(3))
α2(18)∗
−→ π25(Sp(3))→ [A2,Sp(3)]→ π17(Sp(3)),

respectively. By Lemmas 2.4 and 2.5, we get the following exact sequence

Z
α2(11)∗
−→ Z5 → [A1,Sp(3)]→ 0.

We know that there is a 5-local homotopy equivalence Sp(3) ≃ B2
1 × S7, Toda in [21] showed that the map

S11
→ B2

1 representing the generator of π11(B2
1) is a 5-local homotopy equivalence in dimensions ≤ 18.

Therefore localized at 5, as π18(S7) � 0, we have π18(Sp(3)) � π18(B2
1), so the map S18 α2(11)

−→ S11
→ Sp(3)

is nontrivial because α2(11) is nontrivial. Now the composition ε3
11 ◦ α2(11) is nontrivial and generate

π18(Sp(3)) � Z5{ε3
18}. Since α2(11)∗ sends ε3

11 to ε3
18, so α2(11)∗ is surjective. Therefore we can conclude

that the group [A1,Sp(3)] is isomorphic to zero. Also, since π25(Sp(3)) and π17(Sp(3)) are isomorphic to
zero, we get the group [A2,Sp(3)] is zero. Also, we have π21(Sp(3)) � π28(Sp(3)) � 0. Thus we get
[Σ7B2

1,Sp(3)] � [Σ14B2
1,Sp(3)] � 0.

On the other hand, by Lemma 2.4 we have π14(Sp(3)) � Z5. Therefore we get the following proposition.

Proposition 4.5. The 5-local order of Samelson product S7
∧ Sp(3)→ Sp(3) is 5. □

7-primary
According to the [10], we have the following proposition.

Proposition 4.6. Localized at 7, if (7, k) = (7, k′) then Gk(Sp(3)) ≃ Gk′ (Sp(3)). □

Therefore according to the Propositions 4.3, 4.5 and 4.6, we get the following theorem.

Theorem 4.7. Localized at an odd prime p, the order of Samelson product S7
∧Sp(3)→ Sp(3) is at most 2835 = 34

·5·7.
□

Note that for primes p > 7, by [16] there is a homotopy equivalence

Sp(3) ≃ S3
× S7

× S11.
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Therefore we get the following isomorphism

[Σ7Sp(3),Sp(3)] � [Σ7(S3
× (S7

× S11)),Sp(3)]
� π10(Sp(3)) ⊕ π14(Sp(3)) ⊕ π17(Sp(3)) ⊕ π18(Sp(3))
⊕ π21(Sp(3)) ⊕ π25(Sp(3)) ⊕ π28(Sp(3)).

By [8] and Lemma 2.4 the homotopy groups in the displayed equation are all zero. Therefore we conclude
the order of Samelson product S7

∧ Sp(3) → Sp(3) is trivial. According to the exact sequence (⋆⋆), for
primes p > 7, we can obtain this result, also.
Proof of part (b) of Theorem 1.1 for G=Sp(3)
Localized at an odd prime p, by Theorem 4.7 and Lemma 2.3 we can conclude that if (2835, k) = (2835, k′)
then Gk(Sp(3)) ≃ Gk′ (Sp(3)). □

Proof of Theorem 1.1 for G=Spin(7)
All of the material for the Spin(7) case follows immediately from Friedlander’s odd primary homotopy
equivalence BSpin(7) ≃ BSp(3). Therefore the proof of Theorem 1.1 for the Spin(7) case immediately follows
from the Sp(3) case. □

5. Spin(8)-gauge group

In this section, we study the homotopy types of Spin(8)-gauge group over S8 by giving a lower bound
and an upper bound for the number of homotopy types ofGk(Spin(8)). The following lemma is an important
role in determining the number of homotopy types of Gk(Spin(8)) that was proved in [18].

Lemma 5.1. Let F→ X → Y be a homotopy fibration, where F is an H-space, and let λ : ΩY→ F be the homotopy
fibration connecting map. Let λ′ : A→ ΩY and λ′′ : B→ ΩY be maps such that
(i) the composition µ ◦ (λ′ ×λ′′) : A×B→ ΩY is a homotopy equivalence, where µ is the loop multiplication onΩY,
(ii) the composition λ ◦ λ′′ : B→ F is null-homotopic.
Then the orders of maps λ and λ ◦ λ′ are equal. □

We have the following lemma.

Lemma 5.2. Localized at an odd prime p, the map Spin(8)→ Ω7
0Spin(8) has order at most 2835 = 34

· 5 · 7.

Proof. Consider the homotopy fibration sequence

Spin(8)
α′′k
−→ Ω7

0Spin(8) −→ BGk(Spin(8)) ev
−→ B(Spin(8)), (5.1)

where α′′k is the fibration connecting map. Localized at prime p, there is a fibration

Spin(7) λ′
−→ Spin(8)→ S7,

that is split. Thus there is a homotopy equivalence

Spin(8) ≃ Spin(7) × S7.

Note that the following composition

Spin(7) × S7 λ
′
×λ′′
−→ Spin(8) × Spin(8)

µ
−→ Spin(8),

is a homotopy equivalence, where λ′′ is a homotopy inverse for the map Spin(8)→ S7. On the other hand,
π14(Spin(8)) � π14(Spin(7)) × π14(S7). By [13] we know that π14(Spin(7)) � Z2520 ⊕Z8 ⊕Z2. Also by [22], we
have π14(S7) � Z120. Therefore π14(Spin(8)) � Z2520 ⊕Z8 ⊕Z2 ⊕Z120.
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First, we consider the 7-local order of map Spin(8) → Ω7
0Spin(8). Since α′′7 ≃ 7 ◦ α′′1, the composition

S7 λ
′′

→ Spin(8)
α′′7
→ Ω7

0(Spin(8)) is null-homotopic. Therefore by Lemma 5.1 we obtain the orders of maps α′′7
and α′′7 ◦ λ′ are equal. Thus we will need to calculate the order of map α′′7 ◦ λ′. Consider the following
diagram

Spin(7) Ω7
0Spin(7)

Spin(8) Ω7
0Spin(8).

α′7

λ′ Ω7λ′

α′′7

By Theorem 4.7, we have that α′7 ≃ 7 ◦ α′1 is null-homotopic. Therefore we can conclude the map α′′7 ◦ λ′

is null-homotopic, also. Thus the 7-local order of map Spin(8) → Ω7
0Spin(8) is at most 7. Similarly, we can

obtain the 5-local and 3-local orders of the map Spin(8)→ Ω7
0Spin(8) are at most 5 and 81, respectively.

Note that any map Q2 → BSpin(8) lifts through BSpin(7)→ BSpin(8) induces an epimorphism [Q2,BSpin(7)]→
[Q2,BSpin(8)]. Also, note that the induced epimorphism on homotopy sets comes from the fact that Q2 is 7-
dimensional while BSpin(7)→ BSpin(8) induces an isomorphism on πm for 1 ≤ m ≤ 6 and an epimorphism
on π7. We recall that [Q2,BSpin(7)] � [Q2,BSp(3)] � 0, so we get the following lemma.

Lemma 5.3. There is an isomorphism [Q2,BSpin(8)] � 0. □

Consider the homotopy cofibration sequence

S9 1
−→ Q2 → Sp(2) π′

−→ S10, (∗)

where the maps 1 andπ′ are the attaching map for the top cell and the pinch map to the top cell, respectively.
Applying the functor [−,BGk(Spin(8))] to cofibration (∗), there is an exact sequence of pointed sets

[S10,BGk(Spin(8))]
(π′)∗
−→ [Sp(2),BGk(Spin(8))]→ [Q2,BGk(Spin(8))]

1∗

−→ [S9,BGk(Spin(8))].

Localized at an odd prime p, apply π9 to homotopy fibration (5.1). By [13] and [22], we know that the
groups π8(Spin(7)), π16(Spin(7)) and π8(S7), π16(S7) are zero, respectively. Thus we have

π9(Ω7
0Spin(8)) � π16(Spin(8)) � π16(Spin(7)) × π16(S7) � 0,

π9(BSpin(8)) � π8(Spin(8)) � π8(Spin(7)) × π8(S7) � 0.

Therefore we obtain π9(BGk(Spin(8))) is zero. Therefore we get the following lemma.

Lemma 5.4. Localized at an odd prime p, there is a bijection between the set [Q2,BGk(Spin(8)] and the group
Coker(π′)∗. □

We have the following lemma.

Lemma 5.5. Localized at an odd prime p, ifGk(Spin(8) is homotopy equivalent toGk′ (Spin(8) then we have (105, k) =
(105, k′).

Proof. Apply the functor [Q2,−] to fibration (5.1) to obtain the following exact sequence

[Q2,Spin(8)]
(α′′k)∗
−→ [Q2,Ω

7
0Spin(8)]→ [Q2,BGk(Spin(8))]→ [Q2,BSpin(8)], (5.2)

where by Lemma 5.3, we have [Q2,BSpin(8)] � 0. Thus the set [Q2,BGk(Spin(8))] bijects with Coker(α′′k)∗.
By adjunction, [Q2,Ω7

0Spin(8)] � [Σ7Q2,Spin(8)]. On the other hand, we have the isomorphism

[Σ7Q2,Spin(8)] � [Σ7Q2,Spin(7) × S7] � [Σ7Q2,Spin(7)] ⊕ [Σ7Q2,S7].
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Therefore we get the decomposition (α′′k)∗ = (α′k)∗ ⊕ (βk)∗, where

(α′k)∗ : [Q2,Spin(7)] −→ [Σ7Q2,Spin(7)], (βk)∗ : [Q2,S7] −→ [Σ7Q2,S7].

Therefore we can conclude Coker(α′′k)∗ � Coker(α′k)∗ ⊕ Coker(βk)∗. By Lemmas 3.2 and 3.3, we have
Coker(α′k)∗ � Z(105,k). We need to calculate the Coker(βk)∗, for this, we calculate the cohomotopy group
[Σ7Q2,S7]. First, localized at 3, by using the following method, we show that [Σ7Q2,S7] � Z9. Consider the
homotopy cofibration diagram that rows are cofibrations

S13 S10 Σ7Q2 S14

S13 S10 Σ6HP2 S14

Σ7ν′

2 ||

ν10

||
(5.3)

where by relation (5.5) in [22] we have 2ν10 = Σ
7ν′. By [22], we know that the groups π11(S7), π13(S7) are

zero and π10(S7) � Z3. By applying [−,S7] to diagram (5.3), we get the following diagram that rows are
exact sequences

0 π14(S7) � Z3 [Σ7Q2,S7] π10(S7) � Z3 0

0 π14(S7) � Z3 [Σ6HP2,S7] π10(S7) � Z3 0.

� �

The Five Lemma therefore implies that there is an isomorphism [Σ7Q2,S7] � [Σ6HP2,S7]. Now, by Theorem
1.2 in [11] we have that the cohomotopy group [Σ6HP2,S7] is isomorphic toZ9. Therefore the cohomotopy
group [Σ7Q2,S7] is also isomorphic to Z9. Also, it is obvious that localized at 5, the group [Σ7Q2,S7] is
isomorphic to π14(S7) � Z5{α2(7)}. Therefore, localized at an odd prime p, we obtain the group [Σ7Q2,S7]
is isomorphic to Z9 ⊕Z5. Since the map (βk)∗ : Z → Z9 ⊕Z5 is surjective, so we can conclude Coker(βk)∗ is
isomorphic to zero. Therefore we get Coker(α′′k)∗ is isomorphic to Z(105,k).

Now suppose that Gk(Spin(8)) ≃ Gk′ (Spin(8)). By Lemma 5.4, localized at an odd prime p, the set
[Q2,BGk(Spin(8))] bijects with Coker(π′)∗. Similar to the discussion in the proof of part (a) of Theorem
1.1 for G = Sp(3), localized at an odd prime p, there is an isomorphism of sets [Q2,BGk(Spin(8))] �
[Q2,BGk′ (Spin(8))]. We have that the set [Q2,BGk(Spin(8))] is isomorphic toZ(105,k). Similarly, [Q2,BGk′ (Spin(8))]
is isomorphic to Z(105,k′). Thus the bijection between [Q2,BGk(Spin(8))] and [Q2,BGk′ (Spin(8))] implies that
(105, k) = (105, k′).

Here, we prove Theorem 1.1 for G = Spin(8).
Proof of Theorem 1.1 for G = Spin(8)
By Lemma 5.5, we have part (a). For part (b), by lemmas 2.3 and 5.2 we can conclude that if (2835, k) is equal
to (2835, k′) then Gk(Spin(8)) ≃ Gk′ (Spin(8)). □
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