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1. Introduction, Definitions and Preliminaries

Following the usual notations and conventions, the complete elliptic integrals K(k) and E(k) of the
first and the second kind, respectively,

K(k) =
∫ π

2

0

dθ
√

1 − k2 sin2 θ

=

∫ 1

0

dt√
(1 − t2)(1 − k2t2)

(
k2 < 1

)
(1)

and

E(k) =
∫ π

2

0

√
1 − k2 sin2 θ dθ

=

∫ 1

0

√
1 − k2t2

1 − t2 dt
(
k2 < 1

)
, (2)

where k denotes the modulus and κ :=
√

1 − k2 is referred to as the complementary modulus of K(k) and E(k)
(see, for details, [1] and [4]).

In the theory of hypergeometric functions, the celebrated Gauss hypergeometric function 2F1 (see
[9]) in honor of the German mathematician (Johann) Carl Friedrich Gauss (1777–1855) happens to be the
special case p − 1 = q = 1 of the generalized hypergeometric function pFq with p numerator parameters
α j ∈ C ( j = 1, · · · , p) and q denominator parameters β j ∈ C \ Z−0 ( j = 1, · · · , q). Indeed, in terms of the
general Pochhammer symbol or the shifted factorial (λ)ν, since

(1)n = n!
(
n ∈N0

)
,

which is defined (for λ, ν ∈ C), in terms of the familiar (Euler’s) Gamma function, by

(λ)ν :=
Γ(λ + ν)
Γ(λ)

=


1

(
ν = 0; λ ∈ C \ {0}

)
λ(λ + 1) · · · (λ + n − 1)

(
ν = n ∈N; λ ∈ C

)
,

(3)

it being understood conventionally that (0)0 := 1 and assumed tacitly that the Γ-quotient exists, we have (see,
for details, [14] and [16])

pFq

 α1, · · · , αp;

β1, · · · , βq;
z

 :=
∞∑

n=0

(α1)n · · · (αp)n

(β1)n · · · (βq)n

zn

n!

=: pFq

(
α1, · · · , αp; β1, · · · , βq; z

)
, (4)

in which the infinite series
(i) converges absolutely for |z| < ∞ if p ≦ q,
(ii) converges absolutely for |z| < 1 if p = q + 1, and
(iii) diverges for all z (z , 0) if p > q + 1.
Furthermore, if we set

ω :=
q∑

j=1

β j −

p∑
j=1

α j,
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then it is known that the generalized hypergeometric pFq series in (1) (with p = q + 1) is
I. absolutely convergent for |z| = 1 ifℜ(ω) > 0,
II. conditionally convergent for |z| = 1 (z , 1) if −1 <ℜ(ω) ≦ 0, and
III. divergent for |z| = 1 ifℜ(ω) ≦ −1.

In particular, when p − 1 = q = 2, the function 3F2 is known as the Clausen hypergeometric function
(see [5]) in honor of the Danish mathematician and astronomer, Thomas Clausen (1801–1885).

In terms of the Gauss hypergeometric function 2F1, the complete elliptic integrals K(k) and E(k) can be
expressed as follows:

K(k) =
π
2 2F1

(1
2
,

1
2

; 1; k2
)

(5)

and

E(k) =
π
2 2F1

(1
2
,−

1
2

; 1; k2
)
, (6)

respectively. Equivalently, we have the following explicit representations:

K(k) =
π
2

∞∑
n=0

(
(2n)!

22n (n!)2

)2

k2n =
π
2

∞∑
n=0

[P2n(0)]2 k2n (7)

and

E(k) =
π
2

∞∑
n=0

(
(2n)!

22n (n!)2

)2 k2n

1 − 2n
, (8)

respectively, Pn(x) being the Legendre polynomial of degree n in x, which is defined by (see, for details,
[18])

Pn(x) := 2F1

(
−n,n + 1; 1;

1 − x
2

)
= (−1)n Pn(−x). (9)

In the year 1983, by evaluating the first term in a certain Born series in two different ways and comparing
the resulting expression, Barton [2] found the following integral formula:

∫ 1

0
kµ K(κ) dk =

π
4

Γ
(

1
2 µ +

1
2

)
Γ
(

1
2 µ + 1

) 
2 (

µ > −1; κ :=
√

1 − k2
)
. (10)

Subsequently, while addressing Barton’s problem of finding a direct proof of his formula (10), Bushell [3]
not only proved Barton’s formula (10) directly, but also derived a number of additional results analogous
to (10), thereby extending several known integral formulas which were recorded by, for example, Byrd and
Friedman [4, p. 274] (see also Müller [12] and Kaplan [11]).

The following interesting generalization of Barton’s integral formula (10) was given by Bushell [3, p. 2,
Eq. (2.2)]:
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∫ 1

0
kµ H(κ, γ) dk =

π
4

Γ
(

1
2 µ +

1
2

)
Γ
(
γ + 1

2 µ +
1
2

)
Γ
(

1
2 µ + 1

)
Γ
(
γ + 1

2 µ + 1
) (11)

(
µ > −1; κ :=

√

1 − k2
)
,

where the function H(k, γ) defined by

H(k, γ) :=
∫ 1

0

(
1 − k2 t2

)γ− 1
2

√

1 − t2
dt

=

∫ π
2

0

(
1 − k2 sin2 θ

)γ− 1
2 dθ

(
γ ≧ 0; k2 < 1

)
(12)

provides a unification of both K(k) and E(k), since

K(k) = H(k, 0) and E(k) = H(k, 1)
(
k2 < 1

)
.

Incidentally, under a slightly modified form, Bushell’s elliptic-type integral H(k, γ) was studied presumably
independently by Das [7, p. 77, Eq. (7.1)]:

Hν(k) :=
∫ π

2

0

(
1 − k2 sin2 ϕ

)ν
dϕ

(
ν ∈ C; k2 < 1

)
, (13)

so that, obviously,

H
−

1
2
= K(k) and H 1

2
= E(k)

(
k2 < 1

)
,

the restriction on the parameter γ in Bushell’s definition (12) being unnecessary. Henceforth, therefore, we
assume that γ ∈ C

It is easily observed from Eq. (12) that [3, p. 2, Eq. (2.4)]

H(k, γ) =
π
2 2F1

(1
2
,

1
2
− γ; 1; k2

) (
|k| < 1

)
(14)

or, equivalently, that

H(k, γ) =
π
2

(1 − k2)γ 2F1

(1
2
, γ +

1
2

; 1; k2
) (

|k| < 1
)
, (15)

where we have made use of Euler’s transformation [8, p. 64]:

2F1(a, b; c; z) = (1 − z)c−a−b
2F1(c − a, c − b; c; z) (16)(

| arg(1 − z)| ≦ π − ϵ (0 < ϵ < π); c , 0,−1,−2, · · ·
)
.

Clearly, for the elliptic integral E(k) of the second kind, we find from Eq. (15) that
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H(k,−1) =
E(k)
κ2

(
κ :=

√

1 − k2
)
.

Many other unified and generalized studies of K(k) and E(k) can be found in the work by Srivastava
and Siddiqi [17] in which the following unification (and generalization) of various known families of
elliptic-type integrals was systematically investigated:

Λ
(α,β)
λ,µ (ρ; k) :=

∫ π

0
cos2α−1

(
θ
2

)
sin2β−1

(
θ
2

) [
1 − ρ sin2

(
θ
2

)]−λ
(
1 − k2 cosθ

)µ+ 1
2

dθ (17)

(
0 ≦ k < 1; min{ℜ(α),ℜ(β)} > 0; λ, µ ∈ C; |ρ| < 1

)
.

Indeed, as demonstrated by Srivastava and Siddiqi [17, p. 306, Eq. (1.42)], their elliptic-type integral
Λ

(α,β)
λ,µ (ρ; k) can also be specialized to yield the complete elliptic integral Π

(
α2, k

)
of the third kind, which is

defined by (see, for example, [4, p. 10, Entry 100.8]; see also [10, pp. xxx and 905])

Π
(
χ2, k

)
:=

∫ π
2

0

dφ(
1 − χ2 sin2 φ

) √
1 − k2 sin2 φ

(18)

(
k2 < 1; −∞ < χ2 < ∞ (χ2 , 1)

)
.

We now recall the following general result due to Srivastava [15], which provides a unification and
generalization of a number of integrals involving elliptic integrals considered by, for example, Barton [2],
Bushell [3], Cvijović and Klinowski [6], and others.

Theorem 1. (see Srivastava [15, p. 2307]) If

Φ(z) :=
∞∑

n=0

an zn
(
|z| < 1

)
(19)

and

∞∑
n=1

∣∣∣∣∣ an

n1+ 1
2 σ

∣∣∣∣∣ < ∞ (
ℜ(σ) > −2

)
, (20)

then the following integral formula holds true:

∫ 1

0
kρ κσ Φ(zk) H(ζκ, γ) dk

=
π
4
Γ
(1

2
σ + 1

) ∞∑
n=0

Γ
(

1
2 (ρ + n + 1)

)
Γ
(

1
2 (ρ + σ + n + 3)

)
· 3F2


1
2 − γ,

1
2σ + 1, 1

2 ;

1
2 (ρ + σ + n + 3), 1;

ζ2

 (
κ :=

√

1 − k2
)
, (21)

provided further that ℜ(ρ) > −1 and(
|ζ| < 1 (or |ζ| = 1 and ℜ(ρ + 2γ) > −1)

)
.
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This paper is motivated essentially by the above-mentioned developments involving the elliptic integrals
K(k), E(k) and Π(χ2, k) of the first, the second and the third kind, respectively. Our main objective here
is to make use of the Gamma function as well as the hypergeometric and the generalized hypergeometric
functions in order to investigate and develop several definite integrals involving an interesting an interesting
unification of the elliptic integrals K(k) and E(k) of the first and the second kind. We also present the
numerical approximations of these definite integrals and the corresponding hypergeometric functions. The
results, which we have derived in this paper, are believed to be new and extend and unify those that are
available in the scientific literature.

2. A Set of Integral Formulas

We begin by remarking that Srivastava’s general result (21), which has been reproduced here as Theorem
1, can indeed be appropriately specialized to yield numerous integral formulas for the elliptic integrals K(k)
and E(k) of the first and the second kind. Here, in this section, first prove the following theorem asserting
a general definite integral involving Bushell’s function H(k, γ) defined by (12), which does indeed unify
and generalize the elliptic integrals K(k) and E(k) of the first and the second kind.

Theorem 2. Let the function H(k, γ) be defined by (12). Suppose also that p and q are integers such that p ≧ 0
and q ≧ 1. Then the following integral formula holds true for γ ∈ C:

∫ 1

0

k2p+1

√

1 − k2
H
(
z

1
2 kq, γ

)
dk =

π
3
2

4
Γ(p + 1)

Γ
(
p + 3

2

)

· q+2Fq+1


1
2
,

1
2
− γ,

p + 1
q
,

p + 2
q
, · · · ,

p + q
q

;

1,
p + 3

2

q
,

p + 5
2

q
, · · · ,

p + q + 1
2

q
;

z


(
|z| < 1

)
, (22)

provided that each member of the assertion (22) exists.

Proof. For convenience, we denote the left-hand side of (22) by Ω(γ). Then, upon applying the definition
(12) of H(k, γ), if we invert the order of summation and integration, we find that

Ω(γ) :=
∫ 1

0

k2p+1

√

1 − k2
H
(
z

1
2 kq, γ

)
dk

=
π
2

∞∑
n=0

(
1
2

)
n

(
1
2 − γ

)
n

(1)n

zn

n!

∫ 1

0

k2p+2qn+1

√

1 − k2
dk, (23)

wherein the inversion of the order of summation and integration is justifiable under the hypotheses of
Theorem 2.

In the integral in (23), we now set

k = sinθ and dk = cosθ dθ
(
0 ≦ θ ≦

π
2

)
and make use of the following familiar integral formula:
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∫ π
2

0
sinα θ cosβ θ dθ =

Γ
(
α + 1

2

)
Γ

(
β + 1

2

)
2 Γ

(
α + β + 2

2

) (24)

(
min{ℜ(α),ℜ(β)} > −1

)
.

We thus find from (23) that

Ω(γ) =
π
2

∞∑
n=0

(1
2

)
n

(1
2
− γ

)
n

(1)n

zn

n!

Γ(p + qn + 1) Γ
(1

2

)
2 Γ

(
p + qn +

3
2

)

=
π

3
2

4

∞∑
n=0

(1
2

)
n

(1
2
− γ

)
n

(1)n

zn

n!
(p + 1)qn Γ(p + 1)(
p +

3
2

)
n
Γ
(
p +

3
2

) , (25)

which, in view of the Gauss-Legendre multiplication formula for the Pochhammer symbol defined by (3)
given by

(λ)mn = mmn
m∏

j=1

(
λ + j − 1

m

)
n

(
m ∈N; n ∈N0

)
, (26)

leads us to the integral formula (22) just as asserted by Theorem 1.

Corollary 1 and Corollary 2 below would follow readily from Theorem 2 when we set γ = 0 and γ = 1,
respectively.

Corollary 1. Let p and q be integers such that p ≧ 0 and q ≧ 1. Then the following integral formula holds true for
the elliptic integral K(k) of the first kind:

∫ 1

0

k2p+1

√

1 − k2
K
(
z

1
2 kq

)
dk =

π
3
2

4
Γ(p + 1)

Γ
(
p + 3

2

)

· q+2Fq+1


1
2
,

1
2
,

p + 1
q
,

p + 2
q
, · · · ,

p + q
q

;

1,
p + 3

2

q
,

p + 5
2

q
, · · · ,

p + q + 1
2

q
;

z


(
|z| < 1

)
, (27)

provided that each member of the assertion (27) exists.

Corollary 2. Let p and q be integers such that p ≧ 0 and q ≧ 1. Then the following integral formula holds true for
the elliptic integral E(k) of the second kind:
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∫ 1

0

k2p+1

√

1 − k2
E
(
z

1
2 kq

)
dk =

π
3
2

4
Γ(p + 1)

Γ
(
p + 3

2

)

· q+2Fq+1


1
2
,−

1
2
,

p + 1
q
,

p + 2
q
, · · · ,

p + q
q

;

1,
p + 3

2

q
,

p + 5
2

q
, · · · ,

p + q + 1
2

q
;

z


(
|z| < 1

)
, (28)

provided that each member of the assertion (28) exists.

In their further special case when p = 0, Corollary 1 and Corollary 2 reduce to the following relatively
simpler results.

Corollary 3. Let q ≧ 1 be and integer. Then the following integral formula holds true for the elliptic integral K(k)
of the first kind:

∫ 1

0

k
√

1 − k2
K
(
z

1
2 kq

)
dk

=
π
2 q+1Fq


1
2
,

1
2
,

1
q
,

2
q
, · · · ,

q − 1
q

;

3
2q
,

5
2q
, · · · ,

2q + 1
2q

;

z


(
|z| < 1

)
, (29)

provided that each member of the assertion (29) exists.

Corollary 4. Let q ≧ 1 be an integer. Then the following integral formula holds true for the elliptic integral E(k)
of the second kind:

∫ 1

0

k
√

1 − k2
E
(
z

1
2 kq

)
dk

=
π
2 q+1Fq


1
2
,−

1
2
,

1
q
,

2
q
, · · · ,

q − 1
q

;

3
2q
,

5
2q
, · · · ,

2q + 1
2q

;

z


(
|z| < 1

)
, (30)

provided that each member of the assertion (30) exists.

By assigning various special values to the integer parameter q ≧ 1 in Corollary 3 and Corollary 4, we
can deduce a number of integral formulas involving the elliptic integrals K(k) and E(k), respectively.
For example, if we choose to set q = 6, 7, 8, 9, 10, we obtain the following immediate consequences of the
assertion (30) of Corollary 4:

∫ 1

0

k
√

1 − k2
E
(
z

1
2 k6

)
dk

=
π
2 7F6


1
2
,−

1
2
,

1
6
,

1
3
,

1
2
,

2
3
,

5
6

;

1
4
,

5
12
,

7
12
,

3
4
,

11
12
,

13
12

;

z


(
|z| < 1

)
, (31)
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∫ 1

0

k
√

1 − k2
E
(
z

1
2 k7

)
dk

=
π
2 7F6


−

1
2
,

1
7
,

2
7
,

3
7
,

4
7
,

5
7
,

6
7

;

3
14
,

5
14
,

9
14
,

11
14
,

13
14
,

15
14

;

z


(
|z| < 1

)
, (32)

∫ 1

0

k
√

1 − k2
E
(
z

1
2 k8

)
dk

=
π
2 9F8


1
2
,−

1
2
,

1
8
,

1
4
,

3
8
,

1
2
,

5
8
,

3
4
,

7
8

;

3
16
,

5
16
,

7
16
,

9
16
,

11
16
,

13
16
,

15
16
,

17
16

;

z


(
|z| < 1

)
, (33)

∫ 1

0

k
√

1 − k2
E
(
z

1
2 k9

)
dk

=
π
2 9F8


−

1
2
,

1
9
,

2
9
,

1
3
,

4
9
,

5
9
,

2
3
,

7
9
,

8
9

;

1
6
,

5
18
,

7
18
,

11
18
,

13
18
,

5
6
,

17
18
,

19
18

;

z


(
|z| < 1

)
(34)

and

∫ 1

0

k
√

1 − k2
E
(
z

1
2 k10

)
dk

=
π
2 11F10


1
2
,−

1
2
,

1
10
,

1
5
,

3
10
,

2
5
,

1
2
,

3
5
,

7
10
,

4
5
,

9
10

;

3
20
,

1
4
,

7
20
,

9
20
,

11
20
,

13
20
,

3
4
,

17
20
,

19
20
,

21
20

;

z


(
|z| < 1

)
, (35)

Analogous integral formulas involving the elliptic integral K(k) of the first kind can be deduced by
similarly specializing the integer parameter q ≧ 1 in Corollary 4. The details involved are being omitted
here.

3. Numerical Approximations of the Definite Integrals and Hypergeometric Functions

The generalized hypergeometric series, which occur on the right-hand sides of the integral formulas
(31) to (35), are seen to satisfy the ω-condition of (4) for their convergence when the argument z = 1. In this
section, we present numerical approximations of the case z = 1 of the definite integrals (31) to (35) and the
corresponding hypergeometric functions. We choose to state our results as follows:
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∫ 1

0

k
√

1 − k2
E
(
k6

)
dk

=
π
2 7F6


1
2
,−

1
2
,

1
6
,

1
3
,

1
2
,

2
3
,

5
6

;

1
4
,

5
12
,

7
12
,

3
4
,

11
12
,

13
12

;

1


≈ 1.40291, (36)

∫ 1

0

k
√

1 − k2
E
(
k7

)
dk

=
π
2 7F6


−

1
2
,

1
7
,

2
7
,

3
7
,

4
7
,

5
7
,

6
7

;

3
14
,

5
14
,

9
14
,

11
14
,

13
14
,

15
14

;

1


≈ 1.41426, (37)

∫ 1

0

k
√

1 − k2
E
(
k8

)
dk

=
π
2 9F8


1
2
,−

1
2
,

1
8
,

1
4
,

3
8
,

1
2
,

5
8
,

3
4
,

7
8

;

3
16
,

5
16
,

7
16
,

9
16
,

11
16
,

13
16
,

15
16
,

17
16

;

1


≈ 1.42357, (38)

∫ 1

0

k
√

1 − k2
E
(
k9

)
dk

=
π
2 9F8


−

1
2
,

1
9
,

2
9
,

1
3
,

4
9
,

5
9
,

2
3
,

7
9
,

8
9

;

1
6
,

5
18
,

7
18
,

11
18
,

13
18
,

5
6
,

17
18
,

19
18

;

1


≈ 1.4314 (39)

and

∫ 1

0

k
√

1 − k2
E
(
k10

)
dk

=
π
2 11F10


1
2
,−

1
2
,

1
10
,

1
5
,

3
10
,

2
5
,

1
2
,

3
5
,

7
10
,

4
5
,

9
10

;

3
20
,

1
4
,

7
20
,

9
20
,

11
20
,

13
20
,

3
4
,

17
20
,

19
20
,

21
20

;

1


≈ 1.4381. (40)
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The corresponding numerical approximations for the case z = 1 of the integral formulas involving the
elliptic integral K(k) of the first kind can be deduced in a similar manner.

4. Concluding Remarks and Observations

In our present investigation, we have made use of the Gamma function as well as the hypergeometric and
the generalized hypergeometric functions with a view developing several definite integrals involving the
elliptic integrals K(k) and E(k) of the first and the second kind, respectively. The numerical approximation
of these definite integrals and the corresponding hypergeometric functions are also presented. The results
derived in this article are believed to be new and would extend and unify those that are available in the
scientific literature.
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