On some sequence sets based on Lucas band matrix and modulus functions

Mustafa I. Hatim ${ }^{\text {a, },}$, Çiǧdem A. Bektaş ${ }^{\text {a }}$
${ }^{a}$ Department of Mathematics, Faculty of Science, Firat University, Elazig 23119, Turkey

Abstract

In this study, the sequence sets $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ and $\ell_{\infty}\left(G^{k}, v, \widehat{E}(r, s)\right)$ which are depended on the Lucas band matrix and a sequence of modulus functions, are presented. After that, a few inclusion relationships of these sequence sets are given. Furthermore, a geometrical property such as the modulus of convexity of the sequence set $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ is discussed.

1. Introduction

Assume that ω is the space containing all real and complex-valued sequences. A linear subspace of ω is called a sequence space. The symbols ℓ_{∞}, c_{0}, c and ℓ_{p} for $1 \leq p<\infty$ represent the sequence spaces of all bounded, null, convergent, and p-absolutely convergent series respectively, normed by $\|x\|_{\infty}=\sup p_{n}\left|x_{n}\right|$ and $\|x\|_{p}=\left(\sum_{n}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}$. For the first time, the difference sequence spaces were introduced by Kizmaz [1] in the form of $X(\Delta)=\left\{x \in \omega:\left(x_{n}-x_{n-1}\right) \in X\right\}, X=\ell_{\infty}, c, c_{0}$. After that, these sequence spaces have been generalized by Et and Colak [2] such as $X\left(\Delta^{r}\right)=\left\{x \in \omega: \Delta^{r} x \in X\right\}, X=\ell_{\infty}, c, c_{0}$. Kirisci and Basar [3] have recently defined and investigated the difference sequence spaces $\hat{X}=\{x \in \omega: B(r, s) x \in X\}, 1 \leq p<\infty, X=\ell_{\infty}, c, c_{0}, \ell_{p}$ where $B(r, s)=\left(s x_{n-1}+r x_{n}\right) ; r, s \neq 0$. At the same time, Colak and Et [4], Mursaleen [5], Altin [6], and some other authors have investigated the difference sequence spaces in their studies.

A normed space X has a Schauder basis $\left(a_{n}\right)$ (or, more simply basis), if there is indeed a unique scalar sequence $\left(\alpha_{n}\right)$ for every x in X with

$$
\lim _{n \rightarrow \infty}\left\|x-\left(\alpha_{0} a_{0}+\alpha_{1} a_{1}+\cdots+\alpha_{n} a_{n}\right)\right\|=0
$$

A BK-space is a Banach space X, if there is $Q_{i}(x)=x_{i}$ such that $Q_{i}: X \rightarrow \mathbb{C}$ (\mathbb{C} provides the set of all complex numbers) is continuous for all $i \in \mathbb{N}$, refer to [7].

As a simple instance, the spaces ℓ_{∞}, c_{0}, c and ℓ_{p} for $1 \leq p<\infty$ are BK-spaces, respectively with the norms below

$$
\|x\|_{\infty}=\sup _{n}\left|x_{n}\right| \text { and }\|x\|_{p}=\left(\sum_{n=0}^{\infty}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}} .
$$

[^0]In 1953, Nakano [8] established the concept of the modulus function. We remember that $g:[0, \infty) \rightarrow$ $[0, \infty)$ is a modulus function such that $g(x)=0$ iff $x=0, g$ is increasing and continuous from 0^{+}, and $g(x+y) \leq g(x)+g(y)$ for every x, y in $[0, \infty)$. A modulus can be either bounded or unbounded. For illustration, $g(x)=1 /(1+x)$ is a bounded modulus, but $g(x)=x^{p},(0<p \leq 1)$ is unbounded. The notion of the modulus function has also been discussed in $[6,7,9-16]$

Consider $\Psi=\left(\psi_{\mathrm{mn}}\right)$ as an infinite matrix and assume that X and Y are two sequence spaces. Then, Ψ provides a matrix mapping from X into Y if, for every $x=\left(x_{n}\right)$ in X, there exists the sequence $\Psi x=\left(\psi_{m}(x)\right) \in$ Y, where

$$
\begin{equation*}
\Psi_{m}(x)=\sum_{n=0}^{\infty} \psi_{m n} x_{n} \quad(m \in \mathbb{N}) \tag{1.1}
\end{equation*}
$$

The set of all matrices ψ that have the property $\psi: X \rightarrow Y$ is represented by (X, Y). For that, $\Psi \in(X: Y)$ if and only if the right hand of the above equality (1.1) is convergent for each $m \in \mathbb{N}$ and $x \in X$. The notion of matrix domain X_{Ψ} of $\Psi \in X$ is expressed by

$$
\begin{equation*}
X_{\Psi}=\{x \in \omega: \Psi x \in X\} \tag{1.2}
\end{equation*}
$$

that represents a sequence space, see [16]. In recent years, a few mathematicians have developed certain sequence spaces by use of the matrix domain for an infinite matrix, refer to $[7,13,17,18]$.

In 1876, the sequence $\left\{L_{n}\right\}_{n=0}^{\infty}$ of Lucas numbers $1,3,4,7,11,18,29, \ldots$ was introduced by Edouard Lucas which is given by the Fibonacci recurrence relation in the form $L_{n}=L_{n-1}+L_{n-2} ; n \geq 2$ with different initial conditions $L_{0}=2$ and $L_{1}=1$ where L_{n} is the nth term of the sequence $\left\{L_{n}\right\}_{n=0}^{\infty}$. Lucas numbers have various formulas and several properties, see [19, 20].

By using Lucas numbers with two real numbers r and s such that $r, s \neq 0$, the Lucas band matrix $\widehat{E}(r, s)=\left(\widehat{E}_{\mathrm{nm}}(r, s)\right)$ has been established in [21] as follows:

$$
\widehat{E}(r, s)=\left\{\begin{array}{rr}
s \frac{L_{n}}{L_{n-1}} & (m=n-1) \tag{1.3}\\
r \frac{L_{n-1}}{L_{n}} & \\
0 & (m>n) \text { or } \\
0 \leq m<n-1)
\end{array}\right.
$$

With the help of (1.3) the \widehat{E}-transform for a sequence $x=\left(x_{n}\right)$ is formed by

$$
\begin{equation*}
\widehat{E}_{n}(r, s)(x)=r \frac{L_{n-1}}{L_{n}} x_{n}+s \frac{L_{n}}{L_{n-1}} x_{n-1}, n \geq 1 \tag{1.4}
\end{equation*}
$$

Recently, Karakas [21] and Mohiuddine [7] have used Lucas numbers and Lucas band matrix in constructing some sequence spaces in their studies.

Suppose that X is a normed linear space and S_{X} and B_{X} are the unit sphere and unit ball of X, respectively. Then the idea of modulus of convexity has been defined by Clarkson [22] and Gurarii [23] respectively, as follows:

$$
\delta_{X}(\varepsilon)=\inf \left\{1-\frac{\|x+y\|}{2}: x, y \in S_{X},\|x-y\|=\varepsilon\right\}, \quad \varepsilon \in[0,2]
$$

and

$$
\gamma_{X}(\varepsilon)=\inf \left\{1-\inf _{h \in[0,1]}\|h x+(1-h) y\|: x, y \in S_{X},\|x-y\|=\varepsilon\right\}, \quad \varepsilon \in[0,2]
$$

The case of $0<\gamma_{X}(\varepsilon)<1$ means that X is uniformly convex as well as the choice of $\gamma_{X}(\varepsilon) \leq 1$ means that X is strictly convex. The concept of modulus of convexity has also been studied in [24] and by some other
authors.

Lemma 1.1. [25] If g is a modulus function, then for each $k \in \mathbb{N}$ the function $g^{k}=g o g o \ldots o g$ (k times) is also a modulus.

2. Main results

In this part of our study, we introduce some difference sequence spaces based on the Lucas band matrix $\widehat{E}(r, s)$ and a sequence of modulus functions $G=\left(g_{n}\right)$, and study some interesting results through newly introduced sequence spaces. Let G be the set of sequence of modulus functions $G=\left(g_{n}\right)$ such that $\lim _{u \rightarrow 0^{+}} \sup _{n} g_{n}(u)=0$. The sequence of modulus functions determined by G is indicated by $G=\left(g_{n}\right) \in \mathbb{G}$. We let $G^{k}=\left(g_{n}^{k}\right)=\left\{g_{1}^{k}, g_{2}^{k}, \ldots\right\}(k \in \mathbb{N})$, and $v=\left(v_{n}\right)$ to be a sequence of strictly positive real numbers. We use these notations throughout this study. Given the information above, we provide these sequence spaces as follows:

$$
\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)=\left\{x \in \omega: \sum_{n}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)(x)\right|\right)\right]^{p}<\infty\right\}, 1 \leq p<\infty
$$

and

$$
\ell_{\infty}\left(G^{k}, v, \widehat{E}(r, s)\right)=\left\{x \in \omega: \sup _{n}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)(x)\right|\right)\right]<\infty\right\} .
$$

With the help of (1.2) the sequence spaces above are redefined as follows:

$$
\begin{equation*}
\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)=\left(\ell_{p}\right)_{v_{n} g_{n}^{k} \widehat{E}(r, s)} \text { and } \ell_{\infty}\left(G^{k}, v, \widehat{E}(r, s)\right)=\left(\ell_{\infty}\right)_{v_{n} g_{n}^{k} \widehat{E}(r, s)} \tag{2.1}
\end{equation*}
$$

Remark 2.1. If $k=1$ then the spaces $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ and $\ell_{\infty}\left(G^{k}, v, \widehat{E}(r, s)\right)$ will reduce to the spaces $\ell_{p}(G, v, \widehat{E}(r, s))$ and $\ell_{\infty}(G, v, \widehat{E}(r, s))$ of Mohiuddine [7], respectively, as well as if we put $g(x)=x$ for every $x \in[0, \infty)$ and every g in G with $v_{n}=1$ for all $n \in \mathbb{N}$, then the spaces $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ and $\ell_{\infty}\left(G^{k}, v, \widehat{E}(r, s)\right)$ will become the same as $\ell_{p}(\widehat{E}(r, s))$ and $\ell_{\infty}(\widehat{E}(r, s))$ of Karakas [21], respectively.

Theorem 2.1. Assume that $G=\left(g_{n}\right)$ is a sequence of modulus functions in G. The sequence spaces $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ and $\ell_{\infty}\left(G^{k}, v, \widehat{E}(r, s)\right)$ are Banach spaces for $1 \leq p<\infty$, respectively, normed by

$$
\begin{equation*}
\|x\|_{\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)}=\left(\sum_{n=1}^{\infty}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)(x)\right|\right)\right]^{p}\right)^{\frac{1}{p}} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\|x\|_{\ell_{\infty}\left(G^{k}, v, \widehat{E}(r, s)\right)}=\sup _{n}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)(x)\right|\right)\right] . \tag{2.3}
\end{equation*}
$$

Proof. We here only consider the proof for $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$. It can be easily verified that $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ is a normed linear space, normed by (2.2). Let $x^{i}=\left(x_{n}^{i}\right)_{n}$ be a Cauchy sequence such that $\left(x_{n}^{i}\right)_{n}=\left(x_{1}^{i}, x_{2}^{i}, \ldots\right) \in$ $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ for each $i \in \mathbb{N}$. Then given $\varepsilon>0$ there is a natural number $N \in \mathbb{N}$ such that for every $i, j \geq N$, we have

$$
\left\|x^{i}-x^{j}\right\|_{\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)}=\left(\sum_{n}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)\left(x^{i}-x^{j}\right)\right|\right)\right]^{p}\right)^{\frac{1}{p}}<\varepsilon
$$

and so

$$
\begin{equation*}
\sum_{n}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)\left(x^{i}-x^{j}\right)\right|\right)\right]^{p}<\varepsilon^{p} \tag{2.4}
\end{equation*}
$$

Then for every $i, j \geq N$ and for all $n \in \mathbb{N}$, we see that

$$
v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)\left(x^{i}-x^{j}\right)\right|\right)<\varepsilon .
$$

Hence for all $n \in \mathbb{N}$, we get

$$
\left|\widehat{E}_{n}(r, s)\left(x^{i}-x^{j}\right)\right| \rightarrow 0
$$

as $i, j \rightarrow \infty$. It follows that $\left(\widehat{E}_{n}(r, s)\left(x^{i}\right)\right)=\left(\widehat{E}_{n}(r, s)\left(x^{1}\right), \widehat{E}_{n}(r, s)\left(x^{2}\right), \ldots\right)$ is a Cauchy sequence of numbers. Since \mathbb{R} and \mathbb{C} are complete, then it is convergent, so there is $x=\left(x_{n}\right)$. Say $\left(\widehat{E}_{n}(r, s)\left(x^{i}\right)\right) \rightarrow\left(\widehat{E}_{n}(r, s)(x)\right)$ as $i \rightarrow \infty$ and for each $n \in \mathbb{N}$. Letting $j \rightarrow \infty$ in (2.4), we obtain for $i>N$

$$
\begin{equation*}
\sum_{n}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)\left(x^{i}-x\right)\right|\right)\right]^{p}<\varepsilon^{p} \tag{2.5}
\end{equation*}
$$

This implies that $\left(x^{i}-x\right) \in \ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$, and since $x^{i} \in \ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$, then

$$
\begin{aligned}
\sum_{n}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)(x)\right|\right)\right]^{p} & \leq \sum_{n}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)\left(x-x^{i}\right)\right|+\left|\widehat{E}_{n}(r, s)\left(x^{i}\right)\right|\right)\right]^{p} \\
& \leq \sum_{n}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)\left(x-x^{i}\right)\right|\right)+v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)\left(x^{i}\right)\right|\right)\right]^{p} \\
& \leq \sum_{n} 2^{p}\left(\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)\left(x-x^{i}\right)\right|\right)\right]^{p}+\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)\left(x^{i}\right)\right|\right)\right]^{p}\right) \\
& =2^{p} \sum_{n}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)\left(x-x^{i}\right)\right|\right)\right]^{p}+2^{p} \sum_{n}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)\left(x^{i}\right)\right|\right)\right]^{p} \\
& <\infty .
\end{aligned}
$$

Furthermore, by adding limits in (2.5) and letting $i \rightarrow \infty$, we have

$$
\lim _{i \rightarrow \infty}\left\|x^{i}-x\right\|_{\varepsilon_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)}=0
$$

So indeed, the sequence x^{i} converges to x and they are both in $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ for $1 \leq p<\infty$. So, we conclude the completeness of $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$. Therefore it is a Banach space. Hence the proof.

Theorem 2.2. Assume that $G=\left(g_{n}\right)$ is a sequence of modulus functions in G. Then the given sequence spaces $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ and $\ell_{\infty}\left(G^{k}, v, \widehat{E}(r, s)\right)$ are BK-spaces for $1 \leq p<\infty$, respectively, with the norms (2.2) and (2.3).

Proof. The proof is simply obtained. Since the conditions of (2.1) hold, $\widehat{E}(r, s)$ is a triangle matrix and both ℓ_{p} and ℓ_{∞} are BK-spaces by their typical norms. Then by Theorem 4.3.12 of Wilansky [26], the proof can be obtained straightforwardly. Therefore, our sequence spaces are BK-spaces. Hence the proof.

Remark 2.2. It's clear to see that $\|x\|_{\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)} \neq\| \| x \|_{\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)}$ and $\|x\|_{\ell_{\infty}\left(G^{k}, v, \widehat{E}(r, s)\right)} \neq\|x \mid\|_{\ell_{\infty}\left(G^{k}, v, \widehat{E}(r, s)\right)^{\prime}}$ this means that the difference sequence spaces $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ and $\ell_{\infty}\left(G^{k}, v, \widehat{E}(r, s)\right)$ are of non-absolute type. From the above nonequalities, it has come to notice that the absolute property may not hold for
$\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ and $\ell_{\infty}\left(G^{k}, v, \widehat{E}(r, s)\right)$ from at least one sequence in which $|x|=\left(\left|x_{n}\right|\right)$ and $1 \leq p<\infty$.
Theorem 2.3. Assume that $G=\left(g_{n}\right)$ is a sequence of modulus functions in G. Then for $1 \leq p<q$, the following inclusion relationship is satisfied.

$$
\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right) \subseteq \ell_{q}\left(G^{k}, v, \widehat{E}(r, s)\right)
$$

Proof. By the use of (1.4), we consider a transformation $M: \ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right) \rightarrow \ell_{p}$ defined as $M(x)=$ $v_{n} g_{n}^{k}\left(\widehat{E}_{n}(r, s)(x)\right)(n \in \mathbb{N})$. Now if $x \in \ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ then it gives us $M(x) \in \ell_{p}$. Since $\ell_{p} \subset \ell_{q}$ for $1 \leq p<q$, so we have $M(x) \in \ell_{q}$. Thus $x \in \ell_{q}\left(G^{k}, v, \widehat{E}(r, s)\right)$. So that for $1 \leq p<q$ the inclusion $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right) \subset \ell_{q}\left(G^{k}, v, \widehat{E}(r, s)\right)$ holds. Hence the proof.

Assume that $G=\left(g_{n}\right)$ is a sequence of modulus functions in G. And given two non-zero real numbers r and s as given in (1.3). Then we define the following equalities as follows:

$$
\begin{gathered}
D_{5}=\max \left\{5, \sup _{n}\left\{g_{n}^{k}(5)\right\}\right\}, D_{6}=\max \left\{6, \sup _{n}\left\{g_{n}^{k}(6)\right\}\right\}, \\
\left.D_{r}=\max \left\{|r|, \sup _{n}\left\{g_{n}^{k}(|r|)\right\}\right\} \text { and } D_{s}=\max \left\{|s| \sup _{n}\left\{g_{n}^{k}| || |\right)\right\}\right\} .
\end{gathered}
$$

The above equalities may be used in some steps of our study.
Theorem 2.4. Assume that $G=\left(g_{n}\right)$ is a sequence of modulus functions in G. Then the indicated inclusion relationship below is valid.

$$
\ell_{p} \subset \ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right) \text { for } 1 \leq p<\infty .
$$

Proof. To verify the validity of the inclusion we need to find a number $D>0$ such that $\|x\|_{\ell_{\mu}\left(G^{k}, v, \bar{E}(r, s)\right)} \leq$ $D\|x\|_{\rho_{p}}$ for $x \in \ell_{p}$. From the Lucas sequence, we write $\frac{L_{n-1}}{L_{n}} \leq 2$ and $\frac{L_{n}}{L_{n-1}} \leq 3(n \in \mathbb{N})$. Now we assume that $x \in \ell_{p}, 1 \leq p<\infty$. Then by using (1.4) and the above inequalities, we have

$$
\begin{aligned}
\sum_{n}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)(x)\right|\right)\right]^{p} & =\sum_{n}\left[v_{n} g_{n}^{k}\left(\left|r \frac{L_{n-1}}{L_{n}} x_{n}+s \frac{L_{n}}{L_{n-1}} x_{n-1}\right|\right)\right]^{p} \\
& \leq \sum_{n} D_{6}^{p-1}\left[v_{n} g_{n}^{k}\left(\left|2 r x_{n}\right|+\left|3 s x_{n-1}\right|\right)\right]^{p} \\
& \leq D_{6}^{2 p-1} \max \left\{D_{r}, D_{s}\right\}\left(\sum_{n}\left[v_{n} g_{n}^{k}\left(\left|x_{n}\right|\right)\right]^{p}+\sum_{n}\left[v_{n} g_{n}^{k}\left(\left|x_{n-1}\right|\right)\right]^{p}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\sup _{n}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)(x)\right|\right)\right]= & \sup _{n}\left[v_{n} g_{n}^{k}\left(\left|r \frac{L_{n-1}}{L_{n}} x_{n}+s \frac{L_{n}}{L_{n-1}} x_{n-1}\right|\right)\right] \\
& \leq D_{5} \max \left\{D_{r}, D_{s}\right\} \sup _{n}\left[v_{n} g_{n}^{k}\left(\left|x_{n}\right|\right)\right] .
\end{aligned}
$$

Then for $1<p \leq \infty$, we have

$$
\begin{equation*}
\|x\|_{\ell_{p}(G r, v, \widehat{E}(r, s))} \leq D_{6}^{2} \max \left\{D_{r}, D_{s}\right\}\|x\|_{\ell_{p}} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\|x\|_{e_{\infty}\left(G^{k}, D, \overline{\mathrm{E}}(r, s)\right)} \leq D_{5} \max \left\{D_{r}, D_{s}\right\}\|x\|_{\ell_{\infty}} . \tag{2.7}
\end{equation*}
$$

For $p=1$, the inequality (2.6) is easily obtained. Hence the proof.
Example 2.1. The sequence $x=\left(x_{n}\right)=\left(\frac{1}{r}\left(-\frac{s}{r}\right)^{n} L_{n}^{2}\right)$ assures the strictness of the above inclusion relationship since $x \in \ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)-\ell_{p}$.

Theorem 2.5. Assume that $G=\left(g_{n}\right)$ is a sequence of modulus functions in G, and let $\beta_{m}=v_{n} g_{n}^{k}\left(\widehat{E}_{m}(r, s)(x)\right)$. Then for $1 \leq p<\infty$, the sequence $\left(h^{(m)}\right)_{n=1}^{\infty}$ provides a basis for $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ which is formed as

$$
\left(h^{(m)}\right)_{n}= \begin{cases}\frac{1}{r}\left(-\frac{s}{r}\right)^{m-n} \frac{L_{n}{ }^{2}}{L_{m-1} L_{m}}, & n \geq m \\ 0, & m>n\end{cases}
$$

For that, every $x \in \ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ can be uniquely represented in the form

$$
\begin{equation*}
x=\sum_{m} \beta_{m} h^{(m)} . \tag{2.8}
\end{equation*}
$$

Proof. By using the sequence $h^{(m)}$ we get $v_{n} g_{n}^{k}\left(\widehat{E}(r, s)\left(h^{(m)}\right)\right)=e^{(m)} \in \ell_{p}$ where $e^{(m)}=(0,0, \ldots, 1,0, \ldots)$ (i.e. 1 at the $m^{\text {th }}$ place and zero elsewhere) for each $m \in \mathbb{N}$. Hence $h^{(m)} \in \ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$. In addition, let $x \in \ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ and for every $i \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, take

$$
x^{(i)}=\sum_{m=1}^{i} \beta_{m} h^{(m)} .
$$

Thus

$$
\begin{aligned}
v_{n} g_{n}^{k}\left(\widehat{E}(r, s)\left(x^{(i)}\right)\right) & =\sum_{m=1}^{i} v_{n} g_{n}^{k}\left(\widehat{E}_{m}(r, s)(x)\right) v_{n} g_{n}^{k}\left(\widehat{E}(r, s)\left(h^{(m)}\right)\right) \\
& =\sum_{m=1}^{i} \beta_{m} e^{(m)} .
\end{aligned}
$$

Also

$$
v_{n} g_{n}^{k}\left(\widehat{E}_{\mathrm{n}}(r, s)\left(x-x^{(i)}\right)\right)= \begin{cases}v_{n} g_{n}^{k}\left(\widehat{E}_{\mathrm{n}}(r, s)(x)\right), n>i \\ 0, & 0 \leq n \leq i\end{cases}
$$

Then, there is $i_{0} \in \mathbb{N}_{0}$ such that

$$
\sum_{n=i_{0}+1}^{\infty}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)(x)\right|\right)\right]^{p} \leq\left(\frac{\varepsilon}{2}\right)^{p}
$$

for any $\varepsilon>0$. Therefore, for every $i>i_{0}$, we have

$$
\begin{aligned}
\left\|x-x^{(i)}\right\|_{\rho_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)} & =\left(\sum_{n=i+1}^{\infty}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)(x)\right|\right)\right]^{p}\right)^{\frac{1}{p}} \\
& \leq\left(\sum_{n=i_{0}+1}^{\infty}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)(x)\right|\right)\right]^{p}\right)^{\frac{1}{p}} \leq \frac{\varepsilon}{2}<\varepsilon .
\end{aligned}
$$

This concludes that

$$
\lim _{i \rightarrow \infty}\left\|x-x^{(i)}\right\|_{\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)}=0 .
$$

Moreover, to show that (2.8) is unique, let us consider

$$
x=\sum_{m} \xi_{m} h^{(m)},
$$

for $x \in \ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$. Then, we have

$$
\begin{aligned}
v_{n} g_{n}^{k}\left(\widehat{E}_{n}(r, s)(x)\right) & =\sum_{m} \xi_{m}\left(v_{n} g_{n}^{k}\left(\widehat{E}_{n}(r, s)\left(h^{(m)}\right)\right)\right) \\
& =\sum_{m} \xi_{m} e_{n}^{(m)}=\xi_{n}
\end{aligned}
$$

Hence the proof.
Theorem 2.6. Assume that $G=\left(g_{n}\right)$ is a sequence of modulus functions in G. Then the Gurarii's modulus of convexity for $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right), 1 \leq p<\infty$ can be represented in the form of the following inequality

$$
\gamma_{\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)}(\varepsilon) \leq 1-\left(1-\left(\frac{\varepsilon}{2}\right)^{p}\right)^{\frac{1}{p}}, \quad \varepsilon \in[0,2] .
$$

Proof. Take $x \in \ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$. Then,

$$
\begin{aligned}
\|x\|_{\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)} & =\left\|v_{n} g_{n}^{k}\left(\widehat{E}_{n}(r, s)(x)\right)\right\|_{\ell_{p}} \\
& =\left(\sum_{n}\left[v_{n} g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)(x)\right|\right)\right]^{p}\right)^{\frac{1}{p}}
\end{aligned}
$$

We also take the sequences $a=\left(a_{m}\right)$ and $b=\left(b_{m}\right)$, where

$$
a_{m}=\left(\left(\left(v_{n} g_{n}^{k}\right)^{-1}\right) \widehat{E}^{-1}(r, s)\left(1-\left(\frac{\varepsilon}{2}\right)^{p}\right)^{\frac{1}{p}},\left(v_{n} g_{n}^{k}\right)^{-1} \widehat{E}^{-1}(r, s)\left(\frac{\varepsilon}{2}\right), 0,0, \ldots\right)
$$

and

$$
b_{m}=\left(\left(\left(v_{n} g_{n}^{k}\right)^{-1}\right) \widehat{E}^{-1}(r, s)\left(1-\left(\frac{\varepsilon}{2}\right)^{p}\right)^{\frac{1}{p}},\left(v_{n} g_{n}^{k}\right)^{-1} \widehat{E}^{-1}(r, s)\left(-\frac{\varepsilon}{2}\right), 0,0, \ldots\right)
$$

Where $\widehat{E}^{-1}(r, s)$ represents the inverse of the matrix $\widehat{E}(r, s)$ and $\varepsilon \in[0,2]$. The \widehat{E}-transforms of the sequences a and b are given by

$$
v_{n} g_{n}^{k} \widehat{E}(r, s)(a)=\left(\left(1-\left(\frac{\varepsilon}{2}\right)^{p}\right)^{\frac{1}{p}},\left(\frac{\varepsilon}{2}\right), 0,0, \ldots\right)
$$

and

$$
v_{n} g_{n}^{k} \widehat{E}(r, s)(b)=\left(\left(1-\left(\frac{\varepsilon}{2}\right)^{p}\right)^{\frac{1}{p}},\left(-\frac{\varepsilon}{2}\right), 0,0, \ldots\right)
$$

Then, we have

$$
\left\|v_{n} g_{n}^{k} \widehat{E}(r, s)(a)\right\|_{\ell_{p}}=\|a\|_{\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)}=1
$$

and

$$
\left\|v_{n} g_{n}^{k} \widehat{E}(r, s)(b)\right\|_{\ell_{p}}=\|b\|_{\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)}=1
$$

Hence, $a, b \in S_{\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)}$, and

$$
\left\|v_{n} g_{n}^{k} \widehat{E}(r, s)(a)-v_{n} g_{n}^{k} \widehat{E}(r, s)(b)\right\|_{\ell_{p}}=\|a-b\|_{\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)}=\varepsilon .
$$

Now, for $\alpha \in[0,1]$,

$$
\begin{aligned}
\|\alpha a+(1-\alpha) b\|_{\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)}^{p} & =\left\|\alpha v_{n} g_{n}^{k} \widehat{E}(r, s)(a)+(1-\alpha) v_{n} g_{n}^{k} \widehat{E}(r, s)(b)\right\|_{\ell_{p}}^{p} \\
& =1-\left(\frac{\varepsilon}{2}\right)^{p}+|2 \alpha-1|^{p}\left(\frac{\varepsilon}{2}\right)^{p}
\end{aligned}
$$

From here,

$$
\inf _{\alpha \in[0,1]}\|\alpha a+(1-\alpha) b\|_{\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)}=\left(1-\left(\frac{\varepsilon}{2}\right)^{p}\right)^{\frac{1}{p}}
$$

Therefore, for $1 \leq p<\infty$,

$$
\gamma_{\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)^{2}}(\varepsilon) \leq 1-\left(1-\left(\frac{\varepsilon}{2}\right)^{p}\right)^{\frac{1}{p}}
$$

Hence the proof.

Corollary 2.7

(i) If $\varepsilon=2$, then $\gamma_{\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)}(\varepsilon) \leq 1$ and so that $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ is strictly convex.
(ii) If $0<\varepsilon<2$, then $0<\gamma_{\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)}(\varepsilon)<1$ and so that $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ is uniformly convex.

3. Conclusions

In this study, by using the Lucas band matrix $\widehat{E}(r, s)$, a sequence of strictly positive real numbers $v=\left(v_{n}\right)$ and a sequence of modulus functions $G=\left(g_{n}\right)$ with $1 \leq p<\infty$, the sequence spaces $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ and $\ell_{\infty}\left(G^{k}, v, \widehat{E}(r, s)\right)$ have been generalized, then they are established as BK-spaces with some given norms. After that, the connection between ℓ_{p} and $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)$ for $1 \leq p<\infty$ was founded. Finally the basis and the Gurarii's modulus of convexity for the space $\ell_{p}\left(G^{k}, v, \widehat{E}(r, s)\right)(1 \leq p<\infty)$ have been determined independently.

References

[1] H. Kizmaz, On certain sequence spaces. Canadian mathematical bulletin 24(2) (1981) 169-176.
[2] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow journal of Mathematics 21(4) (1995) 377-386.
[3] M. Kirişçi and F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Computers \& mathematics with applications 60(5) (2010) 1299-1309.
[4] R. Çolak and M. Et, On some difference sequence sets and their topological properties, Bulletin of the Malaysian Mathematical Sciences Society. Second Series 28(2) (2005) 125-130.
[5] M. Mursaleen, Generalized spaces of difference sequences, Journal of mathematical analysis and applications 203(3) (1996) 738-745.
[6] Y. Altin, Properties of some sets of sequences defined by a modulus function, Acta Mathematica Scientia 29(2) (2009) 427-434.
[7] S. Mohiuddine, K. Raj and A. Choudhary, Difference sequence spaces based on Lucas band matrix and modulus function, São Paulo Journal of Mathematical Sciences 2022 (2022) 1-12.
[8] H. Nakano, Concave modulars, Journal of the Mathematical society of Japan 5(1) (1953) 29-49.
[9] A. Aizpuru, M. Listàn-Garcìa and F. Rambla-Barreno, Density by moduli and statistical convergence, Quaestiones Mathematicae 37(4) (2014) 525-530.
[10] V. K. Bhardwaj and S. Dhawan, f-Statistical convergence of order and strong Cesàro summability of order with respect to a modulus, Journal of Inequalities and Applications 2015(1) (2015) 1-14.
[11] V. K. Bhardwaj and S. Dhawan, Density by moduli and lacunary statistical convergence, In Abstract and Applied Analysis, 2016, Hindawi, 2016.
[12] I. S. Ibrahim and R. Çolak, On strong lacunary summability of order with respect to modulus functions, Annals of the University of Craiova-Mathematics and Computer Science Series 48(1) (2021) 127-136.
[13] H. Ş. Kandemir, E. Mikail and H. Çakallı, On $S_{\alpha}^{\beta}(\theta, A, F)$-convergence and strong $N_{\alpha}^{\beta}(\theta, A, F)$-convergence, Boletim da Sociedade Paranaense de Matemática 41 (2023) 1-8.
[14] H. Şengül, Some Cesàro-type summability spaces defined by a modulus function of order $(\alpha ; \beta)$, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66(2) (2017) 80-90.
[15] H. Şengül and M. Et, f-lacunary statistical convergence and strong f-lacunary summability of order α. Filomat 32(13) (2018) 4513-4521.
[16] Ç. A. Bektaş and R. Çolak, Generalized strongly almost summable difference sequences of order m defined by a sequence of moduli, Demonstratio Mathematica 40(3) (2007) 581-592.
[17] M. C. Dağli and T. Yaying, Some new paranormed sequence spaces derived by regular Tribonacci matrix, The Journal of Analysis 31(1) (2023) 109-127.
[18] M. Karakaş, A new regular matrix defined by Fibonacci numbers and its applications, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 4(2) (2015) 205-210.
[19] T. Koshy, Fibonacci and Lucas Numbers with Applications 2: John Wiley \& Sons (2019).
[20] S. Vajda, Fibonacci and Lucas numbers, and the golden section: theory and applications, Courier Corporation (2008).
[21] M. Karakaş and A.M. Karakaş, A study on Lucas difference sequence spaces $\ell_{p}(E(r, s))$ and $\ell_{\infty}(E(r, s))$, Maejo Int. J. Sci. Technol. 12(01) (2018) 70-78.
[22] J. A. Clarkson, Uniformly convex spaces, Transactions of the American Mathematical Society 40(3) (1936) 396-414.
[23] V. Gurarii, On the differential properties of the modulus of convexity in a Banach space, Mat. Issled 2 (1967) 141-148.
[24] M. Ivanov and S. Troyanski, Uniformly smooth renorming of Banach spaces with modulus of convexity of power type 2, Journal of Functional Analysis 237(2) (2006) 373-390.
[25] Y. Altin, H. Altinok and R. Çolak, On some seminormed sequence spaces defined by a modulus function, Kragujevac Journal of Mathematics 29(29) (2006) 121-132.
[26] A. Wilansky, Summability through functional analysis, Elseiver Science Publishers B.V (1984).

[^0]: 2020 Mathematics Subject Classification. Primary 40A05; Secondary 47A08, 52A99
 Keywords. Lucas numbers, Modulus function, Sequence space, BK-space, Modulus of convexity.
 Received: 02 August 2023; Accepted: 02 October 2023
 Communicated by Eberhard Malkowsky

 * Corresponding author: Mustafa I. Hatim

 Email addresses: mustafa.ih88@gmail.com (Mustafa I. Hatim), cbektas@firat.edu.tr (Çiǧdem A. Bektaş)

