Filomat 38:11 (2024), 3739–3747 https://doi.org/10.2298/FIL2411739H

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On some sequence sets based on Lucas band matrix and modulus functions

Mustafa I. Hatim^{a,*}, Çiğdem A. Bektaş^a

^aDepartment of Mathematics, Faculty of Science, Firat University, Elazig 23119, Turkey

Abstract. In this study, the sequence sets $\ell_p(G^k, v, \widehat{E}(r, s))$ and $\ell_{\infty}(G^k, v, \widehat{E}(r, s))$ which are depended on the Lucas band matrix and a sequence of modulus functions, are presented. After that, a few inclusion relationships of these sequence sets are given. Furthermore, a geometrical property such as the modulus of convexity of the sequence set $\ell_v(G^k, v, \widehat{E}(r, s))$ is discussed.

1. Introduction

Assume that ω is the space containing all real and complex-valued sequences. A linear subspace of ω is called a sequence space. The symbols ℓ_{∞}, c_0, c and ℓ_p for $1 \le p < \infty$ represent the sequence spaces of all bounded, null, convergent, and p-absolutely convergent series respectively, normed by $||x||_{\infty} = sup_n |x_n|$ and $||x||_p = (\sum_n |x_n|^p)^{\frac{1}{p}}$. For the first time, the difference sequence spaces were introduced by Kizmaz [1] in the form of $X(\Delta) = \{x \in \omega : (x_n - x_{n-1}) \in X\}$, $X = \ell_{\infty}, c, c_0$. After that, these sequence spaces have been generalized by Et and Colak [2] such as $X(\Delta^r) = \{x \in \omega : \Delta^r x \in X\}$, $X = \ell_{\infty}, c, c_0$. Kirisci and Basar [3] have recently defined and investigated the difference sequence spaces $\hat{X} = \{x \in \omega : B(r, s)x \in X\}$, $1 \le p < \infty$, $X = \ell_{\infty}, c, c_0, \ell_p$ where $B(r, s) = (sx_{n-1} + rx_n)$; $r, s \ne 0$. At the same time, Colak and Et [4], Mursaleen [5], Altin [6], and some other authors have investigated the difference sequence spaces in their studies.

A normed space X has a Schauder basis (a_n) (or, more simply basis), if there is indeed a unique scalar sequence (α_n) for every x in X with

$$\lim_{n\to\infty} ||x - (\alpha_0 a_0 + \alpha_1 a_1 + \dots + \alpha_n a_n)|| = 0.$$

A BK-space is a Banach space *X*, if there is $Q_i(x) = x_i$ such that $Q_i : X \to \mathbb{C}$ (\mathbb{C} provides the set of all complex numbers) is continuous for all $i \in \mathbb{N}$, refer to [7].

As a simple instance, the spaces ℓ_{∞} , c_0 , c and ℓ_p for $1 \le p < \infty$ are BK-spaces, respectively with the norms below

$$||x||_{\infty} = \sup_{n} |x_{n}| \text{ and } ||x||_{p} = \Big(\sum_{n=0}^{\infty} |x_{n}|^{p}\Big)^{\frac{1}{p}}.$$

²⁰²⁰ Mathematics Subject Classification. Primary 40A05; Secondary 47A08, 52A99

Keywords. Lucas numbers, Modulus function, Sequence space, BK-space, Modulus of convexity.

Received: 02 August 2023; Accepted: 02 October 2023

Communicated by Eberhard Malkowsky

^{*} Corresponding author: Mustafa I. Hatim

Email addresses: mustafa.ih88@gmail.com (Mustafa I. Hatim), cbektas@firat.edu.tr (Çiğdem A. Bektaş)

In 1953, Nakano [8] established the concept of the modulus function. We remember that $g : [0, \infty) \rightarrow [0, \infty)$ is a modulus function such that g(x) = 0 iff x = 0, g is increasing and continuous from 0^+ , and $g(x + y) \le g(x) + g(y)$ for every x, y in $[0, \infty)$. A modulus can be either bounded or unbounded. For illustration, g(x) = 1/(1 + x) is a bounded modulus, but $g(x) = x^p$, (0 is unbounded. The notion of the modulus function has also been discussed in <math>[6, 7, 9-16]

Consider $\Psi = (\psi_{mn})$ as an infinite matrix and assume that *X* and *Y* are two sequence spaces. Then, Ψ provides a matrix mapping from *X* into *Y* if, for every $x = (x_n)$ in *X*, there exists the sequence $\Psi x = (\psi_m(x)) \in Y$, where

$$\Psi_m(x) = \sum_{n=0}^{\infty} \psi_{mn} x_n \quad (m \in \mathbb{N}).$$
(1.1)

The set of all matrices ψ that have the property $\psi : X \to Y$ is represented by (X, Y). For that, $\Psi \in (X : Y)$ if and only if the right hand of the above equality (1.1) is convergent for each $m \in \mathbb{N}$ and $x \in X$. The notion of matrix domain X_{Ψ} of $\Psi \in X$ is expressed by

$$X_{\Psi} = \{ x \in \omega : \Psi x \in X \}, \tag{1.2}$$

that represents a sequence space, see [16]. In recent years, a few mathematicians have developed certain sequence spaces by use of the matrix domain for an infinite matrix, refer to [7, 13, 17, 18].

In 1876, the sequence $\{L_n\}_{n=0}^{\infty}$ of Lucas numbers 1, 3, 4, 7, 11, 18, 29, ... was introduced by Edouard Lucas which is given by the Fibonacci recurrence relation in the form $L_n = L_{n-1} + L_{n-2}$; $n \ge 2$ with different initial conditions $L_0 = 2$ and $L_1 = 1$ where L_n is the nth term of the sequence $\{L_n\}_{n=0}^{\infty}$. Lucas numbers have various formulas and several properties, see [19, 20].

By using Lucas numbers with two real numbers *r* and *s* such that $r, s \neq 0$, the Lucas band matrix $\widehat{E}(r, s) = (\widehat{E}_{nm}(r, s))$ has been established in [21] as follows:

$$\widehat{E}(r,s) = \begin{cases} s \frac{L_n}{L_{n-1}} & (m=n-1) \\ r \frac{L_{n-1}}{L_n} & (m=n) \\ 0 & (m>n \text{ or } 0 \le m < n-1). \end{cases}$$
(1.3)

With the help of (1.3) the \widehat{E} -transform for a sequence $x = (x_n)$ is formed by

$$\widehat{E}_{n}(r,s)(x) = r \frac{L_{n-1}}{L_{n}} x_{n} + s \frac{L_{n}}{L_{n-1}} x_{n-1}, \ n \ge 1.$$
(1.4)

Recently, Karakas [21] and Mohiuddine [7] have used Lucas numbers and Lucas band matrix in constructing some sequence spaces in their studies.

Suppose that *X* is a normed linear space and S_X and B_X are the unit sphere and unit ball of *X*, respectively. Then the idea of modulus of convexity has been defined by Clarkson [22] and Gurarii [23] respectively, as follows:

$$\delta_X(\varepsilon) = \inf\left\{1 - \frac{\|x+y\|}{2} : x, y \in S_X, \ \|x-y\| = \varepsilon\right\}, \quad \varepsilon \in [0,2]$$

and

$$\gamma_X(\varepsilon) = \inf \left\{ 1 - \inf_{h \in [0,1]} \left\| hx + (1-h)y \right\| : x, y \in S_X, \ \left\| x - y \right\| = \varepsilon \right\}, \quad \varepsilon \in [0,2].$$

The case of $0 < \gamma_X(\varepsilon) < 1$ means that X is uniformly convex as well as the choice of $\gamma_X(\varepsilon) \le 1$ means that X is strictly convex. The concept of modulus of convexity has also been studied in [24] and by some other

authors.

Lemma 1.1. [25] If *g* is a modulus function, then for each $k \in \mathbb{N}$ the function $g^k = g \circ g \circ \ldots \circ g$ (k times) is also a modulus.

2. Main results

In this part of our study, we introduce some difference sequence spaces based on the Lucas band matrix $\widehat{E}(r, s)$ and a sequence of modulus functions $G = (g_n)$, and study some interesting results through newly introduced sequence spaces. Let G be the set of sequence of modulus functions $G = (g_n)$ such that $\lim_{u\to 0^+} \sup_n g_n(u) = 0$. The sequence of modulus functions determined by G is indicated by $G = (g_n) \in \mathbb{G}$. We let $G^k = (g_n^k) = \{g_1^k, g_2^k, \ldots\}$ ($k \in \mathbb{N}$), and $v = (v_n)$ to be a sequence of strictly positive real numbers. We use these notations throughout this study. Given the information above, we provide these sequence spaces as follows:

$$\ell_p\left(G^k, v, \widehat{E}(r, s)\right) = \left\{x \in \omega : \sum_n \left[v_n g_n^k\left(\left|\widehat{E}_n(r, s)(x)\right|\right)\right]^p < \infty\right\}, \ 1 \le p < \infty$$

and

$$\ell_{\infty}\left(G^{k}, v, \widehat{E}(r, s)\right) = \left\{x \in \omega : \sup_{n} \left[v_{n}g_{n}^{k}\left(\left|\widehat{E}_{n}(r, s)(x)\right|\right)\right] < \infty\right\}.$$

With the help of (1.2) the sequence spaces above are redefined as follows:

$$\ell_p\left(G^k, v, \widehat{E}(r, s)\right) = \left(\ell_p\right)_{v_n g_n^k \widehat{E}(r, s)} \quad \text{and} \quad \ell_\infty\left(G^k, v, \widehat{E}(r, s)\right) = \left(\ell_\infty\right)_{v_n g_n^k \widehat{E}(r, s)} \tag{2.1}$$

Remark 2.1. If k = 1 then the spaces $\ell_p(G^k, v, \widehat{E}(r, s))$ and $\ell_{\infty}(G^k, v, \widehat{E}(r, s))$ will reduce to the spaces $\ell_p(G, v, \widehat{E}(r, s))$ and $\ell_{\infty}(G, v, \widehat{E}(r, s))$ of Mohiuddine [7], respectively, as well as if we put g(x) = x for every $x \in [0, \infty)$ and every g in G with $v_n = 1$ for all $n \in \mathbb{N}$, then the spaces $\ell_p(G^k, v, \widehat{E}(r, s))$ and $\ell_{\infty}(G^k, v, \widehat{E}(r, s))$ will become the same as $\ell_p(\widehat{E}(r, s))$ and $\ell_{\infty}(\widehat{E}(r, s))$ of Karakas [21], respectively.

Theorem 2.1. Assume that $G = (g_n)$ is a sequence of modulus functions in G. The sequence spaces $\ell_p(G^k, v, \widehat{E}(r, s))$ and $\ell_{\infty}(G^k, v, \widehat{E}(r, s))$ are Banach spaces for $1 \le p < \infty$, respectively, normed by

$$\|x\|_{\ell_p(G^k,v,\widehat{E}(r,s))} = \left(\sum_{n=1}^{\infty} \left[v_n g_n^k\left(\left|\widehat{E}_n(r,s)(x)\right|\right)\right]^p\right)^{\frac{1}{p}}$$
(2.2)

and

$$\|x\|_{\ell_{\infty}\left(G^{k},v,\widehat{E}(r,s)\right)} = \sup_{n} \left[v_{n}g_{n}^{k}\left(\left|\widehat{E}_{n}(r,s)(x)\right|\right)\right].$$
(2.3)

Proof. We here only consider the proof for $\ell_p(G^k, v, \widehat{E}(r, s))$. It can be easily verified that $\ell_p(G^k, v, \widehat{E}(r, s))$ is a normed linear space, normed by (2.2). Let $x^i = (x_n^i)_n$ be a Cauchy sequence such that $(x_n^i)_n = (x_1^i, x_2^i, ...) \in \ell_p(G^k, v, \widehat{E}(r, s))$ for each $i \in \mathbb{N}$. Then given $\varepsilon > 0$ there is a natural number $N \in \mathbb{N}$ such that for every $i, j \ge N$, we have

$$\left\|x^{i}-x^{j}\right\|_{\ell_{p}\left(G^{k},v,\ \widehat{E}(r,s)\right)}=\left(\sum_{n}\left[v_{n}g_{n}^{k}\left(\left|\widehat{E}_{n}(r,s)\left(x^{i}-x^{j}\right)\right|\right)\right]^{p}\right)^{\overline{p}}<\varepsilon$$

and so

$$\sum_{n} \left[v_n g_n^k \left(\left| \widehat{E}_n(r, s) \left(x^i - x^j \right) \right| \right) \right]^p < \varepsilon^p.$$
(2.4)

Then for every $i, j \ge N$ and for all $n \in \mathbb{N}$, we see that

$$v_n g_n^k \left(\left| \widehat{E}_n(r,s) \left(x^i - x^j \right) \right| \right) < \varepsilon$$

Hence for all $n \in \mathbb{N}$, we get

$$\left|\widehat{E}_n(r,s)\left(x^i-x^j\right)\right|\to 0$$

as $i, j \to \infty$. It follows that $(\widehat{E}_n(r, s)(x^i)) = (\widehat{E}_n(r, s)(x^1), \widehat{E}_n(r, s)(x^2), ...)$ is a Cauchy sequence of numbers. Since \mathbb{R} and \mathbb{C} are complete, then it is convergent, so there is $x = (x_n)$. Say $(\widehat{E}_n(r, s)(x^i)) \to (\widehat{E}_n(r, s)(x))$ as $i \to \infty$ and for each $n \in \mathbb{N}$. Letting $j \to \infty$ in (2.4), we obtain for i > N

$$\sum_{n} \left[v_n g_n^k \left(\left| \widehat{E}_n(r,s) \left(x^i - x \right) \right| \right) \right]^p < \varepsilon^p.$$
(2.5)

This implies that $(x^i - x) \in \ell_p(G^k, v, \widehat{E}(r, s))$, and since $x^i \in \ell_p(G^k, v, \widehat{E}(r, s))$, then

$$\begin{split} \sum_{n} \left[v_{n} g_{n}^{k} \left(\left| \widehat{E}_{n}(r,s)(x) \right| \right) \right]^{p} &\leq \sum_{n} \left[v_{n} g_{n}^{k} \left(\left| \widehat{E}_{n}(r,s) \left(x - x^{i} \right) \right| + \left| \widehat{E}_{n}(r,s) \left(x^{i} \right) \right| \right) \right]^{p} \\ &\leq \sum_{n} \left[v_{n} g_{n}^{k} \left(\left| \widehat{E}_{n}(r,s) \left(x - x^{i} \right) \right| \right) + v_{n} g_{n}^{k} \left(\left| \widehat{E}_{n}(r,s) \left(x^{i} \right) \right| \right) \right]^{p} \\ &\leq \sum_{n} 2^{p} \left(\left[v_{n} g_{n}^{k} \left(\left| \widehat{E}_{n}(r,s) \left(x - x^{i} \right) \right| \right) \right]^{p} + \left[v_{n} g_{n}^{k} \left(\left| \widehat{E}_{n}(r,s) \left(x^{i} \right) \right| \right) \right]^{p} \right) \\ &= 2^{p} \sum_{n} \left[v_{n} g_{n}^{k} \left(\left| \widehat{E}_{n}(r,s) \left(x - x^{i} \right) \right| \right) \right]^{p} + 2^{p} \sum_{n} \left[v_{n} g_{n}^{k} \left(\left| \widehat{E}_{n}(r,s) \left(x^{i} \right) \right| \right) \right]^{p} \\ &< \infty. \end{split}$$

Furthermore, by adding limits in (2.5) and letting $i \rightarrow \infty$, we have

$$\lim_{i\to\infty} \left\| x^i - x \right\|_{\ell_p\left(G^k, v, \widehat{E}(r, s)\right)} = 0.$$

So indeed, the sequence x^i converges to x and they are both in $\ell_p(G^k, v, \widehat{E}(r, s))$ for $1 \le p < \infty$. So, we conclude the completeness of $\ell_p(G^k, v, \widehat{E}(r, s))$. Therefore it is a Banach space. Hence the proof.

Theorem 2.2. Assume that $G = (g_n)$ is a sequence of modulus functions in \mathbb{G} . Then the given sequence spaces $\ell_p(G^k, v, \widehat{E}(r, s))$ and $\ell_{\infty}(G^k, v, \widehat{E}(r, s))$ are BK-spaces for $1 \le p < \infty$, respectively, with the norms (2.2) and (2.3).

Proof. The proof is simply obtained. Since the conditions of (2.1) hold, E(r, s) is a triangle matrix and both ℓ_p and ℓ_{∞} are BK-spaces by their typical norms. Then by Theorem 4.3.12 of Wilansky [26], the proof can be obtained straightforwardly. Therefore, our sequence spaces are BK-spaces. Hence the proof.

Remark 2.2. It's clear to see that $||x||_{\ell_p(G^k,v,\widehat{E}(r,s))} \neq |||x|||_{\ell_p(G^k,v,\widehat{E}(r,s))}$ and $||x||_{\ell_{\infty}(G^k,v,\widehat{E}(r,s))} \neq |||x|||_{\ell_{\infty}(G^k,v,\widehat{E}(r,s))}$ this means that the difference sequence spaces $\ell_p(G^k,v,\widehat{E}(r,s))$ and $\ell_{\infty}(G^k,v,\widehat{E}(r,s))$ are of non-absolute type. From the above nonequalities, it has come to notice that the absolute property may not hold for

3742

 $\ell_p(G^k, v, \widehat{E}(r, s))$ and $\ell_{\infty}(G^k, v, \widehat{E}(r, s))$ from at least one sequence in which $|x| = (|x_n|)$ and $1 \le p < \infty$.

Theorem 2.3. Assume that $G = (g_n)$ is a sequence of modulus functions in \mathbb{G} . Then for $1 \le p < q$, the following inclusion relationship is satisfied.

$$\ell_p\left(G^k, v, \ \widehat{E}(r, s)\right) \subseteq \ell_q\left(G^k, v, \ \widehat{E}(r, s)\right)$$

Proof. By the use of (1.4), we consider a transformation $M : \ell_p(G^k, v, \widehat{E}(r, s)) \to \ell_p$ defined as $M(x) = v_n g_n^k(\widehat{E}_n(r,s)(x))$ $(n \in \mathbb{N})$. Now if $x \in \ell_p(G^k, v, \widehat{E}(r,s))$ then it gives us $M(x) \in \ell_p$. Since $\ell_p \subset \ell_q$ for $1 \le p < q$, so we have $M(x) \in \ell_q$. Thus $x \in \ell_q(G^k, v, \widehat{E}(r, s))$. So that for $1 \le p < q$ the inclusion $\ell_p(G^k, v, \widehat{E}(r, s)) \subset \ell_q(G^k, v, \widehat{E}(r, s))$ holds. Hence the proof.

Assume that $G = (g_n)$ is a sequence of modulus functions in G. And given two non-zero real numbers r and s as given in (1.3). Then we define the following equalities as follows:

$$D_{5} = max \left\{ 5, \sup_{n} \left\{ g_{n}^{k}(5) \right\} \right\}, \quad D_{6} = max \left\{ 6, \sup_{n} \left\{ g_{n}^{k}(6) \right\} \right\},$$
$$D_{r} = max \left\{ |r|, \sup_{n} \left\{ g_{n}^{k}(|r|) \right\} \right\} \quad \text{and} \quad D_{s} = max \left\{ |s|, \sup_{n} \left\{ g_{n}^{k}(|s|) \right\} \right\}.$$

The above equalities may be used in some steps of our study.

Theorem 2.4. Assume that $G = (g_n)$ is a sequence of modulus functions in \mathbb{G} . Then the indicated inclusion relationship below is valid.

$$\ell_p \subset \ell_p\left(G^k, v, \widehat{E}(r, s)\right) \text{ for } 1 \le p < \infty.$$

Proof. To verify the validity of the inclusion we need to find a number D > 0 such that $||x||_{\ell_p(G^k, v, \widehat{E}(r,s))} \le D ||x||_{\ell_p}$ for $x \in \ell_p$. From the Lucas sequence, we write $\frac{L_{n-1}}{L_n} \le 2$ and $\frac{L_n}{L_{n-1}} \le 3$ ($n \in \mathbb{N}$). Now we assume that $x \in \ell_p$, $1 \le p < \infty$. Then by using (1.4) and the above inequalities, we have

$$\sum_{n} \left[v_{n} g_{n}^{k} \left(\left| \widehat{E}_{n}(r,s)(x) \right| \right) \right]^{p} = \sum_{n} \left[v_{n} g_{n}^{k} \left(\left| r \frac{L_{n-1}}{L_{n}} x_{n} + s \frac{L_{n}}{L_{n-1}} x_{n-1} \right| \right) \right]^{p} \\ \leq \sum_{n} D_{6}^{p-1} \left[v_{n} g_{n}^{k} \left(\left| 2rx_{n} \right| + \left| 3sx_{n-1} \right| \right) \right]^{p} \\ \leq D_{6}^{2p-1} \max \left\{ D_{r}, D_{s} \right\} \left(\sum_{n} \left[v_{n} g_{n}^{k} \left(\left| x_{n} \right| \right) \right]^{p} + \sum_{n} \left[v_{n} g_{n}^{k} \left(\left| x_{n-1} \right| \right) \right]^{p} \right)$$

and

$$\sup_{n} \left[v_n g_n^k \left(\left| \widehat{E}_n(r,s)(x) \right| \right) \right] = \sup_{n} \left[v_n g_n^k \left(\left| r \frac{L_{n-1}}{L_n} x_n + s \frac{L_n}{L_{n-1}} x_{n-1} \right| \right) \right]$$
$$\leq D_5 \max \left\{ D_r, D_s \right\} \sup_{n} \left[v_n g_n^k \left(\left| x_n \right| \right) \right].$$

Then for 1 , we have

$$\|x\|_{\ell_p(G^k,v,\widehat{E}(r,s))} \le D_6^2 \max\{D_r, D_s\} \|x\|_{\ell_p}$$
(2.6)

and

$$\|x\|_{\ell_{\infty}(G^{k},v,\widehat{E}(r,s))} \le D_{5} \max\{D_{r},D_{s}\} \|x\|_{\ell_{\infty}}.$$
(2.7)

For p = 1, the inequality (2.6) is easily obtained. Hence the proof.

Example 2.1. The sequence $x = (x_n) = \left(\frac{1}{r}\left(-\frac{s}{r}\right)^n L_n^2\right)$ assures the strictness of the above inclusion relationship since $x \in \ell_p(G^k, v, \widehat{E}(r, s)) - \ell_p$.

Theorem 2.5. Assume that $G = (g_n)$ is a sequence of modulus functions in G, and let $\beta_m = v_n g_n^k (\widehat{E}_m(r,s)(x))$. Then for $1 \le p < \infty$, the sequence $(h^{(m)})_{n=1}^{\infty}$ provides a basis for $\ell_p(G^k, v, \widehat{E}(r, s))$ which is formed as

$$\left(h^{(m)}\right)_n = \begin{cases} \frac{1}{r} \left(-\frac{s}{r}\right)^{m-n} \frac{L_n^2}{L_{m-1}L_m}, & n \ge m\\ 0, & m > n \end{cases}$$

For that, every $x \in \ell_p(G^k, v, \widehat{E}(r, s))$ can be uniquely represented in the form

$$x = \sum_{m} \beta_m h^{(m)}.$$
 (2.8)

Proof. By using the sequence $h^{(m)}$ we get $v_n g_n^k \left(\widehat{E}(r,s)\left(h^{(m)}\right)\right) = e^{(m)} \in \ell_p$ where $e^{(m)} = (0, 0, ..., 1, 0, ...)$ (i.e. 1 at the m^{th} place and zero elsewhere) for each $m \in \mathbb{N}$. Hence $h^{(m)} \in \ell_p \left(G^k, v, \widehat{E}(r,s)\right)$. In addition, let $x \in \ell_p \left(G^k, v, \widehat{E}(r,s)\right)$ and for every $i \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, take

$$x^{(i)} = \sum_{m=1}^{i} \beta_m h^{(m)}$$

Thus

$$v_n g_n^k \left(\widehat{E}(r,s) \left(x^{(i)} \right) \right) = \sum_{m=1}^i v_n g_n^k \left(\widehat{E}_m(r,s)(x) \right) v_n g_n^k \left(\widehat{E}(r,s) \left(h^{(m)} \right) \right)$$
$$= \sum_{m=1}^i \beta_m e^{(m)}.$$

Also

$$v_n g_n^k \left(\widehat{E}_n \left(r, s \right) \left(x - x^{(i)} \right) \right) = \begin{cases} v_n g_n^k \left(\widehat{E}_n \left(r, s \right) (x) \right), & n > i \\ 0, & 0 \le n \le i \end{cases}$$

Then, there is $i_0 \in \mathbb{N}_0$ such that

$$\sum_{n=i_0+1}^{\infty} \left[v_n g_n^k \left(\left| \widehat{E}_n(r,s)(x) \right| \right) \right]^p \le \left(\frac{\varepsilon}{2} \right)^p$$

for any $\varepsilon > 0$. Therefore, for every $i > i_0$, we have

$$\begin{aligned} \left\| x - x^{(i)} \right\|_{\ell_p(G^k, v, \widehat{E}(r, s))} &= \left(\sum_{n=i+1}^{\infty} \left[v_n g_n^k \left(\left| \widehat{E}_n(r, s)(x) \right| \right) \right]^p \right)^{\frac{1}{p}} \\ &\leq \left(\sum_{n=i_0+1}^{\infty} \left[v_n g_n^k \left(\left| \widehat{E}_n(r, s)(x) \right| \right) \right]^p \right)^{\frac{1}{p}} \leq \frac{\varepsilon}{2} < \varepsilon. \end{aligned}$$

This concludes that

$$\lim_{i\to\infty} \left\|x-x^{(i)}\right\|_{\ell_p\left(G^k,\upsilon,\widehat{E}(r,s)\right)} = 0.$$

Moreover, to show that (2.8) is unique, let us consider

$$x=\sum_m \xi_m h^{(m)} ,$$

for $x \in \ell_p(G^k, v, \widehat{E}(r, s))$. Then, we have

$$v_n g_n^k \left(\widehat{E}_n(r,s)(x) \right) = \sum_m \xi_m \left(v_n g_n^k \left(\widehat{E}_n(r,s) \left(h^{(m)} \right) \right) \right)$$
$$= \sum_m \xi_m e_n^{(m)} = \xi_n.$$

Hence the proof.

Theorem 2.6. Assume that $G = (g_n)$ is a sequence of modulus functions in \mathbb{G} . Then the Gurarii's modulus of convexity for $\ell_p(G^k, v, \widehat{E}(r, s)), 1 \le p < \infty$ can be represented in the form of the following inequality

$$\gamma_{\ell_p(G^k,v,\ \widehat{E}(r,s))}(\varepsilon) \le 1 - \left(1 - \left(\frac{\varepsilon}{2}\right)^p\right)^{\frac{1}{p}}, \quad \varepsilon \in [0,2]$$

Proof. Take $x \in \ell_p(G^k, v, \widehat{E}(r, s))$. Then,

$$\begin{aligned} ||x||_{\ell_p(G^k,v,\ \widehat{E}(r,s))} &= \left\| v_n g_n^k \left(\widehat{E}_n(r,s)(x) \right) \right\|_{\ell_p} \\ &= \left(\sum_n \left[v_n g_n^k \left(\left| \widehat{E}_n(r,s)(x) \right| \right) \right]^p \right)^{\frac{1}{p}}. \end{aligned}$$

We also take the sequences $a = (a_m)$ and $b = (b_m)$, where

$$a_m = \left(\left(\left(v_n g_n^k \right)^{-1} \right) \widehat{E}^{-1}(r,s) \left(1 - \left(\frac{\varepsilon}{2} \right)^p \right)^{\frac{1}{p}}, \left(v_n g_n^k \right)^{-1} \widehat{E}^{-1}(r,s) \left(\frac{\varepsilon}{2} \right), 0, 0, \ldots \right)$$

and

$$b_m = \left(\left(\left(v_n g_n^k \right)^{-1} \right) \widehat{E}^{-1}(r,s) \left(1 - \left(\frac{\varepsilon}{2} \right)^p \right)^{\frac{1}{p}}, \left(v_n g_n^k \right)^{-1} \widehat{E}^{-1}(r,s) \left(-\frac{\varepsilon}{2} \right), 0, 0, \ldots \right).$$

Where $\widehat{E}^{-1}(r,s)$ represents the inverse of the matrix $\widehat{E}(r,s)$ and $\varepsilon \in [0,2]$. The \widehat{E} -transforms of the sequences *a* and *b* are given by

$$v_n g_n^k \widehat{E}(r, s)(a) = \left(\left(1 - \left(\frac{\varepsilon}{2}\right)^p\right)^{\frac{1}{p}}, \left(\frac{\varepsilon}{2}\right), 0, 0, \ldots \right)$$
$$k \widehat{E}(r, s)(b) = \left(\left(1 - \left(\frac{\varepsilon}{2}\right)^p\right)^{\frac{1}{p}}, \left(-\frac{\varepsilon}{2}\right), 0, 0, \ldots \right)$$

and

$$v_n g_n^k \widehat{E}(r,s)(b) = \left(\left(1 - \left(\frac{\varepsilon}{2}\right)^p\right)^{\frac{1}{p}}, \left(-\frac{\varepsilon}{2}\right), 0, 0, \ldots \right).$$

Then, we have

$$\left\|v_n g_n^k \widehat{E}(r,s)(a)\right\|_{\ell_p} = \|a\|_{\ell_p\left(G^k,v,\ \widehat{E}(r,s)\right)} = 1,$$

and

$$\left\|v_n g_n^k \widehat{E}(r,s)(b)\right\|_{\ell_p} = \|b\|_{\ell_p\left(G^k,v,\ \widehat{E}(r,s)\right)} = 1.$$

Hence, $a, b \in S_{\ell_p(G^k, v, \widehat{E}(r,s))}$, and

$$\left\|v_n g_n^k \widehat{E}(r,s)(a) - v_n g_n^k \widehat{E}(r,s)(b)\right\|_{\ell_p} = \|a - b\|_{\ell_p\left(G^k, v, \ \widehat{E}(r,s)\right)} = \varepsilon.$$

Now, for $\alpha \in [0, 1]$,

$$\begin{aligned} \|\alpha a + (1-\alpha)b\|_{\ell_p(G^k,v,\ \widehat{E}(r,s))}^p &= \left\|\alpha v_n g_n^k \widehat{E}(r,s)(a) + (1-\alpha)v_n g_n^k \widehat{E}(r,s)(b)\right\|_{\ell_p}^p \\ &= 1 - \left(\frac{\varepsilon}{2}\right)^p + |2\alpha - 1|^p \left(\frac{\varepsilon}{2}\right)^p. \end{aligned}$$

From here,

$$\inf_{\alpha\in[0,1]} \|\alpha a + (1-\alpha)b\|_{\ell_p\left(G^k,v,\ \widehat{E}(r,s)\right)} = \left(1-\left(\frac{\varepsilon}{2}\right)^p\right)^{\frac{1}{p}}.$$

Therefore, for $1 \le p < \infty$,

$$\gamma_{\ell_p(G^k,v,\ \widehat{E}(r,s))}(\varepsilon) \leq 1 - \left(1 - \left(\frac{\varepsilon}{2}\right)^p\right)^{\frac{1}{p}}.$$

Hence the proof.

Corollary 2.7

- (i) If $\varepsilon = 2$, then $\gamma_{\ell_p(G^k, v, \widehat{E}(r,s))}(\varepsilon) \le 1$ and so that $\ell_p(G^k, v, \widehat{E}(r,s))$ is strictly convex.
- (ii) If $0 < \varepsilon < 2$, then $0 < \gamma_{\ell_p(G^k, v, \widehat{E}(r,s))}(\varepsilon) < 1$ and so that $\ell_p(G^k, v, \widehat{E}(r,s))$ is uniformly convex.

3. Conclusions

In this study, by using the Lucas band matrix $\widehat{E}(r,s)$, a sequence of strictly positive real numbers $v = (v_n)$ and a sequence of modulus functions $G = (g_n)$ with $1 \le p < \infty$, the sequence spaces $\ell_p(G^k, v, \widehat{E}(r,s))$ and $\ell_{\infty}(G^k, v, \widehat{E}(r,s))$ have been generalized, then they are established as BK-spaces with some given norms. After that, the connection between ℓ_p and $\ell_p(G^k, v, \widehat{E}(r,s))$ for $1 \le p < \infty$ was founded. Finally the basis and the Gurarii's modulus of convexity for the space $\ell_p(G^k, v, \widehat{E}(r,s))$ $(1 \le p < \infty)$ have been determined independently.

References

- [1] H. Kizmaz, On certain sequence spaces. Canadian mathematical bulletin 24(2) (1981) 169–176.
- [2] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow journal of Mathematics 21(4) (1995) 377–386.
- [3] M. Kirişçi and F. Başar, Some new sequence spaces derived by the domain of generalized difference matrix, Computers & mathematics with applications **60**(5) (2010) 1299–1309.
- [4] R. Çolak and M. Et, On some difference sequence sets and their topological properties, Bulletin of the Malaysian Mathematical Sciences Society. Second Series 28(2) (2005) 125–130.
- [5] M. Mursaleen, Generalized spaces of difference sequences, Journal of mathematical analysis and applications 203(3) (1996) 738–745.
- [6] Y. Altin, *Properties of some sets of sequences defined by a modulus function*, Acta Mathematica Scientia **29**(2) (2009) 427–434.
- [7] S. Mohiuddine, K. Raj and A. Choudhary, Difference sequence spaces based on Lucas band matrix and modulus function, São Paulo Journal of Mathematical Sciences 2022 (2022) 1–12.
- [8] H. Nakano, Concave modulars, Journal of the Mathematical society of Japan 5(1) (1953) 29-49.
- [9] A. Aizpuru, M. Listàn-Garcìa and F. Rambla-Barreno, Density by moduli and statistical convergence, Quaestiones Mathematicae 37(4) (2014) 525–530.
- [10] V. K. Bhardwaj and S. Dhawan, f-Statistical convergence of order and strong Cesàro summability of order with respect to a modulus, Journal of Inequalities and Applications 2015(1) (2015) 1–14.

- [11] V. K. Bhardwaj and S. Dhawan, *Density by moduli and lacunary statistical convergence*, In Abstract and Applied Analysis, **2016**, Hindawi, 2016.
- [12] I. S. Ibrahim and R. Çolak, On strong lacunary summability of order with respect to modulus functions, Annals of the University of Craiova-Mathematics and Computer Science Series 48(1) (2021) 127–136.
- [13] H. Ş. Kandemir, E. Mikail and H. Çakallı, On $S^{\beta}_{\alpha}(\theta, A, F)$ -convergence and strong $N^{\beta}_{\alpha}(\theta, A, F)$ -convergence, Boletim da Sociedade Paranaense de Matemática **41** (2023) 1–8.
- [14] H. Şengül, Some Cesàro-type summability spaces defined by a modulus function of order (α; β), Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66(2) (2017) 80–90.
- [15] H. Sengül and M. Et, f-lacunary statistical convergence and strong f-lacunary summability of order α . Filomat **32**(13) (2018) 4513–4521.
- [16] Ç. A. Bektaş and R. Çolak, Generalized strongly almost summable difference sequences of order m defined by a sequence of moduli, Demonstratio Mathematica 40(3) (2007) 581–592.
- [17] M. C. Dağli and T. Yaying, Some new paranormed sequence spaces derived by regular Tribonacci matrix, The Journal of Analysis 31(1) (2023) 109–127.
- [18] M. Karakaş, A new regular matrix defined by Fibonacci numbers and its applications, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi 4(2) (2015) 205–210.
- [19] T. Koshy, Fibonacci and Lucas Numbers with Applications 2: John Wiley & Sons (2019).
- [20] S. Vajda, Fibonacci and Lucas numbers, and the golden section: theory and applications, Courier Corporation (2008).
- [21] M. Karakaş and A.M. Karakaş, A study on Lucas difference sequence spaces $\ell_p(E(r, s))$ and $\ell_{\infty}(E(r, s))$, Maejo Int. J. Sci. Technol. **12**(01) (2018) 70–78.
- [22] J. A. Clarkson, Uniformly convex spaces, Transactions of the American Mathematical Society 40(3) (1936) 396-414.
- [23] V. Gurarii, On the differential properties of the modulus of convexity in a Banach space, Mat. Issled 2 (1967) 141–148.
- [24] M. Ivanov and S. Troyanski, Uniformly smooth renorming of Banach spaces with modulus of convexity of power type 2, Journal of Functional Analysis 237(2) (2006) 373–390.
- [25] Y. Altin, H. Altinok and R. Çolak, On some seminormed sequence spaces defined by a modulus function, Kragujevac Journal of Mathematics 29(29) (2006) 121–132.
- [26] A. Wilansky, Summability through functional analysis, Elseiver Science Publishers B.V (1984).