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Abstract. In this study, the sequence sets ℓp(Gk, v, Ê(r, s)) and ℓ∞(Gk, v, Ê(r, s)) which are depended on
the Lucas band matrix and a sequence of modulus functions, are presented. After that, a few inclusion
relationships of these sequence sets are given. Furthermore, a geometrical property such as the modulus
of convexity of the sequence set ℓp(Gk, v, Ê(r, s)) is discussed.

1. Introduction

Assume that ω is the space containing all real and complex-valued sequences. A linear subspace of ω
is called a sequence space. The symbols ℓ∞, c0, c and ℓp for 1 ≤ p < ∞ represent the sequence spaces of all
bounded, null, convergent, and p-absolutely convergent series respectively, normed by ∥x∥∞ = supn|xn| and
∥x∥p = (

∑
n |xn|

p)
1
p . For the first time, the difference sequence spaces were introduced by Kizmaz [1] in the

form of X(∆) = {x ∈ ω : (xn − xn−1) ∈ X}, X = ℓ∞, c, c0. After that, these sequence spaces have been general-
ized by Et and Colak [2] such as X(∆r) = {x ∈ ω : ∆rx ∈ X}, X = ℓ∞, c, c0. Kirisci and Basar [3] have recently
defined and investigated the difference sequence spaces X̂ = {x ∈ ω : B(r, s)x ∈ X}, 1 ≤ p < ∞, X = ℓ∞, c, c0, ℓp
where B(r, s) = (sxn−1 + rxn); r, s , 0. At the same time, Colak and Et [4], Mursaleen [5], Altin [6], and some
other authors have investigated the difference sequence spaces in their studies.

A normed space X has a Schauder basis (an) (or, more simply basis), if there is indeed a unique scalar
sequence (αn) for every x in X with

lim
n→∞
∥x − (α0a0 + α1a1 + · · · + αnan)∥ = 0.

A BK-space is a Banach space X, if there is Qi(x) = xi such that Qi : X → C (C provides the set of all
complex numbers) is continuous for all i∈N, refer to [7].

As a simple instance, the spaces ℓ∞, c0, c and ℓp for 1 ≤ p < ∞ are BK-spaces, respectively with the norms
below

∥x∥∞ = sup
n
|xn| and ∥x∥p =

( ∞∑
n=0

|xn|
p
) 1

p .
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In 1953, Nakano [8] established the concept of the modulus function. We remember that 1 : [0,∞) →
[0,∞) is a modulus function such that 1(x) = 0 iff x = 0, 1 is increasing and continuous from 0+, and
1(x + y) ≤ 1(x) + 1(y) for every x, y in [0,∞). A modulus can be either bounded or unbounded. For
illustration, 1(x) = 1/(1 + x) is a bounded modulus, but 1(x) = xp, (0 < p ≤ 1) is unbounded. The notion of
the modulus function has also been discussed in [6, 7, 9–16]

Consider Ψ = (ψmn) as an infinite matrix and assume that X and Y are two sequence spaces. Then, Ψ
provides a matrix mapping from X into Y if, for every x = (xn) in X, there exists the sequenceΨx = (ψm(x)) ∈
Y, where

Ψm(x) =
∞∑

n=0

ψmnxn (m∈N). (1.1)

The set of all matrices ψ that have the property ψ : X→ Y is represented by (X,Y). For that,Ψ ∈ (X : Y)
if and only if the right hand of the above equality (1.1) is convergent for each m∈N and x ∈ X. The notion
of matrix domain XΨ ofΨ ∈ X is expressed by

XΨ = {x ∈ ω : Ψx ∈ X}, (1.2)

that represents a sequence space, see [16]. In recent years, a few mathematicians have developed certain
sequence spaces by use of the matrix domain for an infinite matrix, refer to [7, 13, 17, 18].

In 1876, the sequence {Ln}
∞

n=0 of Lucas numbers 1, 3, 4, 7, 11, 18, 29, . . . was introduced by Edouard
Lucas which is given by the Fibonacci recurrence relation in the form Ln = Ln−1 + Ln−2; n ≥ 2 with different
initial conditions L0 = 2 and L1 = 1 where Ln is the nth term of the sequence {Ln}

∞

n=0. Lucas numbers have
various formulas and several properties, see [19, 20].

By using Lucas numbers with two real numbers r and s such that r, s , 0, the Lucas band matrix
Ê(r, s) =

(
Ênm(r, s)

)
has been established in [21] as follows:

Ê(r, s) =


s Ln

Ln−1
(m = n − 1)

r Ln−1
Ln

(m = n)
0 (m > n or 0 ≤ m < n − 1).

(1.3)

With the help of (1.3) the Ê−transform for a sequence x = (xn) is formed by

Ên(r, s)(x) = r
Ln−1

Ln
xn + s

Ln

Ln−1
xn−1, n ≥ 1. (1.4)

Recently, Karakas [21] and Mohiuddine [7] have used Lucas numbers and Lucas band matrix in con-
structing some sequence spaces in their studies.

Suppose that X is a normed linear space and SX and BX are the unit sphere and unit ball of X, respectively.
Then the idea of modulus of convexity has been defined by Clarkson [22] and Gurarii [23] respectively, as
follows:

δX(ε) = in f

1 −

∥∥∥x + y
∥∥∥

2
: x, y ∈ SX,

∥∥∥x − y
∥∥∥ = ε , ε ∈ [0, 2]

and

γX(ε) = in f
{

1 − inf
h∈[0,1]

∥∥∥hx + (1 − h)y
∥∥∥ : x, y ∈ SX,

∥∥∥x − y
∥∥∥ = ε} , ε ∈ [0, 2].

The case of 0 < γX(ε) < 1 means that X is uniformly convex as well as the choice of γX(ε) ≤ 1 means that
X is strictly convex. The concept of modulus of convexity has also been studied in [24] and by some other
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authors.

Lemma 1.1. [25] If 1 is a modulus function, then for each k ∈ N the function 1k = 1 o1 o . . . o 1 (k times)
is also a modulus.

2. Main results

In this part of our study, we introduce some difference sequence spaces based on the Lucas band
matrix Ê(r, s) and a sequence of modulus functions G = (1n), and study some interesting results through
newly introduced sequence spaces. Let G be the set of sequence of modulus functions G = (1n) such that
limu→0+ supn 1n(u) = 0. The sequence of modulus functions determined by G is indicated by G = (1n) ∈ G.
We let Gk =

(
1k

n

)
=
{
1k

1, 1
k
2, . . .

}
(k ∈N), and v = (vn) to be a sequence of strictly positive real numbers. We

use these notations throughout this study. Given the information above, we provide these sequence spaces
as follows:

ℓp

(
Gk, v, Ê(r, s)

)
=

x ∈ ω :
∑

n

[
vn1

k
n

(∣∣∣∣Ên(r, s)(x)
∣∣∣∣)] p

< ∞

 , 1 ≤ p < ∞

and

ℓ∞
(
Gk, v, Ê(r, s)

)
=

{
x ∈ ω : sup

n

[
vn1

k
n

(∣∣∣∣Ên(r, s)(x)
∣∣∣∣)] < ∞} .

With the help of (1.2) the sequence spaces above are redefined as follows:

ℓp

(
Gk, v, Ê(r, s)

)
=
(
ℓp

)
vn1

k
nÊ(r,s)

and ℓ∞
(
Gk, v, Ê(r, s)

)
= (ℓ∞)vn1

k
nÊ(r,s) (2.1)

Remark 2.1. If k = 1 then the spaces ℓp

(
Gk, v, Ê(r, s)

)
and ℓ∞

(
Gk, v, Ê(r, s)

)
will reduce to the spaces

ℓp

(
G, v, Ê(r, s)

)
and ℓ∞

(
G, v, Ê(r, s)

)
of Mohiuddine [7], respectively, as well as if we put 1(x) = x for every

x ∈ [0,∞) and every 1 in G with vn = 1 for all n∈N, then the spaces ℓp

(
Gk, v, Ê(r, s)

)
and ℓ∞

(
Gk, v, Ê(r, s)

)
will become the same as ℓp

(
Ê(r, s)

)
and ℓ∞

(
Ê(r, s)

)
of Karakas [21], respectively.

Theorem 2.1. Assume that G = (1n) is a sequence of modulus functions in G. The sequence spaces
ℓp

(
Gk, v, Ê(r, s)

)
and ℓ∞

(
Gk, v, Ê(r, s)

)
are Banach spaces for 1 ≤ p < ∞, respectively, normed by

∥x∥ℓp

(
Gk ,v,Ê(r,s)

) =
 ∞∑

n=1

[
vn1

k
n

(∣∣∣∣Ên(r, s)(x)
∣∣∣∣)] p


1
p

(2.2)

and
∥x∥ℓ∞

(
Gk,v,Ê(r,s)

) = sup
n

[
vn1

k
n

(∣∣∣∣Ên(r, s)(x)
∣∣∣∣)] . (2.3)

Proof. We here only consider the proof for ℓp

(
Gk, v, Ê(r, s)

)
. It can be easily verified that ℓp

(
Gk, v, Ê(r, s)

)
is

a normed linear space, normed by (2.2). Let xi =
(
xi

n

)
n

be a Cauchy sequence such that
(
xi

n

)
n
=
(
xi

1, xi
2, . . .

)
∈

ℓp

(
Gk, v, Ê(r, s)

)
for each i∈N. Then given ε > 0 there is a natural number N∈N such that for every i, j ≥ N,

we have ∥∥∥xi
− x j
∥∥∥
ℓp

(
Gk ,v, Ê(r,s)

) =
∑

n

[
vn1

k
n

(∣∣∣∣Ên(r, s)
(
xi
− x j
)∣∣∣∣)] p


1
p

< ε
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and so ∑
n

[
vn1

k
n

(∣∣∣∣Ên(r, s)
(
xi
− x j
)∣∣∣∣)] p

< εp. (2.4)

Then for every i, j ≥ N and for all n∈N, we see that

vn1
k
n

(∣∣∣∣Ên(r, s)
(
xi
− x j
)∣∣∣∣) < ε.

Hence for all n∈N, we get ∣∣∣∣Ên(r, s)
(
xi
− x j
)∣∣∣∣→ 0

as i, j → ∞. It follows that
(
Ên(r, s)

(
xi
))
=
(
Ên(r, s)

(
x1
)
, Ên(r, s)

(
x2
)
, . . .
)

is a Cauchy sequence of numbers.

Since R and C are complete, then it is convergent, so there is x = (xn). Say
(
Ên(r, s)

(
xi
))
→

(
Ên(r, s)(x)

)
as

i→∞ and for each n∈N. Letting j→∞ in (2.4), we obtain for i > N∑
n

[
vn1

k
n

(∣∣∣∣Ên(r, s)
(
xi
− x
)∣∣∣∣)] p

<εp. (2.5)

This implies that
(
xi
− x
)
∈ ℓp

(
Gk, v, Ê(r, s)

)
, and since xi

∈ ℓp

(
Gk, v, Ê(r, s)

)
, then∑

n

[
vn1

k
n

(∣∣∣∣Ên(r, s)(x)
∣∣∣∣)] p

≤

∑
n

[
vn1

k
n

(∣∣∣∣Ên(r, s)
(
x − xi

)∣∣∣∣ + ∣∣∣∣Ên(r, s)
(
xi
)∣∣∣∣)] p

≤

∑
n

[
vn1

k
n

(∣∣∣∣Ên(r, s)
(
x − xi

)∣∣∣∣) + vn1
k
n

(∣∣∣∣Ên(r, s)
(
xi
)∣∣∣∣)] p

≤

∑
n

2p
([

vn1
k
n

(∣∣∣∣Ên(r, s)
(
x − xi

)∣∣∣∣)]p + [vn1
k
n

(∣∣∣∣Ên(r, s)
(
xi
)∣∣∣∣)]p)

= 2p
∑

n

[
vn1

k
n

(∣∣∣∣Ên(r, s)
(
x − xi

)∣∣∣∣)]p + 2p
∑

n

[
vn1

k
n

(∣∣∣∣Ên(r, s)
(
xi
)∣∣∣∣)]p

< ∞.

Furthermore, by adding limits in (2.5) and letting i→∞, we have

lim
i→∞

∥∥∥xi
− x
∥∥∥
ℓp

(
Gk ,v, Ê(r,s)

) = 0.

So indeed, the sequence xi converges to x and they are both in ℓp

(
Gk, v, Ê(r, s)

)
for 1 ≤ p < ∞. So, we

conclude the completeness of ℓp

(
Gk, v, Ê(r, s)

)
. Therefore it is a Banach space. Hence the proof.

Theorem 2.2. Assume that G = (1n) is a sequence of modulus functions in G. Then the given sequence
spaces ℓp

(
Gk, v, Ê(r, s)

)
and ℓ∞

(
Gk, v, Ê(r, s)

)
are BK-spaces for 1 ≤ p < ∞, respectively, with the norms (2.2)

and (2.3).

Proof. The proof is simply obtained. Since the conditions of (2.1) hold, Ê(r, s) is a triangle matrix and
both ℓp and ℓ∞ are BK-spaces by their typical norms. Then by Theorem 4.3.12 of Wilansky [26], the proof
can be obtained straightforwardly. Therefore, our sequence spaces are BK-spaces. Hence the proof.

Remark 2.2. It’s clear to see that ∥x∥ℓp

(
Gk ,v,Ê(r,s)

) , ∥|x|∥ℓp

(
Gk ,v,Ê(r,s)

) and ∥x∥ℓ∞
(
Gk ,v,Ê(r,s)

) , ∥|x|∥ℓ∞(Gk ,v,Ê(r,s)
),

this means that the difference sequence spaces ℓp

(
Gk, v, Ê(r, s)

)
and ℓ∞

(
Gk, v, Ê(r, s)

)
are of non-absolute

type. From the above nonequalities, it has come to notice that the absolute property may not hold for
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ℓp

(
Gk, v, Ê(r, s)

)
and ℓ∞

(
Gk, v, Ê(r, s)

)
from at least one sequence in which |x| = (|xn|) and 1 ≤ p < ∞.

Theorem 2.3. Assume that G = (1n) is a sequence of modulus functions in G. Then for 1 ≤ p < q, the
following inclusion relationship is satisfied.

ℓp

(
Gk, v, Ê(r, s)

)
⊆ ℓq

(
Gk, v, Ê(r, s)

)
Proof. By the use of (1.4), we consider a transformation M : ℓp

(
Gk, v, Ê(r, s)

)
→ ℓp defined as M(x) =

vn1
k
n

(
Ên(r, s)(x)

)
(n∈N). Now if x ∈ ℓp

(
Gk, v, Ê(r, s)

)
then it gives us M(x) ∈ ℓp. Since ℓp ⊂ ℓq for

1 ≤ p < q, so we have M(x) ∈ ℓq. Thus x ∈ ℓq

(
Gk, v, Ê(r, s)

)
. So that for 1 ≤ p < q the inclusion

ℓp

(
Gk, v, Ê(r, s)

)
⊂ ℓq

(
Gk, v, Ê(r, s)

)
holds. Hence the proof.

Assume that G = (1n) is a sequence of modulus functions in G. And given two non-zero real numbers r
and s as given in (1.3). Then we define the following equalities as follows:

D5 = max
{

5, sup
n

{
1k

n(5)
}}
, D6 = max

{
6, sup

n

{
1k

n(6)
}}
,

Dr = max
{
|r|, sup

n

{
1k

n(|r|)
}}

and Ds = max
{
|s|, sup

n

{
1k

n(|s|)
}}
.

The above equalities may be used in some steps of our study.

Theorem 2.4. Assume that G = (1n) is a sequence of modulus functions in G. Then the indicated
inclusion relationship below is valid.

ℓp ⊂ ℓp

(
Gk, v, Ê(r, s)

)
for 1 ≤ p < ∞.

Proof. To verify the validity of the inclusion we need to find a number D > 0 such that ∥x∥ℓp

(
Gk ,v,Ê(r,s)

) ≤
D ∥x∥ℓp

for x ∈ ℓp. From the Lucas sequence, we write Ln−1
Ln
≤ 2 and Ln

Ln−1
≤ 3 (n∈N). Now we assume that

x ∈ ℓp, 1 ≤ p < ∞. Then by using (1.4) and the above inequalities, we have∑
n

[
vn1

k
n

(∣∣∣∣Ên(r, s)(x)
∣∣∣∣)] p

=
∑

n

[
vn1

k
n

(∣∣∣∣∣rLn−1

Ln
xn + s

Ln

Ln−1
xn−1

∣∣∣∣∣)] p

≤

∑
n

Dp−1
6

[
vn1

k
n (|2rxn| + |3sxn−1|)

] p

≤ D2p−1
6 max {Dr,Ds}

∑
n

[
vn1

k
n (|xn|)

] p
+
∑

n

[
vn1

k
n (|xn−1|)

] p


and
sup

n

[
vn1

k
n

(∣∣∣∣Ên(r, s)(x)
∣∣∣∣)] = sup

n

[
vn1

k
n

(∣∣∣∣∣rLn−1

Ln
xn + s

Ln

Ln−1
xn−1

∣∣∣∣∣)]
≤ D5 max {Dr,Ds} sup

n

[
vn1

k
n (|xn|)

]
.

Then for 1 < p ≤ ∞, we have
∥x∥ℓp

(
Gk ,v,Ê(r,s)

) ≤ D2
6 max {Dr,Ds} ∥x∥ℓp

(2.6)

and
∥x∥ℓ∞

(
Gk,v,Ê(r,s)

) ≤ D5 max {Dr,Ds} ∥x∥ℓ∞ . (2.7)
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For p = 1, the inequality (2.6) is easily obtained. Hence the proof.

Example 2.1. The sequence x = (xn) =
(

1
r

(
−

s
r

)n
L2

n

)
assures the strictness of the above inclusion relation-

ship since x ∈ ℓp

(
Gk, v, Ê(r, s)

)
− ℓp.

Theorem 2.5. Assume that G = (1n) is a sequence of modulus functions inG, and letβm = vn1
k
n

(
Êm(r, s)(x)

)
.

Then for 1 ≤ p < ∞, the sequence
(
h(m)
)∞

n=1
provides a basis for ℓp

(
Gk, v, Ê(r, s)

)
which is formed as

(
h(m)
)

n
=

 1
r

(
−

s
r

)m−n Ln
2

Lm−1Lm
, n ≥ m

0, m > n.

For that, every x ∈ ℓp

(
Gk, v, Ê(r, s)

)
can be uniquely represented in the form

x =
∑

m

βmh(m). (2.8)

Proof. By using the sequence h(m) we get vn1
k
n

(
Ê(r, s)

(
h(m)
))
= e(m)

∈ ℓp where e(m) = (0, 0, . . . , 1, 0, . . .)

(i.e. 1 at the mth place and zero elsewhere) for each m∈N. Hence h(m)
∈ ℓp

(
Gk, v, Ê(r, s)

)
. In addition, let

x ∈ ℓp

(
Gk, v, Ê(r, s)

)
and for every i ∈N0=N∪ {0}, take

x(i) =

i∑
m=1

βmh(m).

Thus

vn1
k
n

(
Ê (r, s)

(
x(i)
))
=

i∑
m=1

vn1
k
n

(
Êm(r, s)(x)

)
vn1

k
n

(
Ê(r, s)

(
h(m)
))

=

i∑
m=1

βme(m).

Also

vn1
k
n

(
Ên (r, s)

(
x − x(i)

))
=

{
vn1

k
n

(
Ên (r, s)(x)

)
, n > i

0, 0 ≤ n ≤ i.

Then, there is i0 ∈N0 such that
∞∑

n=i0+1

[
vn1

k
n

(∣∣∣∣Ên(r, s)(x)
∣∣∣∣)]p ≤ (ε2 )p

for any ε > 0. Therefore, for every i > i0, we have

∥∥∥x − x(i)
∥∥∥
ℓp

(
Gk ,v,Ê(r,s)

) =
 ∞∑

n=i+1

[
vn1

k
n

(∣∣∣∣Ên(r, s)(x)
∣∣∣∣)] p


1
p

≤

 ∞∑
n=i0+1

[
vn1

k
n

(∣∣∣∣Ên(r, s)(x)
∣∣∣∣)] p


1
p

≤
ε
2
< ε.

This concludes that
lim
i→∞

∥∥∥x − x(i)
∥∥∥
ℓp

(
Gk,v,Ê(r,s)

) = 0.
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Moreover, to show that (2.8) is unique, let us consider

x =
∑

m

ξmh(m) ,

for x ∈ ℓp

(
Gk, v, Ê(r, s)

)
. Then, we have

vn1
k
n

(
Ên(r, s)(x)

)
=
∑

m

ξm

(
vn1

k
n

(
Ên(r, s)

(
h(m)
)))

=
∑

m

ξme(m)
n = ξn.

Hence the proof.

Theorem 2.6. Assume that G = (1n) is a sequence of modulus functions inG. Then the Gurarii’s modulus
of convexity for ℓp

(
Gk, v, Ê(r, s)

)
, 1 ≤ p < ∞ can be represented in the form of the following inequality

γℓp

(
Gk ,v, Ê(r,s)

)(ε) ≤ 1 −
(
1 −
(
ε
2

)p) 1
p

, ε ∈ [0, 2].

Proof. Take x ∈ ℓp

(
Gk, v, Ê(r, s)

)
. Then,

∥x∥ℓp

(
Gk ,v, Ê(r,s)

) = ∥∥∥∥vn1
k
n

(
Ên(r, s)(x)

)∥∥∥∥
ℓp

=

∑
n

[
vn1

k
n

(∣∣∣∣Ên(r, s)(x)
∣∣∣∣)] p


1
p

.

We also take the sequences a = (am) and b = (bm), where

am =

((vn1
k
n

)−1
)

Ê−1(r, s)
(
1 −
(
ε
2

)p) 1
p

,
(
vn1

k
n

)−1
Ê−1(r, s)

(
ε
2

)
, 0, 0, . . .


and

bm =

((vn1
k
n

)−1
)

Ê−1(r, s)
(
1 −
(
ε
2

)p) 1
p

,
(
vn1

k
n

)−1
Ê−1(r, s)

(
−
ε
2

)
, 0, 0, . . .

 .
Where Ê−1(r, s) represents the inverse of the matrix Ê(r, s) and ε ∈ [0, 2]. The Ê-transforms of the sequences
a and b are given by

vn1
k
nÊ(r, s)(a) =

(1 − (ε2 )p)
1
p

,
(
ε
2

)
, 0, 0, . . .


and

vn1
k
nÊ(r, s)(b) =

(1 − (ε2 )p)
1
p

,
(
−
ε
2

)
, 0, 0, . . .

 .
Then, we have ∥∥∥∥vn1

k
nÊ(r, s)(a)

∥∥∥∥
ℓp
= ∥a∥ℓp

(
Gk ,v, Ê(r,s)

) = 1,

and ∥∥∥∥vn1
k
nÊ(r, s)(b)

∥∥∥∥
ℓp
= ∥b∥ℓp

(
Gk,v, Ê(r,s)

) = 1.
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Hence, a, b ∈ Sℓp

(
Gk,v, Ê(r,s)

), and∥∥∥∥vn1
k
nÊ(r, s)(a) − vn1

k
nÊ(r, s)(b)

∥∥∥∥
ℓp
= ∥a − b∥ℓp

(
Gk,v, Ê(r,s)

) = ε.
Now, for α ∈ [0, 1],

∥αa + (1 − α)b∥p
ℓp

(
Gk ,v, Ê(r,s)

) = ∥∥∥∥αvn1
k
nÊ(r, s)(a) + (1 − α)vn1

k
nÊ(r, s)(b)

∥∥∥∥p
ℓp

= 1 −
(
ε
2

)p
+ |2α − 1|p

(
ε
2

)p
.

From here,

inf
α∈[0,1]

∥αa + (1 − α)b∥
ℓp

(
Gk,v, Ê(r,s)

) =
(
1 −
(
ε
2

)p) 1
p

.

Therefore, for 1 ≤ p < ∞,

γℓp

(
Gk ,v, Ê(r,s)

)(ε) ≤ 1 −
(
1 −
(
ε
2

)p) 1
p

.

Hence the proof.

Corollary 2.7

(i) If ε = 2, then γℓp

(
Gk,v, Ê(r,s)

)(ε) ≤ 1 and so that ℓp

(
Gk, v, Ê(r, s)

)
is strictly convex.

(ii) If 0 < ε < 2, then 0 < γℓp

(
Gk,v, Ê(r,s)

)(ε) < 1 and so that ℓp

(
Gk, v, Ê(r, s)

)
is uniformly convex.

3. Conclusions

In this study, by using the Lucas band matrix Ê(r, s), a sequence of strictly positive real numbers v = (vn)
and a sequence of modulus functions G = (1n) with 1 ≤ p < ∞, the sequence spaces ℓp

(
Gk, v, Ê(r, s)

)
and

ℓ∞
(
Gk, v, Ê(r, s)

)
have been generalized, then they are established as BK-spaces with some given norms.

After that, the connection between ℓp and ℓp

(
Gk, v, Ê(r, s)

)
for 1 ≤ p < ∞ was founded. Finally the basis

and the Gurarii’s modulus of convexity for the space ℓp

(
Gk, v, Ê(r, s)

)
(1 ≤ p < ∞) have been determined

independently.
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[17] M. C. Daǧli and T. Yaying, Some new paranormed sequence spaces derived by regular Tribonacci matrix, The Journal of Analysis 31(1)

(2023) 109–127.
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