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Abstract. In this study, the sequence sets fp(Gk, 0, E(r, 5)) and €..(GK, v, E(r, s)) which are depended on
the Lucas band matrix and a sequence of modulus functions, are presented. After that, a few inclusion
relationships of these sequence sets are given. Furthermore, a geometrical property such as the modulus
of convexity of the sequence set £,(G*, v, E(r, s)) is discussed.

1. Introduction

Assume that w is the space containing all real and complex-valued sequences. A linear subspace of w
is called a sequence space. The symbols {w, co,c and ¢, for 1 < p < oo represent the sequence spaces of all
bounded, null, convergent, and p-absolutely convergent series respectively, normed by ||x||o, = sup,|x,| and

lIx[l, = X lxalP )%. For the first time, the difference sequence spaces were introduced by Kizmaz [1] in the
form of X(A) = {x € w : (x, — xy-1) € X}, X = Co, ¢, co. After that, these sequence spaces have been general-
ized by Et and Colak [2] such as X(A") = {x € w : A’x € X}, X = €, ¢, ¢. Kirisci and Basar [3] have recently
defined and investigated the difference sequence spaces X={xew:Brs)xeX},1< p <o, X ="Lu,cco,tp
where B(r,s) = (sx,-1 + x,); 1,5 # 0. At the same time, Colak and Et [4], Mursaleen [5], Altin [6], and some
other authors have investigated the difference sequence spaces in their studies.

A normed space X has a Schauder basis (a,) (or, more simply basis), if there is indeed a unique scalar
sequence (a,) for every x in X with

Lim ||x — (apag + o141 + - - + aya,)|| = 0.
n—oo

A BK-space is a Banach space X, if there is Q;(x) = x; such that Q; : X — C (C provides the set of all
complex numbers) is continuous for all i€ IN, refer to [7].

As a simple instance, the spaces {w, ¢y, ¢ and ¢, for 1 < p < oo are BK-spaces, respectively with the norms
below

==

(e8]
il = sup vl and llxll, = () k).
n n=0
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In 1953, Nakano [8] established the concept of the modulus function. We remember that g : [0, 00) —

[0, 00) is a modulus function such that g(x) = 0 iff x = 0, g is increasing and continuous from 0%, and

gix +y) < glx) + g(y) for every x,y in [0,00). A modulus can be either bounded or unbounded. For

illustration, g(x) = 1/(1 + x) is a bounded modulus, but g(x) = x”, (0 < p < 1) is unbounded. The notion of
the modulus function has also been discussed in [6, 7, 9-16]

Consider ¥ = ()mn) as an infinite matrix and assume that X and Y are two sequence spaces. Then, W
provides a matrix mapping from X into Y if, for every x = (x,) in X, there exists the sequence Wx = (1,,(x)) €
Y, where

W@ =Y Yts (e N). (1.1)
n=0

The set of all matrices i that have the property 1) : X — Y is represented by (X, Y). For that, W € (X : Y)
if and only if the right hand of the above equality (1.1) is convergent for each me IN and x € X. The notion
of matrix domain Xy of W € X is expressed by

Xy={xew :YxeXj}, (1.2)

that represents a sequence space, see [16]. In recent years, a few mathematicians have developed certain
sequence spaces by use of the matrix domain for an infinite matrix, refer to [7, 13, 17, 18].

In 1876, the sequence {L,},., of Lucas numbers 1, 3, 4, 7, 11, 18, 29, ... was introduced by Edouard
Lucas which is given by the Fibonacci recurrence relation in the form L, = L,—1 + L,—»; n > 2 with different
initial conditions Ly = 2 and L; = 1 where L, is the nth term of the sequence {L,},.,. Lucas numbers have
various formulas and several properties, see [19, 20].

By using Lucas numbers with two real numbers r and s such that r,s # 0, the Lucas band matrix
E(r,s) = (Enm(r, s)) has been established in [21] as follows:

sLﬁ—’_ll (m=n-1)
E(r,s) = {r=L (m = n) (1.3)

0 m>nor0<m<n-1).

With the help of (1.3) the E-transform for a sequence x = (x,) is formed by

= L, L
E,(r,s)(x) = r—2x, + s—x,_1, n > 1. (1.4)
Ln Ln—l
Recently, Karakas [21] and Mohiuddine [7] have used Lucas numbers and Lucas band matrix in con-
structing some sequence spaces in their studies.

Suppose that X is a normed linear space and Sx and By are the unit sphere and unit ball of X, respectively.
Then the idea of modulus of convexity has been defined by Clarkson [22] and Gurarii [23] respectively, as
follows:

e+ o]

X
> 1X,Y € Sx,

(Sx(e):inf{l— ‘x—y“:e}, e€[0,2]

and

yx(e) = inf{l - hier[})fll ”hx +(1- h)y” 1x,y €Sx, ||[x— y” = e}, e €[0,2].

The case of 0 < yx(¢) < 1 means that X is uniformly convex as well as the choice of yx(¢) < 1 means that
X is strictly convex. The concept of modulus of convexity has also been studied in [24] and by some other
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authors.

Lemma 1.1. [25] If g is a modulus function, then for each k € IN the function gk =gogo...og (ktimes)
is also a modulus.

2. Main results

In this part of our study, we introduce some difference sequence spaces based on the Lucas band

matrix E(r,s) and a sequence of modulus functions G = (g,), and study some interesting results through
newly introduced sequence spaces. Let G be the set of sequence of modulus functions G = (g,) such that
lim, o+ sup, g,(1) = 0. The sequence of modulus functions determined by G is indicated by G = (g,,) € G.
We let GF = (g},‘,) = {g’f, g, .. } (k € N), and v = (v,) to be a sequence of strictly positive real numbers. We
use these notations throughout this study. Given the information above, we provide these sequence spaces

as follows:
ty (Gk/ U,E(T,S)) = {x Ew: Z [vngﬁ(

En(r,s)(x)’)] ' < oo}, 1<p<oco

and

- (Gk, U,E(r,s)) = {x €w: sup [Ung]; ( E,,(r,s)(x)|)] < oo}.

With the help of (1.2) the sequence spaces above are redefined as follows:

6, (G0, E(r,9)) = (£,) and (o (Gt 0,E(r,5)) = (€e) 2.1)

Uy gf,f(r,s) vngﬁf(r,s)

Remark 2.1. If k = 1 then the spaces ¢, (Gk, v, E(r, s)) and (o (Gk, v, E(r,s)) will reduce to the spaces
ﬁp (G, v, E(r,s)) and £ (G, v, f(r, s)) of Mohiuddine [7], respectively, as well as if we put g(x) = x for every
x € [0,00) and every g in G with v, = 1 for all n€ IN, then the spaces ¢, (Gk, v, E(r, s)) and £ (Gk, U, E(r,s))
will become the same as ¢, (E(r, s)) and £ (E(r, s)) of Karakas [21], respectively.

Theorem 2.1. Assume that G = (g,) is a sequence of modulus functions in G. The sequence spaces
ty (Gk, v, E(r, s)) and (s (Gk, v, E(, s)) are Banach spaces for 1 < p < oo, respectively, normed by

_ k
”fop(Gk,ZJ,E(V,S)) - (Z [Ungn (
n=1

£ 9| p]p 2.2)

and

¥ 1) = SUP o0t ([Eu 90 )| 2.3)

Proof. We here only consider the proof for £, (Gk, v, E(r, s)). It can be easily verified that £, (Gk, v, E(r, s)) is
anormed linear space, normed by (2.2). Letx’ = (xﬁ7 )n be a Cauchy sequence such that (qu)n = (xg, X, .. ) €

ty (Gk, v, E(r, s)) for each i€ IN. Then given ¢ > 0 there is a natural number Ne IN such that for every i, j > N,

we have
b=l = (2 s

n

1
P

Eur,s) (' - xf)|)] ,,] <e
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e

Then for every i, j > N and for all n€ IN, we see that

and so

En(r, s) (xi - x’)m ’ < &P, (2.4)

g ( E.(r,5) (xi - x7)|) <e.

Hence for all ne IN, we get

E.(,5) (xi - xf)' -0

as i, j — oo. It follows that (E,,(r, s) (xi)) = (En(r,s) (xl) , En(r, s) (xz) L. ) is a Cauchy sequence of numbers.

Since R and C are complete, then it is convergent, so there is x = (x,). Say (En(r, s) (xi)) - (En(r, s)(x)) as
i — oo and for each n€ IN. Letting j — oo in (2.4), we obtain for i > N

i

This implies that (xi - x) €l (Gk, v, E(r, s)), and since x' € ¢, (Gk, v, Er, s)), then

fn(r, s) (xi - x)m ’ <eP. (2.5)

Zn“[vngﬁ(’li\n(r,s)(x)|)]p < Zﬂ"[vngﬁ(fn<r,s>(x—xf)|+En<r,s>(x")|)]p
< ;[v,,gﬁ('En(r,s>(x—xf)|)+vng§(fn<ns)(xf)|)]p
< X2 ([endh (Bt (=) + et (Bt ()] )
= 2 Y [ot (B (-] 2 X[ [Frr9 ()]

Furthermore, by adding limits in (2.5) and letting i — co, we have

lim”xi—x” o=
i—00 (G, Er9)

So indeed, the sequence Xt converges to x and they are both in £, (Gk, v, E(r, s)) forl < p < . So, we

conclude the completeness of ¢, (Gk, v, Er, s)). Therefore it is a Banach space. Hence the proof.

Theorem 2.2. Assume that G = (g,) is a sequence of modulus functions in G. Then the given sequence
spaces fp (Gk, v, E(r, s)) and €. (Gk, v, E(r, s)) are BK-spaces for 1 < p < oo, respectively, with the norms (2.2)
and (2.3).

Proof. The proof is simply obtained. Since the conditions of (2.1) hold, E(r,s) is a triangle matrix and
both £, and ¢, are BK-spaces by their typical norms. Then by Theorem 4.3.12 of Wilansky [26], the proof
can be obtained straightforwardly. Therefore, our sequence spaces are BK-spaces. Hence the proof.

Remark 2.2. It’s clear to see that ||x||[p(Gk,v,E(r,s)) * ”lxnlfp(c",vf(r,s)) and ”x”&Q(G",v,E(r,s)) * Hlx”lfw(ck,vf(r,s))’

this means that the difference sequence spaces ¢, (Gk, v, f(r,s)) and o (Gk,v, E(r, s)) are of non-absolute
type. From the above nonequalities, it has come to notice that the absolute property may not hold for
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ty (Gk, v, E(r,s)) and € (Gk, v, E(r, s)) from at least one sequence in which |x| = (|x,]) and 1 < p < co.

Theorem 2.3. Assume that G = (g,) is a sequence of modulus functions in G. Then for 1 < p < g, the
following inclusion relationship is satisfied.

6, (Gt 0, Er,9)) € £,(G 0, Er9))
Proof. By the use of (1.4), we consider a transformation M : ¢, (Gk, v, E(r,s)) — {, defined as M(x) =
Vgt (En(r,s)(x)) (ne N). Now if x € ¢, (Gk,v, E(r,s)) then it gives us M(x) € £,. Since ¢, C ¢, for

1 < p < g, so we have M(x) € {;,. Thus x € {, (Gk,v, E(r,s)). So that for 1 < p < g the inclusion
t, (G40, E(r,5)) € £,(G¥, v, E(r,5)) holds. Hence the proof.

Assume that G = (g,) is a sequence of modulus functions in G. And given two non-zero real numbers r
and s as given in (1.3). Then we define the following equalities as follows:

D5 = max {5, sup {g’;(5)}}, D¢ = max {6, sup {g’;(6)}},

D, = max{lrl, sup {g’,ﬁ(lrl)}} and D, = max{lsl, sup {g’,‘,(lsl)}}.
The above equalities may be used in some steps of our study.

Theorem 2.4. Assume that G = (g,) is a sequence of modulus functions in G. Then the indicated
inclusion relationship below is valid.

ty < £,(Grv,E(r,5)) for 1 < p < oo.

Proof. To verify the validity of the inclusion we need to find a number D > 0 such that ||x|| (G0 Er9) <

D ||x||€p for x € {,. From the Lucas sequence, we write Lo <2 and LL—fl < 3 (ne IN). Now we assume that

n

x € £, 1 < p < co. Then by using (1.4) and the above inequalities, we have

Zn: ot Z ot ) p

_ P
Y DL [ough (2rx] + Bsxa))]
n

D¥~ max (D,, D,} (Z (00 (] * + Y [ongl, (i) p]

)

< Ds max {D,,D;} sup [vng’; (Ixnl)] .

Ly,
T Xy 4 S—— X1
Ln Ln—l

r

E9w|)|

IA

IA

and

rL”_lx +5 Ly X
— An T An-1
Ln Ln—l

sup [o,74 [Eu(r 0] )| = sup o

Then for 1 < p < o0, we have
”x”gp(ck/v/g(rls)) < Dé max {Dr/ Ds} ”x“[,, (26)
and

||x||€m(Gk,U,§(V,S)) < D5 max {DY/DS} ”-xllfoo . (27)
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For p = 1, the inequality (2.6) is easily obtained. Hence the proof.

Example 2.1. The sequence x = (x,) = (l

n
. (—f) L%) assures the strictness of the above inclusion relation-

ship since x € ¢, ( L0, E, s))

Theorem 2.5. Assume thatG = (g,) is a sequence of modulus functionsin G, and let 8, = v, g’fl (Am(r, s)(x)).

Then for 1 < p < oo, the sequence (h(m)) provides a basis for £ (Gk v, E(r, s)) which is formed as

() = {% (=3)" ", nzm
n (), m > n.

For that, every x € £, (Gk, v, E(r, s)) can be uniquely represented in the form
x= Z Buh™. (2.8)
m
Proof. By usmg the sequence h™ we get vngn( (r,5) (h(’”))) = ¢ € ¢, where e = (0, 0, ..., 1, 0,...)

(i.e. 1 at the m™ place and zero elsewhere) for each me N. Hence h™ € ¢, (Gk, v, E(r,s)). In addition, let
x €l (Gk, v, E(r,s)) and for every i € No= INU {0}, take

i
0 =Y g

m=1
Thus
Und, ( (r,s) (x(l))) = Zvng}; (Em(r,s)(x))vngﬁ (E(r,s) (h(’”)))
m=1
- i ﬁme(m)
m=1
Also

0, 0<n<i.

E90)|)| < (5)

ou (En (r,8) (x —x)) = {vng’,‘, (Ea9)@), 0> i
Then, there is iy € INg such that

Y, [

n=ip+1

for any ¢ > 0. Therefore, for every i > iy, we have

1
. > — r)?
oy = [ (B |
< [ Z [Ungn( a(7,8) x)m ]p <fce
n=ip+1 2
This concludes that
llgg “X x(l)”[‘ Gk vf(r,s)) =0.
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Moreover, to show that (2.8) is unique, let us consider

x= Z Emh™
m

forx € ¢, (Gk, v, E(r, s)). Then, we have

vugt (En(r,9)(0))

2 & (ondt, (Batr9) (1))
= Z gmefqm) =&

Hence the proof.

Theorem 2.6. Assume that G = (g,) is a sequence of modulus functions in G. Then the Gurarii’s modulus
of convexity for ¢, (Gk, v, E(r, s)), 1 < p < oo can be represented in the form of the following inequality

Vo(orm Frm)@ < 1= (1 (g)p)” , eel02].

Proof. Take x € {, (Gk, v, E(r, s)) . Then,

0u7% (Ea(r,5)())

”x”l’p(G",v, E(r,s)) =

(Tl

n

&

<=

E0 )0 p] .

We also take the sequences a = (a,,) and b = (b,,), where

Ay = (((vngﬁ)_l)f—l(r,s) (1 _ (%)P); , (vng',i)_l El(rs) (g),O, 0, ]
and 1
o= E i3] s B0 (500,

Where E‘l(r, s) represents the inverse of the matrix E(r, s)and ¢ € [0,2]. The E-transforms of the sequences

a and b are given by
— AP\ S .
koo =((1-(5)) . () 0.0 -]

0ugSE(r,s)(b) = ((1 - (g)”)” (-5).0.0, ]
|

and

Then, we have

0. g E(r, s)(a)ng = ||a||€,,(ck,v, Fr) = 1,

and

vngﬁf(r,s)(b)ug = WPl (g, By = T
4
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Hence,a, be S o and

Gk, E(r,s))’

vngl;lf(r, @) - Ung],ﬁ':\(i’, S)(b)”f = lla— b”fp(Gk,v, E(r,s)) - &
P
Now, for a € [0,1],

loa + (1 - )b - ||avng,ﬁ'1§(r, $)(@) + (1 — a)oug" Er, 5)(b)

eV eV
[ —_1P1 =
1 (2) a1 (2)

. £ / %
inf |laa + (1 - a)b]| :(1‘(‘)) '
acl0,1] 6(G*0, Er9))

P
(G-, Er9)) 4

From here,

Therefore, for 1 <p < oo,

Ve, (G, E(,,S))(e) <1- (1 B (E)P); '

Hence the proof.

Corollary 2.7

(i) If € = 2, then €) < 1and so that ¢, (G, o, E(r, s)) is strictly convex.
Ve P y

Gk o, E(r,s))(

(i) f0<e<2then0<y, ( (¢) < 1and so that ¢, (Gk, (7 E(r, s)) is uniformly convex.
4

Gk, E(r,s))

3. Conclusions

In this study, by using the Lucas band matrix E(r,s),a sequence of strictly positive real numbers v = (v,,)
and a sequence of modulus functions G = (g,) with 1 < p < oo, the sequence spaces ¢, (Gk, v, E(r,s)) and

loo (Gk, v, E(r, s)) have been generalized, then they are established as BK-spaces with some given norms.
After that, the connection between ¢, and ¢, (Gk, v, f::(r, s)) for 1 < p < oo was founded. Finally the basis

and the Gurarii’s modulus of convexity for the space ¢, (Gk, v, E(r,s)) (1 £ p < o) have been determined
independently.
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