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Available at: http://www.pmf.ni.ac.rs/filomat

Clairaut anti-invariant Riemannian maps to trans-Sasakian manifolds
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Abstract. In this article, we introduce Clairaut anti-invariant Riemannian maps from Riemannian mani-
folds to trans-Sasakian manifolds. We derive necessary and sufficient condition for an anti-invariant map
to be Clairaut when base manifold is trans-Sasakian manifold. We discuss the integrability of ran1eπ∗ and
(ran1eπ∗)⊥. Further, we establish harmonicity of these maps. Finally, we construct nontrivial examples of
such maps for justification.

1. Introduction

The concept of Riemannian maps between Riemannian manifolds was firstly introduced by Fischer
in 1992 [7]. He described Riemannian maps as the generalization of isometric immersions, Riemannian
submersions and isometries. The interesting part of Riemannian maps is that they satisfy general eikonal
equation which is a bridge between geometrical and physical aspects of optics. In [7], Fischer described:
let π : (M, 11)→ (B, 12) be a smooth map between smooth finite dimensional Riemannian manifolds (M, 11)
and (B, 12) such that 0 < rankπ < min{dimM, dimB}. Let π∗p : TpM → Tπ(p)B denotes the differential map at
p ∈M, and π(p) ∈ B. Then TpM and Tπ(p)B split orthogonally with respect to 11(p) and 12(π(p)), respectively,
as [7]

TpM = kerπ∗p ⊕ (kerπ∗p)⊥,
=Vp ⊕Hp,

Tπ(p)B = ran1eπ∗p ⊕ (ran1eπ∗p)⊥,

whereVp = kerπ∗p andHp = (kerπ∗p)⊥ are vertical and horizontal parts of TpM respectively. The map π is
called Riemannian map at p ∈M, if the horizontal restriction

(π∗p)h = π∗p | Hp : Hp → ran1eπ∗p
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is a linear isometry between the spaces (kerπ∗p, 11 |kerπ∗p ) and (ran1eπ∗p, 12|(ran1eπ∗p)). In other words, (π∗p)h

satisfies the equation

12(π∗W, π∗Z) = 11(W,Z), (1.1)

for all vector fields W,Z tangent to Γ(kerπ∗p)⊥. During the last three decades, many authors have studied
Riemannian maps [1, 2, 12, 14, 15, 22] and the investigation is still going on.
Clairaut’s theorem plays an important role in differential geometry, which states that for any geodesic γ on
a surface of revolution, the function rsinθ is constant, where r is the distance between a point on the surface
and rotation axis, whereas θ is an angle between γ and the meridian curve through γ. Inspired by this
theorem, Bishop [5] introduced Clairaut Riemannian submersion and derived the necessary and sufficient
conditions for a submersion to be Clairaut Riemannian submersion. Hereafter, Riemannian submersion is
investigated broadly in both hermitian geometry as well as contact geometry [8, 9, 17, 18]. Şahin [13, 16]
investigated Clairaut conditions on Riemannian map. Later, various types of Clairaut Riemannan maps
such as invariant, anti-invariant, semi-invaiant are studied with Kahler structure and cosymplectic structure
[11, 16, 19–21].
The notion of a trans-Sasakian structure (ψ, ξ, η, 1, α, β) on (2n + 1)-dimension manifold B, was introduced
by Oubina [10] which can be seen as a generalization of Sasakian, Kenmotsu and cosymplectic structure
on a contact metric manifold, where α, β are smooth functions on B . Generally, a trans-Sasakian manifold
(B, ψ, ξ, η, 1, α, β) is called a trans-Sasakian manifold of type (α, β) and manifolds of type (α, 0), (0, β) and
(0, 0) are called, α−Sasakian, β−Kenmotsu and cosymplectic manifolds respectively. Since the geometry
of Sasakian manifolds is very rich, it would be interesting to study different type of Riemannian maps
on this structure. In this paper, we study Clairaut anti-invariant Riemannian maps from Riemannian
manifolds to trans-Sasakian manifolds. The paper is organized as follows: In section 2, we give all the basic
definitions and terminologies, needed throughout the paper. In section 3, we introduced Clairaut anti-
invariant Riemannian maps from Riemannian manifolds to trans-Sasakian manifolds admitting horizontal
Reeb vector field. Further, we study necessary and sufficient condition for a curve on base manifold to be
geodesic and obtain necessary and sufficient condition for an anti-invariant Riemannian map to be Clairaut
when base manifold is trans-Sasakian with horizontal Reeb vector field. We find the integrability condition
for distributions of tangent bundle on base manifold. Later, we check the harmonicity of these maps. We
also construct some nontrivial examples for such maps.

2. Preliminaries

In this section, we recall the definitions of contact manifolds, trans-Sasakian manifolds and some
important properties related to Riemannian maps.
Let B be a (2n + 1)−dimensional differentiable manifold, then B is said to have an almost-contact structure
(ψ, ξ, η), if it admits a (1, 1) tensor field ψ, a vector field called characteristic vector field or Reeb vector field
ξ, and a 1−form η, satisfying [6]

ψ2 = −I + η ⊗ ξ, ψξ = 0, η ◦ ψ = 0, η(ξ) = 1, (2.1)

where I is the identity mapping. A Riemannian metric 1 on an almost-contact manifold B is said to be
compatible with the almost-contact structure (ψ, ξ, η), if for any vector fields W,Z ∈ Γ(TB), 1 satisfies [6]

1(ψW, ψZ) = 1(W,Z) − η(W)η(Z), (2.2)
1(ψW,Z) = −1(W, ψZ), η(W) = 1(W, ξ), (2.3)

the structure (ψ, ξ, η, 1) is called an almost contact metric structure.
The almost contact structure (ψ, ξ, η) is said to be normal if N+dη⊗ξ = 0,where N is the Nijenhuis tensor of
ψ. If dη = Φ, whereΦ(W,Z) = 1(ψW,Z) is a tensor field of type (0, 2), then an almost contact metric structure
is said to be normal contact metric structure. An almost contact metric manifold B is called a trans-Sasakian
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manifold of type (α, β) [6], if it satisfies

(∇Wψ)Z = α(1(W,Z)ξ − η(Z)W) + β[1(ψW,Z)ξ − η(Z)ψW], (2.4)
(∇Wη)Z = −α1(ψW,Z)ξ + β1(ψW, ψZ), (2.5)
∇Wξ = −αψW + β(W − η(W)ξ), (2.6)

where α, β are smooth functions and ∇ is Levi-Civita connection of 1 on B. Further, it can be seen that a
trans-Sasakian manifold of type (α, 0) is a α−Sasakian manifold and a trans-Sasakian manifold of type (0, β)
is a β−Kenmotsu manifold. A trans-Sasakian manifold of type (0, 0) is called a cosymplectic manifold. In
particular, for α = 1, β = 0; and α = 0, β = 1, a trans-Sasakian manifold will be Sasakian and Kenmotsu
manifold respectively.

Example 2.1. [6] Let B = {(u, v,w) ∈ R3,w , 0} be a 3−dimensional Riemannian manifold associated with
Riemannian metric 12 given by

12 =
1
4

1 + v2 0 −v
0 1 0
−v 0 1

 ,
1−form η = 1

2 (dw − vdu) and linearly independent global frame {E1,E2,E3} be defined as E1 = 2 ∂
∂v ,E2 = ψE1 =

2( ∂∂u + v ∂
∂w ),E3 = 2 ∂

∂w = ξ, where ξ is the characteristic vector field (Reeb vector field) and the (1, 1)− tensor field ψ
is given by the matrix

ψ =

 0 1 0
−1 0 0
0 v 0

 ,
then B is a trans-Sasakian manifold of type (1, 0).

Further, let π : (Mm, 11) → (Bb, 12) be a smooth map between smooth finite dimensional Riemannian
manifolds, then the differential map π∗ of π can be viewed as a section of bundle Hom(TM, π−1TB) → M,
whereπ−1TB is the pullback bundle whose fibers at p ∈M is (π−1TB)p = Tπ(p)B. The bundle Hom(TM, π−1TB)

has a connection ∇ induced from the Levi-Civita connection ∇M and the pullback connection
B
∇
π, then the

second fundamental form of π is given by [13]

(∇π∗)(W,Z) =
B
∇
π
Wπ∗Z − π∗(∇

M
WZ) (2.7)

for all W,Z ∈ Γ(TM) and
B
∇
π
Wπ∗Z ◦ π = ∇

B
π∗W

π∗Z.

Also, for any vector field W on M and any section V of (ran1eπ∗)⊥, we have ∇π⊥W V, the orthogonal projection
of ∇B

WV on (ran1eπ∗)⊥, where ∇π⊥∗ is linear connection on (ran1eπ∗)⊥ such that ∇π⊥12 = 0.
Now, for a Riemannian map, we have [13]

∇
B
π∗WV = −AVπ∗W + ∇π⊥W V, (2.8)

whereAVπ∗W is the tangential component of ∇B
π∗W

V. At p ∈ M, we have ∇B
π∗W

V(p) ∈ Tπ(p)B, AVπ∗W(p) ∈
π∗p(TpM) and ∇π⊥W V(p) ∈ (π∗p(TpM))⊥. It is easy to see thatAVπ∗W is bilinear in V and π∗W, andAVπ∗W at
p depends only on Vp and π∗pWp. By direct computations, we obtain [13]

12(AVπ∗W, π∗Z) = 12(V, (∇π∗)(W,Z)) (2.9)

for W,Z ∈ Γ((kerπ∗)⊥) and V ∈ Γ((ran1eπ∗)⊥). Since (∇π∗) is symmetric, it follows that AV is a symmetric
linear transformation of ran1eπ∗.
Moreover, Letπ : (M, 11)→ (B, 12) be a Riemannian map between Riemannian manifolds, thenπ is umbilical
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Riemannian map if and only if [13]

(∇π∗)(W,Z) = 11(W,Z)H2 (2.10)

for W,Z ∈ Γ((kerπ∗)⊥ and H2 is nowhere zero vector field on (ran1eπ∗)⊥. Also, the mean curvatures of vertical
distributionV and horizontal distributionH are defined as [13]

ϱV =
1
q

q∑
i=1

H(∇ei ei), ϱH =
1

m − q

m−q∑
j=1

V(∇E j E j), (2.11)

where {ei}
q
i=1 and {E j}

m−q
j=1 are local frames ofV andH respectively. A distribution on M is said to be minimal,

if for each point in M, the mean curvature vanishes. 0

Lemma 2.2. [13] Let π be a Riemannian map from a Riemannian manifold (M, 11) to a Riemannian manifold (B, 12).
Then, ∀W,Y,Z ∈ Γ((kerπ∗)⊥), we have

12((∇π∗)(W,Y), π∗Z) = 0.

Clairaut Riemannian maps are related to geodesics and therefore have been defined by using geodesics
on the total manifold M as well as base manifold B separately. In the sense of a geodesic on total manifold,
Şahin has given the following definition.

Definition 2.3. [13] A Riemannian map π : (M, 11) → (B, 12) between Riemannian manifolds is called Clairaut
Riemannian map if there is a function r̃ : M → R+ such that for every geodesic γ̃ on M, making angle θ̃ with the
horizontal subspaces, r̃sinθ̃ is constant.

By using the above definition, we have the following result.

Theorem 2.4. [13] Let π : (M, 11) → (B, 12) be a Riemannian map such that fibers are connected. Then π is a
Clairaut Riemannian map with r̃ = e f if and only if each fiber is totally umbilical and has mean curvature vector field
H̃ = −1rad f , where H̃ is the mean curvature vector field of the fibers.

Further, Yadav et al [20] have studied Clairaut Riemannian maps using geodesic on base manifold B and
have given the following definition.

Definition 2.5. [20] A Riemannian map π : (M, 11) → (B, 12) between Riemannian manifolds is called Clairaut
Riemannian map if there is a function r : B→ R+ such that for every geodesic Ω on B, the function (r ◦Ω)sinθ(s) is
constant, where, π∗Z ∈ Γ(ran1eπ∗) and V ∈ Γ(ran1eπ∗)⊥are components of Ω̇(s), and θ(s) is the angle between Ω̇(s)
and V.

Following is an important result based on the above definition.

Theorem 2.6. [20] Letπ : (M, 11)→ (B, 12) be a Riemannian map between Riemannian manifolds such that ran1eπ∗
is connected and (ran1eπ∗)⊥ is totally geodesic, and γ,Ω = π ◦ γ be geodesics on M and B respectively. Then, π is
a Clairaut Riemannian map with r = eh if and only if π is umbilical map, and has H = −∇Bh, where h is a smooth
function on B and H is the mean curvature vector field of ran1eπ∗.

3. Clairaut anti-invariant Riemannian maps to trans-Sasakian manifolds

In this section, we define Clairaut anti-invariant Riemannian map from a Riemannian manifold to a
trans-Sasakian manifold and discuss the geometry of such maps. Further, we construct non-trivial examples
of such maps. Throughout this section, we are considering Reeb vector field in horizontal spaceH of TM
and (ran1eπ∗)⊥ as totally geodesic distribution.
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Definition 3.1. Letπ be a Riemannian map from a Riemannian manifold (M, 11) to an almost contact metric manifold
(B, 12, ψ, η, ξ). Then we say that π is an anti-invariant Riemannian map at p ∈ M if ψ(ran1eπ∗p) ⊂ (ran1eπ∗p)⊥. If
π is an anti-invariant Riemannian map for all p ∈M, then π is called an anti-invariant Riemannian map.

In this case, the horizontal distribution (ran1eπ∗)⊥ can be decomposed as

(ran1eπ∗)⊥ = ψran1eπ∗ ⊕ µ, (3.1)

where µ is the orthogonal complementary distribution of ψran1eπ∗ in (ran1eπ∗)⊥ and also invariant with
respect to ψ. pi admits vertical Reeb vector field if ξ ∈ ran1eπ∗ whereas if it admits horizontel Reeb vector
field ξ, then ξ ∈ (ran1eπ∗)⊥. It is clear that in case of horizontal Reeb vector fields, ξ ∈ µ. For any
V ∈ (ran1eπ∗)⊥, we can have

ψV = BV + CV, (3.2)

where BV ∈ Γ(ran1eπ∗) and CV ∈ Γ((ran1eπ∗)⊥).

Definition 3.2. An anti-invariant Riemannian map from a Riemannian manifold to a contact manifold is said to be
Clairaut if it satisfies Definition 2.4.

Theorem 3.3. Let π : Mm
→ Bb be an anti-invariant Riemannian map from a Riemannian manifold (Mm, 11) to a

trans-Sasakian manifold (Bb, 12, ψ, η, ξ) of type (α, β) with horizontal Reeb vector field ξ and γ : J ⊂ R → M be a
geodesic curve on M, then the curve Ω = π ◦ γ is a geodesic on B if and only if

−Aψπ∗Wπ∗W −ACUπ∗W + π∗(H∇M
WZ) + ∇B

Uπ∗Z + η(U)[απ∗W + βπ∗Z] = 0, (3.3)

∇
π⊥
W ψ(π∗W) + ∇π⊥W CZ + ∇π⊥U ψ(π∗W) + ∇π⊥U CU + (∇π∗)(W,Z) − α||Ω̇||2ξ + η(U)[αU

+ β(ψ(π∗W) + CU)] = 0 (3.4)

for any U ∈ Γ((ran1eF∗)⊥) and W,Z ∈ Γ((kerF∗)⊥) such that π∗Z = BU with π∗W and U as vertical and horizontal
components of Ω̇(s).

Proof. Let U ∈ Γ((ran1eF∗)⊥) and W ∈ Γ((kerF∗)⊥) such that Ω̇(s) = π∗W(s)+U(s). Since B is a trans-Sasakian
manifold, using (2.4), we get

ψ∇B
Ω̇
Ω̇ = ∇B

Ω̇
ψΩ̇ − α[12(Ω̇, Ω̇)ξ − η(Ω̇)Ω̇] − β[12(ψΩ̇, Ω̇)ξ − η(Ω̇)ψΩ̇].

Since Ω̇ = π∗W +U, the above equation can be rewritten as

ψ∇B
Ω̇
Ω̇ = ∇B

π∗Wψπ∗W + ∇
B
π∗WψU + ∇B

Uψπ∗W + ∇
B
UψU − α[||Ω̇||2ξ − η(U)π∗W − η(U)U]

+ β[η(U)ψ(π∗W) + η(U)ψU]. (3.5)

Using (2.8) and (3.2) in (3.5), we get

ψ∇B
Ω̇
Ω̇ = −Aψπ∗Wπ∗W + ∇

π⊥
W ψ(π∗W) −ACUπ∗W + ∇π⊥W CU + ∇B

π∗WBU + ∇B
Uψ(π∗W)

+ ∇B
UBU + ∇B

UCU − α[||Ω̇||2ξ − η(U)π∗W − η(U)U] + β[η(U)ψ(π∗W) + η(U)ψU],
= −Aψπ∗Wπ∗W −ACUπ∗W + ∇π⊥W ψ(π∗W) + ∇π⊥W CU + ∇π⊥U ψ(π∗W) + ∇π⊥U CU

+ ∇B
π∗WBU + ∇B

UBU − α[||Ω̇||2ξ − η(U)π∗W − η(U)U] + β[η(U)ψ(π∗W) + η(U)ψU].

(3.6)

Since 1(BU,V) = 0 for any V ∈ Γ((ran1eπ∗)⊥), therefore ∇B
UBU ∈ Γ(ran1eπ∗). Let Z ∈ Γ((kerπ)⊥) such that
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π∗Z = BU, then using (2.7) in (3.6), we have

ψ∇B
Ω̇
Ω̇ = −Aψπ∗Wπ∗W −ACUπ∗W + ∇π⊥W ψ(π∗W) + ∇π⊥W CU + ∇π⊥U ψ(π∗W) + ∇π⊥U CU

+ (∇π∗)(W,Z) + π∗(H∇M
WZ) + ∇B

Uπ∗Z − α[||Ω̇||2ξ − η(U)π∗W − η(U)U]
+ βη(U)ψ(π∗W) + βη(U)ψU.

(3.7)

Since, Ω is geodesic, ∇B
Ω̇
Ω̇ = 0. Separating vertical and horizontal parts of the above equation we get (3.3)

and (3.4).

Corollary 3.4. Let π : Mm
→ Bb be an anti-invariant Riemannian map from a Riemannian manifold (Mm, 11) to

a trans-Sasakian manifold (B, 12, ψ, η, ξ) of type (α, 0) with horizontal Reeb vector field ξ and γ : J ⊂ R → M be a
geodesic on M, then the curve Ω = π ◦ γ is a geodesic on B if and only if

−Aψπ∗Wπ∗W −ACUπ∗W + π∗(H∇M
WZ) + ∇B

Uπ∗Z + η(U)απ∗W = 0,

∇
π⊥
W ψ(π∗W) + ∇π⊥W CZ + ∇π⊥U ψ(π∗W) + ∇π⊥U CU + (∇π∗)(W,Z) + α[η(U)U − ||Ω̇||2ξ] = 0

for any U ∈ Γ((ran1eF∗)⊥) and W,Z ∈ Γ((kerF∗)⊥) such that π∗Z = BU with π∗W and U as vertical and horizontal
components of Ω̇(s).

Corollary 3.5. Let π : Mm
→ Bb be an anti-invariant Riemannian map from a Riemannian manifold (Mm, 11) to

a trans-Sasakian manifold (B, 12, ψ, η, ξ) of type (0, β) with horizontal Reeb vector field ξ and γ : J ⊂ R → M be a
geodesic on M, then the curve Ω = π ◦ γ is a geodesic on B if and only if

−Aψπ∗Wπ∗W −ACUπ∗W + π∗(H∇M
WZ) + ∇B

Uπ∗Z + βη(U)π∗Z] = 0,

∇
π⊥
W ψ(π∗W) + ∇π⊥W CZ + ∇π⊥U ψ(π∗W) + ∇π⊥U CU + (∇π∗)(W,Z) + βη(U)[ψ(π∗W) + CU] = 0

for any U ∈ Γ((ran1eF∗)⊥) and W,Z ∈ Γ((kerF∗)⊥) such that π∗Z = BU with π∗W and U as vertical and horizontal
components of Ω̇(s).

Corollary 3.6. Let π : Mm
→ Bb be an anti-invariant Riemannian map from a Riemannian manifold (Mm, 11) to

a trans-Sasakian manifold (B, 12, ψ, η, ξ) of type (0, 0) with horizontal Reeb vector field ξ and γ : J ⊂ R → M be a
geodesic on M, then the curve Ω = π ◦ γ is a geodesic on B if and only if

−Aψπ∗Wπ∗W −ACUπ∗W + π∗(H∇M
WZ) + ∇B

Uπ∗Z = 0,

∇
π⊥
W ψ(π∗W) + ∇π⊥W CZ + ∇π⊥U ψ(π∗W) + ∇π⊥U CU + (∇π∗)(W,Z) = 0 (3.8)

for any U ∈ Γ((ran1eF∗)⊥) and W,Z ∈ Γ((kerF∗)⊥) such that π∗Z = BU with π∗W and U as vertical and horizontal
components of Ω̇(s).

Theorem 3.7. Let π : Mm
→ Bb be an anti-invariant Riemannian map from a Riemannian manifold (Mm, 11) to a

trans-Sasakian manifold (Bb, 12, ψ, η, ξ) of type (α, β) with horizontal Reeb vector field ξ. Let γ and Ω be geodesics
on M and B respectively. Then π is a Clairaut anti-invariant Riemannian map with r = eh if and only if

12(π∗W, π∗W)
d(h ◦Ω)

ds
= 12(Aψπ∗Wπ∗W, π∗Z) − 12(∇π⊥W ψ(π∗W) + ∇π⊥U ψ(π∗W),CU)

− η(U)[α11(W,Z) + β||ψU||2],
(3.9)
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where U ∈ Γ((ran1eπ∗)⊥) and W,Z ∈ Γ((kerπ∗)⊥) such that π∗Z = BU. Also π∗W and U are vertical and horizontal
part of Ω̇(s) respectively and h is a smooth function on B.

Proof. Let γ : J ⊂ R→M andΩ = π◦γ be geodesics on M and B respectively such that Ω̇(s) = π∗W(s)+U(s),
where π∗W ∈ Γ(ran1eπ∗) and U ∈ Γ((ran1eπ∗)⊥).
Considering ||Ω̇(s)||2 = c, we have

12Ω̇(s)(U,U) = ccos2θ(s), (3.10)

12Ω̇(s)(π∗W, π∗W) = csin2θ(s), (3.11)

where θ(s) ∈ [0, π] is the angle between Ω̇ and U. Differentiating (3.10) along Ω, we get

d
ds
12(U,U) = 212(∇B

Ω̇
U,U) = −2ccosθsinθ

dθ
ds
. (3.12)

Since B is a trans-Sasakian manifold, (3.12) can be written as

212(∇Ω̇ψU, ψU) = 212(∇B
π∗W+UψU, ψU) = −2ccosθsinθ

dθ
ds
. (3.13)

Now, using (3.2) and (2.8) in (3.13), we get

12(∇B
π∗WBU −ACUπ∗W + ∇π⊥W CU + ∇B

UBU + ∇⊥UCU, ψU) = −ccosθsinθ
dθ
ds
. (3.14)

Let Z ∈ Γ((kerπ∗)⊥) such that π∗Z = BU, using (2.7) in (3.14) we have

12((∇Bπ∗)(W,Z) + π∗(∇M
WZ) −ACUπ∗W + ∇π⊥W CU + ∇B

Uπ∗Z + ∇
⊥

UCU, ψU) = −ccosθsinθ
dθ
ds
. (3.15)

Using (3.3) and (3.4) in (3.15) and simplifying, we obtain

− ccosθsinθ
dθ
ds
= 12(Aψπ∗Wπ∗W, π∗Z) − 12(∇π⊥W ψ(π∗W) + ∇π⊥U ψ(π∗W),CU)

− αη(U)12(W,Z) − βη(U)||ψU||2. (3.16)

Further, π is a Clairaut Riemannian map with r = eh if and only if

d
ds

(eh◦Ωsinθ) = 0,

This implies,

eh◦Ωsinθ
d(h ◦Ω)

ds
+ eh◦Ωcosθ

dθ
ds
= 0,

csin2θ
d(h ◦Ω)

ds
= −csinθcosθ

dθ
ds
. (3.17)

From (3.11), (3.16) and (3.17), we get (3.9).

Corollary 3.8. Let π : Mm
→ Bb be an anti-invariant Riemannian map from a Riemannian manifold (Mm, 11) to a

trans-Sasakian manifold (Bb, 12, ψ, η, ξ) of type (α, 0) with horizontal Reeb vector field ξξ. Let γ and Ω be geodesic
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on M and B respectively. Therefore π is a Clairaut anti-invariant Riemannian map with r = eh if and only if

12(π∗W, π∗W)
d(h ◦Ω)

ds
= 12(Aψπ∗Wπ∗W, π∗Z) − 12(∇π⊥W ψ(π∗W) + ∇π⊥U ψ(π∗W),CU)

− αη(U)11(W,Z),

where U ∈ Γ((ran1eπ∗)⊥) and W,Z ∈ Γ((kerπ∗)⊥) such that π∗Z = BU. Also π∗W and U are vertical and horizontal
part of Ω̇(s) respectively and h is a smooth function on B.

Corollary 3.9. Let π : Mm
→ Bb be an anti-invariant Riemannian map from a Riemannian manifold (Mm, 11) to a

trans-Sasakian manifold (Bb, 12, ψ, η, ξ) of type (0, β) with horizontal Reeb vector field ξ. Let γ and Ω be geodesic on
M and B respectively. Then π is a Clairaut anti-invariant Riemannian map with r = eh if and only if

12(π∗W, π∗W)
d(h ◦Ω)

ds
= 12(Aψπ∗Wπ∗W, π∗Z) − 12(∇π⊥W ψ(π∗W) + ∇π⊥U ψ(π∗W),CU)

− βη(U)||ψU||2,

where U ∈ Γ((ran1eπ∗)⊥) and W,Z ∈ Γ((kerπ∗)⊥) such that π∗Z = BU. Also π∗W and U are vertical and horizontal
part of Ω̇(s) respectively and h is a smooth function on B.

Corollary 3.10. Let π : Mm
→ Bb be an anti-invariant Riemannian map from a Riemannian manifold (Mm, 11) to a

trans-Sasakian manifold (Bb, 12, ψ, η, ξ) of type (0, 0) with horizontal Reeb vector field ξ. Let γ and Ω be geodesic on
M and B respectively. Then π is a Clairaut anti-invariant Riemannian map with r = eh if and only if

12(π∗W, π∗W)
d(h ◦Ω)

ds
= 12(Aψπ∗Wπ∗W, π∗Z) − 12(∇π⊥W ψ(π∗W) + ∇π⊥U ψ(π∗W),CU),

where U ∈ Γ((ran1eπ∗)⊥) and W,Z ∈ Γ((kerπ∗)⊥) such that π∗Z = BU. Also π∗W and U are vertical and horizontal
part of Ω̇(s) respectively and h is a smooth function on B.

Theorem 3.11. Let π : Mm
→ Bb be a Clairaut anti-invariant Riemannian map from a Riemannian manifold

(Mm, 11) to a trans-Sasakian manifold (Bb, 12, ψ, η, ξ) having horizontal Reeb vector field ξ with r = eh. Then either
dim(ran1eπ∗) = 1 or h is constant in ψ(ran1eπ∗).

Proof. Since π is a Clairaut anti-invariant Riemannian map admitting horizontal Reeb vector field with
r = eh, we have

(∇π∗)(W,Z) = −1(W,Z)∇Bh (3.18)

for any W,Z ∈ Γ(kerπ∗)⊥. Taking inner product with ψπ∗Y ∈ Γ((ran1eπ∗)⊥) and using (2.7), we get

12(
B
∇
π
Wπ∗Z, ψπ∗Y) = −11(W,Z)12(∇Bh, ψπ∗Y).

Also, from above equation we have

12(
B
∇
π
Wψπ∗Y, π∗Z) = 11(W,Z)12(∇Bh, ψπ∗Y). (3.19)

Since B is a trans-Sasakian manifold, using (2.4) in (3.19), we get

12(
B
∇
π
Wπ∗Y, ψπ∗Z) = −11(W,Z)12(∇Bh, ψπ∗Y). (3.20)

Again, using (3.18), we have

12(
B
∇
π
Wπ∗Y, ψπ∗Z) = −11(W,Y)12(∇Bh, ψπ∗Z), (3.21)
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equating (3.20) and (3.21), we obtain

11(W,Z)12(∇Bh, ψπ∗Y) = 11(W,Y)12(∇Bh, ψπ∗Z).

Putting W = Z in above equation, we get

||W||212(∇Bh, ψπ∗Y) = 11(W,Y)12(∇Bh, ψπ∗W). (3.22)

Interchanging W and Y in above equation, we have

||Y||212(∇Bh, ψπ∗W) = 11(W,Y)12(∇Bh, ψπ∗Y). (3.23)

From (3.22) and (3.23), we obtain

12(∇Bh, ψπ∗W)
[
1 −
11(W,Y)11(W,Y)
||W||2||Y||2

]
= 0. (3.24)

From (3.24), we conclude that either dim((kerπ∗)⊥) = 1 or h is constant inψπ∗W. Since there is linear isometry
between (kerπ∗)⊥ and ran1eπ∗. Hence we have the theorem.

Theorem 3.12. Let π : Mm
→ Bb be a Clairaut anti-invariant Riemannian map from a Riemannian manifold

(Mm, 11) to a trans-Sasakian manifold (Bb, 12, ψ, η, ξ) having horizontal Reeb vector field ξ. If dim(ran1eπ∗) > 1,
then ran1eπ∗ is minimal.

Proof. Let Y ∈ Γ((kerπ∗)⊥), then we have

(∇π∗)(Y,Y) = 1(Y,Y)H2. (3.25)

If π∗Z ∈ Γ((ran1eπ∗)⊥), using (2.7), above eqution can be written as

12(π∗Y,∇πYψπ∗Z) = −11(Y,Y)12(H2, ψπ∗Z). (3.26)

Since B ia a trans-Sasakian manifold, simplifying (3.26) we have

12(ψπ∗Y,∇πYπ∗Z) = 11(Y,Y)12(H2, ψπ∗Z). (3.27)

Again, from (3.25) and (3.27) we get

11(Y,Z)12(H2, ψπ∗Y) = 11(Y,Y)12(H2, ψπ∗Z). (3.28)

Interchanging Y and Z, we have

11(Y,Z)12(H2, ψπ∗)Z = 11(Z,Z)12(H2, ψπ∗Y). (3.29)

Since dim(ran1eπ∗) > 1, from (3.28) and (3.29) we conclude the required result.

Theorem 3.13. Let π : Mm
→ Bb be a Clairaut anti-invariant Riemannian map from a Riemannian manifold

(Mm, 11) to a trans-Sasakian manifold (Bb, 12, ψ, η, ξ) having horizontal Reeb vector field ξ. If ran1eπ∗ is integrable,
then 12(∇π⊥W ψ(π∗Y) − ∇π⊥Y ψ(π∗W),CU) = 0, where W,Y ∈ Γ((kerπ∗)⊥) and U ∈ Γ((ran1eπ∗)⊥),

Proof. Let W,Y ∈ Γ(kerπ⊥∗ ) and U ∈ Γ((ran1eπ∗)⊥), we have

12([π∗W, π∗Y],U) = 12(∇B
π∗Wπ∗Y − ∇

B
π∗Yπ∗W,U). (3.30)

Since B is a trans-Sasakian manifold, from (3.6),(2.4) and (3.30), we get

12([π∗W, π∗Y],U) = 12(∇B
π∗Wψ(π∗Y) − ∇B

π∗Yψ(π∗W), ψU).
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Using (2.8) and (3.2) in above equation, we obtain

12([π∗W, π∗Y],U) = −12(Aψ(π∗Y)π∗W,BU)+12(Aψ(π∗W)π∗Y,BU)+12(∇π⊥W ψ(π∗Y)−∇π⊥Y ψ(π∗W),CU). (3.31)

Assuming Z ∈ Γ((kerπ∗)⊥) such that π∗Z = BU and using (3.4), (3.31) can be rewritten as

12([π∗W, π∗Y],U) = −12(ψ(π∗Y), (∇π∗)(W,Z)) + 12(ψ(π∗W), (∇π∗)(Y,Z))
+ 12(∇π⊥W ψ(π∗Y) − ∇π⊥Y ψ(π∗W),CU).

Since π is a Clairaut Riemannian map, using Definition 2.2. in above equation, we get

12([π∗W, π∗Y],U) = 12(ψ(π∗Y),∇Bh)[11(W,Z) − 11(Y,Z)]
+ 12(∇π⊥W ψ(π∗Y) − ∇π⊥Y ψ(π∗W),CU).

(3.32)

Since dim(ran1eπ∗) > 1, using Theorem 3.3 in (3.32), we get the required result.

Theorem 3.14. Let π : Mm
→ Bb be a Clairaut anti-invariant Riemannian map from a Riemannian manifold

(Mm, 11) to a trans-Sasakian manifold (Bb, 12, ψ, η, ξ) having horizontal Reeb vector field ξ. Then (ran1eπ∗)⊥ is
integrable.

Proof. Let U,V ∈ Γ((ran1eπ∗)⊥) and W ∈ Γ(ran1eπ∗), then we can write

12([U,V],W) = 12(∇UV − ∇VU,W). (3.33)

Since, (ran1eπ∗)⊥ is a totally geodesic distribution so we have the required result.

Theorem 3.15. Let π : Mm
→ Bb be a Clairaut anti-invariant Riemannian map from a Riemannian manifold

(Mm, 11) to a trans-Sasakian manifold (Bb, 12, ψ, η, ξ) having horizontal Reeb vector field ξ and dim(ran1eπ∗) > 1.
Then, π is harmonic if and only if kerπ∗ is minimal.

Proof. Let {Zi}
r
i=1 and {Zi}

m
i=r+1 be orthonormal basis of kerπ∗ and (kerπ∗)⊥ respectively, then we have

trace(∇π∗) =
r∑

i=1

(∇π∗)(Zi,Zi) +
m∑

i=r+1

(∇π∗)(Zi,Zi)

=

r∑
i=1

(∇π∗)(Zi,Zi) +
m∑

i=r+1

12((∇π∗)(Zi,Zi), π∗Zi)π∗Zi

+

m∑
i=r+1

s∑
j=1

12((∇π∗)(Zi,Zi), µ j)µ j +

m∑
i=r+1

12((∇π∗)(Zi,Zi), ψ(π∗Zi))ψ(π∗Zi),

(3.34)

where {π∗Zi}
m
i=r+1 and {µ j}

s
j=1 are orthonormal basis of Γ(ran1eπ∗) and Γ(µ) respectively, and b = 2m + s.

Using lemma 2.1 and (2.7) in (3.34), we get

trace(∇π∗) =
r∑

i=1

(∇πZi
π∗Zi − π∗(∇M

Zi
Zi)) +

m∑
i=r+1

s∑
j=1

12((∇π∗)(Zi,Zi), µ j)µ j

+

m∑
i=r+1

12(∇πZi
π∗Zi, ψ(π∗Zi))ψ(π∗Zi).

(3.35)
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Since B is a trans-Sasakian manifold, using (2.4) in above equation, we have

trace(∇π∗) = −
r∑

i=1

π∗(∇M
Zi

Zi)) +
m∑

i=r+1

s∑
j=1

12((∇π∗)(Zi,Zi), µ j)µ j

+

m∑
i=r+1

[12(−ψ∇πZi
ψ(π∗Zi), ψ(π∗Zi))ψ(π∗Zi) − β12(π∗Zi, π∗Zi)12(ξ, ψ(π∗Zi))ψ(π∗Zi)],

= −

r∑
i=1

π∗(∇M
Zi

Zi)) +
m∑

i=r+1

s∑
j=1

12((∇π∗)(Zi,Zi), µ j)µ j

+

m∑
i=r+1

12(∇πZi
π∗Zi, ψ(π∗Zi))ψ(π∗Zi).

(3.36)

Further, using (2.10) and (2.11) in (3.36), we get

trace(∇π∗) = −rπ∗(ϱV) +
m∑

i=r+1

s∑
j=1

12(H211(Zi,Zi), µ j)µ j

+ (m − r)
m∑

i=r+1

12(H2, ψ(π∗Zi))ψ(π∗Zi),

(3.37)

where, ϱV is mean curvature of kerπ∗. Since dim(ran1eπ∗) > 1, from theorem 3.4 and above equation, we get

trace(∇π∗) = −rπ∗(ϱV). (3.38)

Thus, π is harmonic if and only if kerπ∗ is minimal.

Example 3.16. Let π : M→ B be a smooth map defined as

π(x, y, z) = (0, x + y, 0),

where M = {(x, y, z) ∈ R3, x, y, z , 0} is a Riemannian manifold with Riemannian metric

11 =
1
4


3
2

1
2 0

1
2

3
2 0

0 0 1


on M and B = {(x, y, z) ∈ R3, z , 0} is a trans-Sasakian manifold with contact structure given by Example 2.1., then
we have

(kerπ∗) = span
{
e1 − e2, e3

}
,

(kerπ∗)⊥ = span{Z = e1 + e2},

where ei are standard basis vector fields on M. Also, by simple computation it is easy to see that

(ran1eπ∗) = span
{
π∗Z = E1 = 2

∂
∂v

}
(ran1eπ∗)⊥ = span

{
E2 = 2(

∂
∂u
+ v

∂
∂w

),E3 = 2
∂
∂w
= ξ
}

and ψE1 = E2 with 11(Z,Z) = 12(π∗Z, π∗Z). Thus, π is an anti-invariant Riemannian map.
In order to show that the defined map is Clairaut Riemannian map we find a smooth function h satisfying equation
(∇π∗)(Z,Z) = −1(Z,Z)∇Bh. Here, (∇π∗)(Z,Z) = 0, 11(Z,Z) = 1, thus by taking constant h, we can verify
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(∇π∗)(Z,Z) = −1(Z,Z)∇Bh. Also from (2.4), we have α = 1, β = 0. Hence π is a Clairaut anti-invariant Riemannian
map from Riemannian manifold to trans-Sasakian manifold of type (1, 0).

Example 3.17. Let π : M→ B be a Riemannian map defined as

π(x, y, z) = (0,
x − y
√

2
, 0),

where M is a Riemannian manifold and B is a Sasakian manifold. Since, there is a linear isometry between (kerπ∗)⊥

and (ran1eπ∗), we can define a smooth function k between these distributions and then pullback k∗ of that function
on (kerπ∗)⊥ in terms of B′s co-ordinate system such that k∗((kerπ∗)⊥) = e−w, then extend this function on whole TM.
Now, we can define a global frame {e1, e2, e3} with e1 = e−w ∂

∂x , e2 = e−w ∂
∂y , e3 =

∂
∂z and a Riemannian metric 11 on M

such that 11(x, y, z) = e2wdx2 + e2wdy2 + dz2, whereas B = {(u, v,w) ∈ R3
|v,w , 0} is equipped with a contact metric

structure (12, ψ, η, ξ), given by

12 = (e2w + v2)du2 + e2wdv2 + (−2v)dvdw + dw2, ψ =

 0 1 0
−1 0 0
0 v 0

 , η = (dw − vdu), ξ =
∂
∂w

and {E1,E2,E3} is a global frame on B, defined as E1 = e−w ∂
∂v ,E2 = ψE1 = e−w( ∂∂u + v ∂

∂w ),E3 =
∂
∂w = ξ.

Then, by simple calculation, we get

(kerπ∗)⊥ = span
{
Z =

1
√

2
(e1 − e2) =

e−w
√

2

( ∂
∂x
−
∂
∂y

)}
,

ran1eπ∗ = span
{
π∗Z = e−w ∂

∂v
= E1

}
,

(ran1eπ∗)⊥ = span
{
E2 = e−w

( ∂
∂u
+
∂
∂w

)
,E3 =

∂
∂w
= ξ
}
.

Also, 11(Z,Z) = 12(π∗Z, π∗Z) = 1 andψ(ran1eπ∗) ⊂ ((ran1eπ∗)⊥), therefore π is an anti-invariant Riemannian map.
In order to prove that π is a Clairaut map, we must have ∇π∗(Z,Z) = −11(Z,Z)∇Bh. Here, by some computation, it
is easy to see that 11(Z,Z) = 1 and ∇π∗(Z,Z) = −E3 − ve−wE2, therefore, we have ∇Bh = E3 + ve−wE2. For a smooth
function h, the value of ∇Bh with respect to 12 is given by ∇Bh =

(
e−w ∂h

∂u + ve−w ∂h
∂w

)
E2 + v2 ∂h

∂w E3, which implies
that h = 1

vew . Also from (2.4), we have α = 1
2 e−2w, β = 1. Hence π is a Clairaut anti-invariant Riemannian map to

trans-Sasakian manifold of type ( 1
2 e−2w, 1).
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