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Abstract. Self-similar solutions of the conformal Ricci-Yamabe flow equation are called conformal Ricci-
Yamabe solitons. This paper mainly concerned with the study of conformal Ricci-Yamabe solitons within the
structure of warped product manifolds, which extend the notion of usual Riemannian product manifolds.
First, the proof is provided that the base and the fiber sharing the same property implies the existence of a
warped product manifold admitting a conformal Ricci-Yamabe soliton. In the next section, warped product
manifolds are used to study the characterization of conformal Ricci-Yamabe solitons in terms of Killing
and conformal vector fields. Finally, we prove that a conformal Ricci-Yamabe soliton with a concurrent
potential vector field admitted on a warped product manifold is Ricci flat.

1. Introduction

The study of the theory of Ricci flow (1982) by Hamilton [2, 26, 27] reached its highest magnitude and
popularity soon after Perelman [10, 11] successfully applied it to solve the Poincaré conjecture. Ricci solitons
were also studied by Hamilton, who viewed them as fixed or stationary points of the Ricci flow in the space
of parameterized metrics 1(t) on scaling and M modulo diffeomorphisms. Since then, both topics have been
extensively explored by numerous mathematicians, including Brendle [30], Cao [13], Chen[6] and many
others (see for instance [7, 9, 14, 18, 21]).

A smooth manifold M furnished with a Riemannian metric 1 is known to be a Ricci soliton if, for some
constant λ, there exists a smooth vector field X on M satisfying the following equation:

Ric +
1
2
LX1 = λ1,

whereLX denotes the Lie derivative and Ric is the Ricci tensor. The Ricci soliton is called shrinking, steady
and expanding if λ > 0, λ = 0 and λ < 0 respectively.

Recently, self-similar solutions, referred as soliton solutions of various geometric flow equations, have
been introduced and explored due to their potential significance as models for singularities. Among these,
Ricci soliton defined as fixed points of the Ricci flow stand as one of the most extensively studied and
renowned classes. Substantial advancements have been achieved in this particular domain. Furthermore,
Hamilton [20] established the Yamabe flow to address the Yamabe problem. This problem primarily
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involves the quest for a metric on a manifold with a dimension of n ≥ 3, such that its scalar curvature
remains constant. Hence, the Yamabe flow is precisely delineated by the metric 1(t) on a Riemannian
manifold (Mn, 1), which adheres to the condition ∂1(t)

∂(t) = −R1(t), where R denotes the scalar curvature
of M. Notably, the two-dimensional scenario had already been resolved through the application of the
Uniformization Theorem. For an in-depth exploration of this concept, we direct the reader to references
[22], [28], and [29]. It is pertinent to mention that this flow finds its solution through the lens of gradient
Yamabe solitons, which are rigorously defined as follows:

A pseudo-Riemannian manifold (Mn, 1) is said to be a gradient Yamabe soliton if there exists a smooth
function ϕ on M and a constant λ satisfying

Hess(ϕ) = (R − λ)1,

where Hess(ϕ) is the Hessian of ϕ, R is the scalar curvature and 1 is the metric.
A gradient Yamabe soliton on a pseudo-Riemannian manifold (Mn, 1) is classified as shrinking if λ > 0,
expanding if λ < 0 or steady if λ = 0. Notably, a seminal outcome pertaining to the resolution of the Yamabe
problem is documented in [22], wherein it is demonstrated that the metric of any compact Yamabe gradient
soliton is a metric characterized by constant scalar curvature.

In 2019, Güler and Crasmareanu [12] introduced the Ricci-Yamabe flow for a smooth n-dimensional
manifold Mn. Later, the notion of the conformal Ricci-Yamabe soliton equation was introduced by Zhang
et.al, [23] as

LX1 + 2αRic =
[
2λ − βR −

(
p +

2
n

)]
1, (1)

where α, β, λ are constants and p is the conformal pressure. The equation is the generalization of the
Ricci-Yamabe soliton equation and it satisfies the conformal Ricci-Yamabe flow equation (For details, see
[1, 16, 17, 19]).

Bishop and O’Neill [24] pioneered the warped product notion, which provides an adaptable foundation
for complete manifolds of negative curvature. The origins of this notion may be traced back to the surfaces of
revolution. Warped products are important in differential geometry and have applications in mathematical
physics and general relativity. This multidisciplinary appeal has piqued the interest of mathematicians and
physicists alike, resulting in a thriving field of research [4, 5]. Consider B and F Riemannian manifolds, as
well as a positive smooth function f defined on B. The product manifold metric B× F is defined as follows:

1 = π∗1B + ( f ◦ π)2σ∗1F, (2)

where π and σ are the natural projections onto the base and fiber manifold respectively. The product
manifold is designated by M = B× f F and is said to be the warped product of B and F under this condition.
In this context, manifolds B and F are referred to as the base and fiber respectively, where 1B and 1F are the
induced metric on base and fiber respectively. The function f is called the warping function.

Our investigation is centered around identifying the conditions that render the warped product a
conformal Ricci-Yamabe soliton. To commence, let’s begin by revisiting a pivotal result (for detailed
information, refer to [25]) that will prove essential for our subsequent discussions.

Lemma 1.1. [25] Let (M, 1) = (B × f B, 1B ⊕ f 21F) be a warped product of two Riemannian manifolds B and F with
dimB = m and dimF = n. Then, for all X,Y ∈ X(B) and U,V ∈ X(F)

(i) DXU = DUX = X( f )
f U,

(ii) Ric(X,U) = 0,
(iii) Ric(X,Y) = RicB(X,Y) − n

f H f (X,Y),

(iv) Ric(U,V) = RicF(U,V) −
(
∆ f
f + (n − 1) ∥∇ f ∥2

f 2

)
1(U,V),

where DXY is the lift of ∇XY on B and RicB, RicF are the lifts of the Ricci tensors on the base B and the fiber F
respectively.
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Motivated by their research [18], we extend our exploration to the realm of conformal Ricci-Yamabe solitons
with α , 0 on warped product manifolds. Our paper is structured as follows: In Section 2, we delve into
the investigations surrounding conformal Ricci-Yamabe solitons on warped product manifolds, examining
the impact on both the base and fiber manifolds when a warped product manifold admits a conformal
Ricci-Yamabe soliton. Section 3 centers on the influence of specific types of smooth vector fields such
as Killing vector fields, conformal vector fields, and concurrent vector fields on conformal Ricci-Yamabe
solitons within warped product spaces. Section 4 is devoted to the study of the admittance of conformal
Ricci-Yamabe soliton with a concurrent vector field in a warped product manifold.

2. Investigation of Conformal Ricci-Yamabe Soliton on Warped Product Manifolds

This section presents an exploration into the realm of conformal Ricci-Yamabe solitons on warped
product manifolds. Our central objective here is to meticulously examine the repercussions of a warped
product manifold adopting the characteristics of a conformal Ricci-Yamabe soliton. In particular, we are
keen to elucidate how this alignment influences both the base manifold and the fiber manifold, effectively
isolating the precise conditions that facilitate their transformation into conformal Ricci-Yamabe solitons.
To facilitate our investigation, we consider the manifold (M, 1) = (B × f F, 1B ⊕ f 21F), representing a warped
product of two Riemannian manifolds B and F with dimB = m and dimF = n respectively. Proceeding further,
let (M, 1, µ, ξ) exemplify a conformal Ricci-Yamabe soliton, with µ =

[
2λ − βR −

(
p + 2

n

)]
. Consequently, by

invoking equation (1), we obtain:

Lξ1 + 2αRic =
[
2λ − βR −

(
p +

2
n

)]
1 = µ1, (3)

where µ =
[
2λ − βR −

(
p + 2

n

)]
. Recalling Lemma 1.1 from the preceding section, we readily deduce the

following two widely recognized formulas tailored for warped product manifolds:

Lξ1 = L
B
ξB
1B + f 2

L
F
ξF
1F + 2 fξB( f )1F, (4)

Ric = RicB
−

n
f

H f + RicF
− f̃1F, (5)

where f̃ = f∆ f + (n − 1)∥∇ f ∥2B. Now, applying the definition of warped metric from equation (3) and using
(4) and (5), we have

µ(1B + f 21F) = µ1 =Lξ1 + 2αRic

=LB
ξB
+ f 2
L

F
ξF
1F + 2 fξB( f )1F + 2αRicB

− 2α
n
f

H f + 2αRicF
− 2α f̃1F. (6)

Again, for all U,V ∈ X(B), we can write(
L

B
ξB

)
(U,V) = 1B(DB

UξB,V) + 1B(U,DB
VξB). (7)

By definition of Hessian and (7), we get(
L

B
ξB
1B − 2α

n
f

H f
)

(U,V) = 1B(DB
UξB,V) + 1B(U,DB

VξB) − 2α
n
f
1B(DB

U∇
B f ,V).

The above equation can be reduced as(
L

B
ξB
1B − 2α

n
f

H f
)

(U,V) =1B(DB
UξB,V) − α

n
f
1B(DB

U∇
B f ,V)) + (1B(U,DB

VξB) − α
n
f
1B(DB

U∇
B f ,V)

=1B(DB
U(ξB − αn∇Bln f ),V) + 1B(U,DB

V(ξB − αn∇Bln f ))

=(LB
ξB−αn∇Bln f1B)(U,V),∀U,V ∈ X(B). (8)
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Since it is true for all U,V ∈ X(B), in operator notation we can write

L
B
ξB
1B − 2α

n
f

H f = LB
ξB−αn∇Bln f1B. (9)

Putting the value of (9) in (6) gives

(LξB−αn∇Bln f1B + 2αRicB) + ( f 2
L

F
ξF
1F + 2αRicF) = µ1B + (µ f 2

− 2 fξB( f ) + 2 f̃ )1F. (10)

Hence, we can state the following theorem.

Theorem 2.1. Suppose a warped product of two Riemannian manifolds B and F is (M, 1) = (B × f F, 1B ⊕ f 21F),
with the warping function denoted as f . We have dimB = m and dimF = n. Assuming that (M, 1, µ, ξ) forms
a conformal Ricci-Yamabe soliton, it follows that both the base (B, 1B, µ, ξB − αn∇Bln f ) and the fiber (F, 1F, µ f 2

−

2 fξB( f ) + 2 f̃ , f 2ξF) exhibit the characteristics of conformal Ricci-Yamabe solitons. Here, f̃ = f∆ f + (n − 1)|∇ f |2B
andµ =

[
2λ − βR −

(
p + 2

n

)]
, whereλ, β and p represent the soliton constants and the conformal pressure respectively.

Now, let us consider the soliton vector field ξ of the conformal Ricci-Yamabe soliton (M, 1, µ, ξ) to be a
gradient of some smooth function ϕ, i.e., when ξ = 1radϕ = ∇ϕ. The function ϕ is referred to as the
potential function of the soliton, and the soliton is known as a conformal gradient Ricci-Yamabe soliton. To
maintain clarity in notation, A conformal gradient Ricci-Yamabe soliton is designated as (M, 1, µ, ϕ), where
the final term identifies the soliton’s potential function.

Let us consider a warped product of two Riemannian manifolds B and F be (M, 1) = (B × f F, 1B ⊕ f 21F).
We have dimB = m and dimF = n. Now, if (M, 1, µ, ϕ) forms a conformal gradient Ricci-Yamabe soliton, for
any vector fields X,Y ∈ X(M), then (3) provides

2Hϕ(X,Y) + 2αRic(X,Y) =
[
2λ − βR −

(
p +

2
n

)]
1(X,Y) = µ1(X,Y). (11)

Again, we consider X = XB and Y = YB, with XB and YB representing the lifts of the vector fields X and Y
in X(B), then (11) reduces to

2Hϕ(XB,YB) + 2αRic(XB,YB) = µ1(XB,YB).

By substituting the value of the Ricci tensor for the base manifold as provided in Lemma 1.1, the equation
above can be expressed as

2HϕB
B (XB,YB) + 2αRicB(XB,YB) − 2α

n
f

H f
B(XB,YB) = µ1B(XB,YB),

where ϕB = ϕ ϕB = ϕ at a specific point of the fiber F. Finally, by employing the properties of the Hessian
in the equation above, we obtain

2HϕB−αnln f
B (XB,YB) + 2αRicB(XB,YB) = µ1B(XB,YB). (12)

This demonstrates that (B, 1B, µ, ϕB − αnln f ) qualifies as a conformal gradient Ricci-Yamabe soliton.
Furthermore, if we set (X = XF) and (Y = YF), with XF and YF representing the lifts of the vector fields

X and Y in X(F), then (11) yields

2Hϕ(XF,YF) + 2αRic(XF,YF) = µ1(XF,YF).

Using (5) and Lemma 1.1, the above equation becomes

2HϕF

F (XF,YF) + 2αRicF(XF,YF) − f̃1F(XF,YF) = µ f 21F(XF,YF),
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where ϕF = ϕ at a fixed point of the base B and f̃ = f∆ f + (n − 1)∥∇ f ∥2B. From the above equation, we get

2HϕF

F (XF,YF) + 2αRicF(XF,YF) = (µ f 2 + f̃ )1F(XF,YF).

Hence, given the constancy of the warping function f , the term f̃ = f∆ f + (n− 1)∥∇ f ∥2B disappears from the
right-hand side of the above equation, we get

2HϕF

F (XF,YF) + 2αRicF(XF,YF) = µ f 21F(XF,YF). (13)

Thus, (F, 1F, µ f 2, ϕF) is a conformal gradient Ricci-Yamabe soliton. Hence, from the above observations and
(12) and (13), we can state the following:

Theorem 2.2. Suppose a warped product of two Riemannian manifolds B and F is (M, 1) = (B× f F, 1B ⊕ f 21F), with
the warping function denoted as f . We have dimB = m and dimF = n. Assuming that (M, 1, µ, ξ) forms a conformal
Ricci-Yamabe soliton, then

(i) the base (B, 1B, µ, ϕB − nln f ) forms a conformal gradient Ricci-Yamabe soliton with ϕB = ϕ at a point within
the fiber F.

(ii) the fiber (F, 1F, µ f 2, ϕ f ) forms a conformal gradient Ricci-Yamabe soliton with ϕF = ϕ at a point within the base
B, given that the warping function f is constant.

Remark 2.3. For particular values of α = 1, β = 0, the above theorem reduces to Theorem 2.2 of [18].

3. Influence of Distinctive Vector Field Types on Conformal Ricci-Yamabe Solitons in Warped Product
Manifolds

This section’s major goal is to investigate how particular forms of smooth vector fields affect conformal
Ricci-Yamabe solitons in warped product spaces. We shall pay special attention to the conformal and killing
vector fields, which are defined as follows:

Definition 3.1. A smooth vector field X on a Riemannian manifold (M, 1) is called
(i) Killing vector field or an infinitesimal isometry, if the local 1-parameter group of transformations generated by

X in a neighbourhood of each point of M consists of local isometries, or in other words, if X satisfies LX1 = 0
and

(ii) conformal vector field if X satisfies LX1 = ρ1,

Here, ρ represents a smooth function defined on the manifold M and LX1 refers the Lie derivative of the Riemannian
metric 1 along the vector field X.

As per the definition outlined above, our initial result in this section is presented below:

Proposition 3.2. Let (M, 1) = (B × f F, 1B ⊕ f 21F) represent a warped product of two Riemannian manifolds B and
F denoted as a warping function f . Here, dimB = m and dimF = n. Assuming that (M, 1, µ, ξ) forms a conformal
Ricci-Yamabe soliton, and under the condition that any one of the following conditions holds

(i) ξ = ξB and ξB is a Killing vector field on the base B.
(ii) ξ = ξF and ξF is a Killing vector field on the fiber F.

Then, under any one of the above conditions, the manifold (M, 1) transforms into an Einstein manifold.

Proof. Based on our assumption that (M, 1, µ, ξ) constitutes a conformal Ricci-Yamabe soliton, it complies
with equation (3) gives

Lξ1 + 2αRic = µ1. (14)

Now, let ξ = ξB, and ξB is a Killing on B, we get LB
ξB
1B = 0. Then, (4) gives Lξ1 = 0. Therefore, (14) yields

Ric = µ
2α1 and this implies (M, 1) is an Einstein manifold.

Furthermore, if we consider ξ = ξF and note that ξF is a Killing vector field on F, we find that LF
ξF
1F = 0.

Proceeding similarly to the previous part of the proof, we get the same result.
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Theorem 3.3. Suppose a warped product of two Riemannian manifolds B and F is (M, 1) = (B× f F, 1B ⊕ f 21F), with
the warping function denoted as f . We have dimB = m and dimF = n. Assuming that (M, 1, µ, ξ) forms a conformal
Ricci-Yamabe soliton, it follows that ξB is a Killing vector field on the base B, then the base (B, 1B, µ,−nαln f ) forms
a conformal Ricci-Yamabe soliton, where ξB is the lift of the vector field ξ to X(B).

Proof. Considering the given information that (M, 1, µ, ξ) is a conformal Ricci-Yamabe soliton as per Theorem
2.1, we can conclude that the base (B, 1B, µ, ξB −nα∇Bln f ) also qualifies as a conformal Ricci-Yamabe soliton
and hence it satisfies (3). Thus, we can write

L
B
ξB−nα∇Bln f1B + 2αRicB = µ1B. (15)

Again, using (9) in the above equation, (15) becomes

L
B
ξB
1B − 2α

n
f

H f + 2αRicB = µ1B.

Given that ξB is a Killing vector field on the base B, we can assert that LB
ξB
1B = 0. Then, the above equation

gives us

−2α
n
f

H f + 2αRicB = µ1B.

Thus, using the properties of Hessian, the above equation results in

2H−αnln f + 2αRicB = µ1B. (16)

Hence, comparing (16) with (11) completes the proof.

The following conclusion is reached from the study of Killing vector fields on conformal Ricci-Yamabe
soliton warped product manifolds:

Theorem 3.4. Suppose a warped product of two Riemannian manifolds B and F is (M, 1) = (B× f F, 1B ⊕ f 21F), with
the warping function denoted as f . We have dimB = m and dimF = n. Assuming that (M, 1, µ, ξ) forms a conformal
Ricci-Yamabe soliton and the lifts ξB and ξF are both Killing on the base B and the fiber F respectively. Then, the
manifold (M, 1) is Einstein provided ξB( f ) = 0.

Proof. As provided, both ξB and ξF are Killing vector fields, implying LB
ξB
1B = 0 and LF

ξF
1F = 0. Utilizing

these values in equation (4), we get

Lξ1 = 2 fξB( f )1F. (17)

Again, assuming that (3) is true and that (M, 1, µ, ξ) is a conformal Ricci-Yamabe soliton, we obtain

Lξ1 + 2αRic = µ1.

Now, using (17) in the above equation gives us

2 fξB( f )1F + 2αRic = µ1. (18)

The proof is complete if ξB( f ) = 0, in which case the above equation (18) produces Ric = µ12α , indicating that
the manifold (M, 1) is Einstein.

Now, our attention turns towards examining the impact of conformal vector fields on warped product
manifolds that admit conformal Ricci-Yamabe solitons. An immediate result is given below:
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Proposition 3.5. Suppose a warped product of two Riemannian manifolds B and F is (M, 1) = (B × f F, 1B ⊕ f 21F),
with the warping function denoted as f . We have dimB = m and dimF = n. Assuming that (M, 1, µ, ξ) forms
a conformal Ricci-Yamabe soliton. Then, the manifold (M, 1) transforms into an Einstein manifold with the factor(
µ
2α −

ρ
α

)
if and only if the vector field ξ is conformal with a factor of 2ρ.

Proof. Since (M, 1, µ, ξ) being a conformal Ricci-Yamabe soliton, equation (3) gives

Lξ1 + 2αRic = µ1. (19)

Assuming that the vector field ξ is conformal with a factor of 2ρ, according to Definition 3.1, we have
LX1 = 2ρ1, where ρ is a smooth function. Therefore, by substituting this value into equation (19), we obtain

Ric =
( µ

2α
−
ρ

α

)
1. (20)

As a result, (M, 1) is an Einstein manifold from this. The reverse calculation method can also be used to
demonstrate that (M, 1) is an Einstein manifold with factor

(
µ
2α −

ρ
α

)
. Afterwards, ξ conforms to factor 2ρ.

The evidence is now complete.

It should be noted that the vector field ξ was assumed to be conformal when discussing conformal Ricci-
Yamabe solitons in the aforementioned result. It follows that the question of whether it is necessary to
consider ξ to be conformal as a whole or if a weaker condition exists is a natural one. The following
theorem may help to clarify the situation.

Theorem 3.6. Suppose a warped product of two Riemannian manifolds B and F is (M, 1) = (B× f F, 1B ⊕ f 21F), with
the warping function denoted as f . We have dimB = m and dimF = n. Assuming that (M, 1, µ, ξ) forms a conformal
Ricci-Yamabe soliton, it follows that the lifts ξB and ξF are both conformal on the base B and the fiber F with the factors
2ρB and 2ρF respectively. Here ρB and ρF are two smooth functions. Under this conditions, if ρB = ρF + ξB(ln f ),
then the manifold (M, 1) turns out to be Einstein.

Proof. Given that ξB is conformal on the base B with a factor of 2ρB, it follows thatLB
ξB
1B = 2ρB1B. Similarly,

for ξF being conformal with a factor of 2ρF, we obtainLF
ξF
1F = 2ρF1F. Then, using these values in (4), we get

Lξ1 = 2(ρB1B + f 2ρF1F + fξB( f )1F). (21)

Again, (M, 1, µ, ξ) being a conformal Ricci-Yamabe soliton, from (3) and the above equation (21), we have

2(ρB1B + f 2ρF1F + fξB( f )1F) = µ1.

Now, the above equation gives us

Ric =
1
α

(µ1
2
− ρB1B − f 2(ρF + ξB(ln f )

)
1F. (22)

Setting ρB = ρF + ξB(ln f ) and using (2), the above equation (22) yields Ric =
(
µ
2α −

ρB

α

)
1. This implies that

the manifold (M, 1) is Einstein and this concludes the proof.

Our final theorem, which provides the converse of the prior theorem, brings this section to a close. The
conformal Ricci-Yamabe soliton (M, 1, µ, ξ) was described in the previous result, and the next result outlines
the circumstances in which a warped product manifold (M, 1) admits a conformal Ricci-Yamabe soliton.

Theorem 3.7. Assume (B, 1B, µ, ξB) be a conformal Ricci-Yamabe soliton, F be an Einstein manifold with factor β.
We have dimB = m and dimF = n. Assume that (M, 1) = ((B× f F, 1B ⊕ f 21F) is a warped product of two Riemannian
manifolds B and F with a warping function f and ξF is conformal vector field with factor 2ρ, if H f = 0 and the
warping function f satisfies the quadratic equation

(2ρ − µ) f 2 + 2 fξB( f ) + 2β + 2(1 − n)k2 = 0,

where k2 = ∥∇ f ∥2B = 1B(∇ f ,∇ f )) for some real number k, then (M, 1, µ, ξ) is a conformal Ricci-Yamabe soliton.
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Proof. Let (B, 1B, µ, ξB) be a conformal Ricci-Yamabe soliton, from (3) we get

L
B
ξB
1B + 2αRicB = µ1B. (23)

Since F is an Einstein manifold with a factor of β, we can express the Ricci tensor as RicF = β1F. By
substituting this value into equation (5), we get

Ric = RicB
− α

n
f

H f + β1F − f̃1F, (24)

where f̃ = f∆ f + (n − 1)∥∇ f ∥2B. Using (23) in (4), we have

Lξ1 = µ1B − 2αRicB + f 2
L

F
ξF
1F + 2 fξB( f )1F. (25)

Multiplying both sides of the equation (24) by 2 and then adding it with (25) gives

Lξ1 + 2αRic = µ1B + f 2
L

F
ξF
1F + 2 fξB( f )1F + 2

(
−

n
f

H f + β1F − f̃1F

)
.

Again, considering the vector field ξF is conformal with a factor of 2ρ, i.e., LF
ξF
1F = 2ρ1F, we get

Lξ1 + 2αRic = µ1B + 2α f 2ρ1F + 2α fξB( f )1F + 2α
(
−

n
f

H f + β1F − f̃1F

)
. (26)

Given that H f = 0, it follows that ∆ f = 0, and consequently, f̃ = f∆ f + (n − 1)|∇ f |2B simplifies to f̃ =
(n − 1)|∇ f |2B = (n − 1)k2, where k2 = |∇ f |2B = 1B(∇ f ,∇ f ) for some real number k. Thus, utilizing these results
in equation (26), we obtain

Lξ1 + 2αRic =µ1B + 2α f 2ρ1F + 2α fξB( f )1F + 2α(β1F − (n − 1)k21F)

=µ(1B + 2 f 21F) + {2α f 2ρ − µ f 2 + 2α fξB( f ) + 2α(β − (n − 1)k2)}1F.

Thus, if 2α f 2ρ− µ f 2 + 2α fξB( f )+ 2α(β− (n− 1)k2) = 0 i.e., if f satisfies the quadratic equation (2αρ− µ) f 2 +
2α fξB( f ) + 2αβ + 2α(1 − n)k2 = 0, the foregoing equation reduces to

Lξ1 + 2αRic = µ(1B + f 2 fF) = µ1. (27)

Hence, we can establish that (M, 1, µ, ξ) indeed forms a conformal Ricci-Yamabe soliton, thereby concluding
the proof.

4. Conformal Ricci-Yamabe Soliton on Warped Product Manifolds with Concurrent Vector Field

The concept of concircular vector fields is introduced by Yano [15] as a means to investigate concircular
mappings, which essentially correspond to conformal mappings that uphold the integrity of geodesic
circles. These vector fields find a multitude of applications in mathematical physics and general relativity.
Chen [3] established the theorem that a Lorentzian manifold can be classified as a generalized Robertson-
Walker spacetime if and only if it accommodates a timelike concircular vector field. A vector field ξ on a
Riemannian manifold M satisfying

∇Xξ = αX, (28)

for all vector fields X ∈ X(M), is called a concircular vector field [6], where α is a non-trivial function on M.
In particular, if the function α is constant, then the vector field ξ is called a concurrent vector field. Thus,
we have the following definition [6]:
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Definition 4.1. A vector field ξ defined on a Riemannian manifold M is termed a concurrent vector field if it satisfies
the following equation for all vector fields X ∈ X(M):

∇Xξ = X. (29)

The soliton vector field xi is a circular (and concurrent) vector field, and we study conformal Ricci-Yamabe
solitons based on the definition given above. Our initial result can be stated as follows:

Theorem 4.2. Consider (M, 1, µ, ξ) as a conformal Ricci-Yamabe soliton situated on an n-dimensional Riemannian
manifold (M, 1), and the soliton vector field ξ possesses a concircular factor of α, then

(i) the manifold (M, 1) is an Einstein manifold with factor
(
µ
2α − 1

)
and

(ii) the soliton is expanding if 2
(
1 − 1

n

)
α+ βR+

(
p + 2

n

)
< 0, steady if 2

(
1 − 1

n

)
α+ βR+

(
p + 2

n

)
= 0 or shrinking

if 2
(
1 − 1

n

)
α + βR +

(
p + 2

n

)
> 0.

Proof. Based on our assumption, the soliton vector field ξ is considered to be concircular with a factor of α.
Therefore, from equation (28), we obtain

(Lξ1)(X,Y) =1(∇Xξ,Y) + 1(X,∇Yξ) = 1(αX,Y) + 1(X, αY) = 2α1(X,Y), (30)

for all vector fields X,Y ∈ X(M). Again, considering (M, 1, µ, ξ) as a conformal Ricci-Yamabe soliton, utilize
(30) in equation (3), we get

Ric(X,Y) =
( µ

2α
− 1

)
1(X,Y), (31)

for all vector fields X,Y ∈ X(M), and with µ =
[
λ − βR −

(
p + 2

n

)]
, equation (31) demonstrates that (M, 1) is

an Einstein manifold with a factor of
(
µ
2α − 1

)
. This concludes the initial portion of the theorem.

Furthermore, it is worth noting that for conformal Ricci flow, the scalar curvature r(1) = −1. Therefore,
taking an orthonormal basis {ei : 1 ≤ i ≤ n} of the manifold M and summing over 1 ≤ i ≤ n on both sides of
equation (31) yields

−1 = r(1) = n
( µ

2α
− 1

)
.

Lastly, by substituting the value µ =
[
2λ − βR −

(
p + 2

n

)]
into the equation above and simplifying, we obtain

λ =
(
1 −

1
n

)
α +
βR
2
+

p
2
+

1
n
. (32)

We know that the soliton is expanding if λ < 0, steady if λ = 0 or shrinking if λ > 0. Therefore, applying
this to equation (32) concludes the proof.

We then get a concurrent vector field result that directly follows the aforementioned theorem.

Corollary 4.3. Assume (M, 1, µ, ξ) is a conformal Ricci-Yamabe soliton with a concurrent soliton vector field ξ.
Under these circumstances

(i) the manifold (M, 1) becomes an Einstein with factor
(
µ
2 − 1

)
and

(ii) the soliton is undergoing expansion as
(
1 + p

n +
βR
2

)
< 0, steady as

(
1 + p

n +
βR
2

)
= 0 or shrinking as(

1 + p
n +

βR
2

)
> 0.

Proof. The proof is finished by proceeding as in Theorem 4.1 and then entering α = 1 into equations (31)
and (32).
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We conclude this section with the concurrent vector field theorem shown below:

Theorem 4.4. Suppose a warped product of two Riemannian manifolds B and F is (M, 1) = (B× f F, 1B ⊕ f 21F), with
the warping function denoted as f . We have dimB = m and dimF = n. Assuming that (M, 1, µ, ξ) forms a conformal
Ricci-Yamabe soliton with concurrent vector field ξ. If a warping function f is constant and both lifts ξB and ξF on
the base B and the fiber F are concurrent, then

(i) the soliton (M, 1, µ, ξ) is expanding as
( p

2 +
1
n +

βR
2 + α

)
< 0, steady as

( p
2 +

1
n +

βR
2 + α

)
= 0 or shrinking as( p

2 +
1
n +

βR
2 + α

)
= 0 or

( p
2 +

1
n +

βR
2 + α

)
> 0,

(ii) all the three manifolds M,B and F are Ricci flat manifolds and
(iii) all the three manifolds M, B and F admit conformal gradient Ricci-Yamabe solitons.

Proof. Given that (M, 1, µ, ξ) is a conformal Ricci-Yamabe soliton on M with a concurrent vector field ξ, the
first part of the corollary 4.3 can be used to prove this.

Ric(X,Y) =
( µ

2α
− 1

)
1(X,Y), (33)

for all vector fields X,Y ∈ X(M). Suppose we take X = XF and Y = YF. Then, by utilizing Lemma 1.1 and
equation (5), we obtain

Ric(XF,YF) = RicF(XF,YF) − f̃1F(XF,YF), (34)

where f̃ = f∆ f + (n − 1)∥∇ f ∥2B. Now, using equations (33) and (2) in the above equation (34) yields

RicF(XF,YF) = f̃1F(XF,YF) +
( µ

2α
− 1

)
f 21F(XF,YF),

where f̃ = f∆ f + (n − 1)∥∇ f ∥2B. According to the given condition that f is constant, denoted as f = c for
some constant c, it follows that f̃ = 0. Consequently, the equation above simplifies to

RicF(XF,YF) = c2
( µ

2α
− 1

)
1F(XF,YF), (35)

for all vector fields XF,YF ∈ X(F). Therefore, based on the above equation (35), we can conclude that F is
Einstein. Given that equation (35) holds true for any vector field in X(F), by substituting XF = YF = ξF into
the equation (35), we obtain

RicF(ξF, ξF) =c2
( µ

2α
− 1

)
1F(ξF, ξF) = c2

( µ
2α
− 1

)
∥ξF∥

2
F. (36)

Consider ξF, e1, e2, e3, ...., en−1 as an orthonormal basis of X(F). In this basis, the curvature tensor of the
manifold F can be expressed as

RF(ξF, ei, ξF, ei) = 1F(RF(ξF, ei)ξF, ei).

Utilizing the formula for the curvature tensor, we can rewrite the above equation as

RF(ξF, ei, ξF, ei) = 1F(∇F
ξF
∇

R
ei
ξF − ∇

R
ei
∇

F
ξF
ξF − ∇

F
[ξF,ei]
ξF, ei). (37)

Furthermore, given that ξF is a concurrent vector field, equation (29) yields ∇XξF = X for all X ∈ X(F).
Utilizing this result in equation (37), we obtain

RF(ξF, ei, ξF, ei) = 1F(∇F
ξF

ei − ∇
F
ei
ξF − [ξF, ei], ei) = 0.

This implication leads to RicF(ξF, ξF) = 0, and consequently, from equation (36), we obtain µ = 2α, i.e.,
µ =

[
2λ − βR −

(
p + 2

n

)]
= 2α. After simplification, this gives λ =

( p
2 +

1
n +

βR
2 + α

)
and the soliton is
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shrinking if λ > 0, steady λ = 0 or expanding λ < 0 .This demonstrates the theorem’s initial proposition.
We now have Ric = RicF = 0 using the value µ = 2α in equations (35) and (33). This establishes the Ricci

flatness of M and F.
Now, assuming that X = XB and Y = YB, we can write from Lemma 1.1

Ric(XB,YB) = RicB(XB,YB) −
n
f

H f (XB,YB), (38)

for all XB,YB ∈ X(B), the equation above, given that Ric = 0, simplifies to

RicB(XB,YB) =
n
f

H f (XB,YB). (39)

As a result of our presumption that f is constant, H f = 0 implies that the above equation (39) yields
RicB(XB,YB) = 0, for all XB,YB ∈ X(B). As a result, we arrive at RicB = 0, which establishes the Ricci flatness
of the manifold B. This concludes the second part of the theorem’s proof.

Let’s suppose that ϕ = 1
21(ξ, ξ) in order to prove the final portion of the theorem. Then

1(X, 1radϕ) = X(ϕ) = 1(∇Xξ, ξ), (40)

for all X ∈ X(M). Again, as ξ being concurrent, using equation (29) in equation (40), we get

1(X, 1radϕ) = 1(X, ξ),

for all X ∈ X(M). We can conclude that ξ = 1radϕ because the above equation holds true for any vector field
X ∈ X(M). As a result, (M, 1) admits a Ricci-Yamabe soliton with a conformal gradient.

Taking ϕB =
1
21(ξB, ξB) and ϕF =

1
21(ξF, ξF) and proceeding in the same manner, we can show that

ξB = 1radϕB and ϕF = 1radϕF. Also, from Theorem 2.1, we know that since (M, 1) is a conformal Ricci-
Yamabe soliton, B and F are both conformal Ricci-Yamabe soliton. Therefore, we can say that the conformal
gradient Ricci-Yamabe soliton is admissible on both the manifolds B and F.
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