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Viscosity approximation with generalized contractions for fixed point
problems and split fixed point problems of nonlinear operators
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Abstract. In this paper, we construct the hybrid viscosity iterative algorithms with generalized contraction
to approximate the fixed point of nonlinear operators such as demicontractive operators. Under appropriate
conditions, we establish the corresponding strong convergence theorems. Moreover, we apply our results
to approximating the common fixed points of nonlinear operators and solving the split common fixed point
problems of nonlinear operators. Finally, we present numerical examples to demonstrate the convergence
of our algorithm.

1. Introduction

Let H be an infinite dimensional real Hilbert space with inner product and norm denoted by ⟨·, ·⟩ and
∥ · ∥, respectively. Let C be a nonempty closed convex subset of H, PC be the metric projection from H onto
C (see, e.g., [16] for more details on the metric projection). Let T : H → H be a mapping, the set of fixed
points of T is denoted by F(T), that is, F(T) = {x ∈ H : Tx = x}.

In what follows, we recall some definitions of classes of operators often used in fixed point theory.

Definition 1.1. Let T : H→ H be a mapping, for ∀x, y ∈ H, then

(i) T is firmly nonexpansive if

∥Tx − Ty∥2 ≤ ∥x − y∥2 − ∥(I − T)x − (I − T)y∥2;

(ii) T is nonexpansive if

∥Tx − Ty∥ ≤ ∥x − y∥;

(iii) T is κ-strictly pseudocontractive with κ ∈ [0, 1) if

∥Tx − Ty∥2 ≤ ∥x − y∥2 + κ∥(I − T)x − (I − T)y∥2;

Definition 1.2. Let T : H→ H be a mapping with F(T) , ∅, for ∀ω ∈ F(T), x ∈ H, then
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(i) T is directed if

∥Tx − ω∥2 ≤ ∥x − ω∥2 − ∥x − Tx∥2;

(ii) T is α-strongly quasi-nonexpansive with α > 0 if

∥Tx − ω∥2 ≤ ∥x − ω∥2 − α∥x − Tx∥2;

(iii) T is quasi-nonexpansive if

∥Tx − ω∥ ≤ ∥x − ω∥;

(iv) T is β-demicontractive with β < 1 if

∥Tx − ω∥2 ≤ ∥x − ω∥2 + β∥x − Tx∥2.

It is easily observed that

(i) a firmly nonexpansive operator with nonempty fixed points is a directed operator; a nonexpansive
operator with nonempty fixed points is a quasi-nonexpansive operator; a directed operator or a
α-strongly quasi-nonexpansive operator is a quasi-nonexpansive operator;

(ii) the class of demicontractive operators contains important classes of operators: directed operator
for β = −1, quasi-nonexpansive operator for β = 0, and strictly pseudocontractive operator with
nonempty fixed points for β ∈ (0, 1).

(iii) firmly nonexpansive operators, nonexpansive operators and strictly pseudocontractive operators
are continuous; directed operators, (strongly) quasi-nonexpansive operators and demicontractive
operators are discontinuous.

In this paper, we consider the computation of fixed point of general operators T by means of the so-called
viscosity approximation method, which formally consists of the sequence {xn} given by the iteration (see
[4, 6, 13, 18, 19])

xn+1 = αn f (xn) + (1 − αn)Txn,∀n ≥ 0. (1)

where f is a contraction on H. The above method was first considered with regard to the special case when
f = µ (µ being any given element), in 1967 by Halpern [4] (for µ=0) and in 1977 by Lions [6]. It is worth
noting that this procedure can be regarded as a regularization process for fixed point iterations which is
supposed to induce the convergence in norm of the iterates. Moreover, it allows one to select a particular
fixed point of T which satisfies some variational inequality.

There is an extensive literature regarding the convergence analysis of (1), with several types of operator T,
in the setting of Hilbert spaces and Banach spaces. For instance, one of the main convergence results related
to (1) goes back to Moudafi [13] in 2000 (see in 2004 [19])regarding the case when T is a nonexpansive
operator with nonempty fixed points, under additional conditions on parameters αn, the sequence {xn}

generated by (1) converges strongly to a point x∗ ∈ F(T), which is also the unique solution of the following
variational inequality

⟨(I − f )x∗, x − x∗⟩ ≥ 0, ∀x ∈ F(T). (2)

In 2010, P. E. Maing [9] proposed the following viscosity-type approximation method:

xn+1 = αn f (xn) + (1 − αn)Tωxn,∀n ≥ 0, (3)

where f is a contraction on H, T is a quasi-nonexpansive operator(while this kind of operators appears
naturally when using sub-gradient projection operator techniques in solving convexly constrained problems
[8, 20, 21]), Tω = (1 − ω)I + ωT, ω ∈ (0, 1], where Tω is a 1−ω

ω -strongly quasi-nonexpansive operator and
F(T) = F(Tω). Under appropriate conditions, the sequence {xn} generated by (3) converges strongly to
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a point x∗ ∈ F(T), which is also the unique solution of the variational inequality problem (2). In [9],
the author also applied the result to demicontractive operators. Obviously, strongly quasi-nonexpansive
operators play an the important role in researching fixed points of quasi-nonexpansive operators and
demicontractive operators. Very recently, D. V. Thong [17] presented the convergence results of the method
(1) with operator T which belongs to the class of strongly quasi-nonexpansive operators, and applied the
main results to approximating the common fixed points of demicontractive operators.

Motivated by the above related results, we construct hybrid viscosity algorithms with generalized
contraction (Meir-Keeler type mappings or (ψ,L)-contractions) to approximate the fixed point of strongly
quasi-nonexpansive operators, quasi-nonexpansive operators and demicontractive operators. Moreover,
we apply our results to approximating the common fixed points of nonlinear operators and solving the
split fixed point problems of nonlinear operators.

This paper is organized as follows: In Section 2, we give some basic definitions, propositions and
lemmas which will be used in proving our main results; In Section 3, we present hybrid viscosity iterative
algorithms with generalized contraction for approximating the fixed pont of strongly quasi-nonexpansive
operators, quasi-nonexpansive operators and demicontractive operators; In Section 4, we apply our main
results to approximating the common fixed points of nonlinear operators and solving the split common
fixed point problems of nonlinear operators. In Section 5, we present numerical examples to demonstrate
the convergence of our algorithm.

2. Preliminaries

Throughout the paper, let the symbol→ and ⇀ denote the strong convergence and weak convergence,
respectively. In addition, ωw(xn) denote the weak ω-limit set of {xn}, that is, ωw(xn) = {u : ∃xn j ⇀ u}. To
prove our main results, we recall some basic definitions and lemmas, which will be needed in the sequel.

It is well-known that in a real Hilbert space H, the following equality holds:

∥λx + (1 − λ)y∥2 = λ∥x∥2 + (1 − λ)∥y∥2 − λ(1 − λ)∥x − y∥2, ∀x, y ∈ H. (4)

Recall that PC is the metric projection from H into C, then for each point x ∈ H, the unique point PCx ∈ C
satisfies the property:

∥x − PCx∥ = inf
y∈C
∥x − y∥ =: d(x,C).

Lemma 2.1. ([16]) For a given x ∈ H:

(i) z = PCx if and only if ⟨x − z, z − y⟩ ≥ 0,∀y ∈ C;
(ii) z = PCx if and only if ∥x − z∥2 ≤ ∥x − y∥2 − ∥y − z∥2;

(iii) ⟨PCx − PCy, x − y⟩ ≥ ∥PCx − PCy∥2,∀x, y ∈ H.

A linear bounded operator A : H→ H is called strongly positive if and only if there exists γ > 0 such that
⟨Ax, x⟩ ≥ γ∥x∥2 for all x ∈ H. and we call such A a strongly positive operator with coefficient γ.

Lemma 2.2. ([10]) Let H be a Hilbert space and let A be a strongly positive bounded linear self-adjoint operator on
H with coefficient γ > 0. If 0 < δ ≤ ∥A∥−1, then ∥I − δA∥ ≤ 1 − δγ.

A mapping ψ : R+ → R+ is said to be a L-function if ψ(0) = 0, ψ(t) > 0 for each t > 0 and for every s > 0,
there exists u > s such that ψ(t) ≤ s for each t ∈ [s,u]. As a consequence, every L-function ψ satisfies ψ(t) < t
for each t > 0.

Definition 2.3. Let (X, d) be a metric space. A mapping f : X→ X is said to be

(i) a (ψ,L)-contraction if ψ : R+ → R+ is said to be a L-function and d( f (x), f (y)) < ψ(d(x, y)), for all x, y ∈ X,
x , y;
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(ii) a Meir-Keeler type mapping if for each ϵ > 0 there exists δ = δ(ϵ) > 0 such that for each x, y ∈ X, with
ϵ ≤ d(x, y) < ϵ + δ, we have d( f (x), f (y)) < ϵ.

Proposition 2.4. ([5]) Let (X, d) be a metric space and f : X → X be a mapping. The following assertions are
equivalent:

(i) f is a Meir-Keeler type mapping;
(ii) there exists a L-function ψ : R+ → R+ such that f is a (ψ,L)-contraction.

Proposition 2.5. ([15]) Let C be a convex subset of a Banach space X and f : C→ C be a Meir-Keeler type mapping.
Then, for each ϵ > 0 there exists k ∈ (0, 1) such that

∥x − y∥ ≥ ϵ implies ∥ f (x) − f (y)∥ ≤ k∥x − y∥.

Lemma 2.6. ([12]) A Meir-Keeler contraction defined on a complete metric space has a unique fixed point.

Lemma 2.7. ([15]) Let C be a convex subset of a Banach space E. Let T be a nonexpansive mapping on C, and let f
be a Meir-Keeler contraction on C. Then the following hold:

(i) Tf is a Meir-Keeler contraction on C;
(ii) for each α ∈ (0, 1), (1 − α)T + α f is a Meir-Keeler contraction on C.

Lemma 2.8. ([2]) Suppose that T : H → H is β-demicontractive mapping. Then the fixed point set F(T) of T is
closed and convex.

Definition 2.9. ([3]) Assume that T : H → H is a nonlinear operator, then I − T is said to be demiclosed at zero if
for any sequence {xn} in H, the following implication holds:

xn ⇀ x and (I − T)xn → 0⇒ x ∈ F(T).

Lemma 2.10. ([11]) Let C be a nonempty closed convex subset of a real Hilbert space H, and let T : C → C be a
β-strict pseudo-contractive. Then I − T is demiclosed at 0.

Lemma 2.11. ([1]) Assume C is a closed convex subset of a Hilbert space H.

(i) Given an integer N ≥ 1, assume, for each 1 ≤ i ≤ N, Ti : C → C is a ki-strict pseudo-contraction for
some 0 ≤ ki < 1. Assume {λi}

N
i=1 is a positive sequence such that

∑N
i=1 λi = 1. Then

∑N
i=1 λiTi is a k-strict

pseudo-contraction, with k = max{ki : 1 ≤ i ≤ N}.
(ii) Let {Ti}

N
i=1 and {λi}

N
i=1 be given as in (i) above. Suppose that

∑N
i=1 λiTi has a common fixed point. Then

F(
N∑

i=1

λiTi) =
N⋂

i=1

F(Ti).

Lemma 2.12. ([17]) Let U : H → H be a β-demicontractive operator and T : H → H be a α1-strongly quasi-
nonexpansive operator with β < α1. Then, the operator UT is α1β

α1−β
demicontractive and F(U)

⋂
F(T) = F(UT).

Lemma 2.13. ([17]) Let U : H → H be a β-demicontractive operator with F(U) , ∅ and set Uλ = (1 − λ)I + λU,
λ ∈ (0, 1 − β) then

(i) F(U) = F(Uλ);
(ii) ∥Uλx − z∥2 ≤ ∥x − z∥2 − 1

λ (1 − β − λ)∥(I −Uλ)x∥2, ∀z ∈ F(U);
(iii) F(U) is a closed convex subset of H.

Lemma 2.14. ([17]) Let T : H2 → H2 be a µ-demicontractive operator, A : H1 → H2 be a linear bounded operator
with L = ∥A∗A∥. For a positive real number γ, define the operator V : H1 → H1 by V = I + γA∗(T − I)A. Then
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(i) for all x ∈ H1 and z ∈ A−1(Fix(T)),

∥Vx − z∥2 ≤ ∥x − z∥2 −
1
γL

(1 − µ − γL)∥(I − V)x∥2;

(ii) for all x ∈ H1 and z ∈ A−1(Fix(T)),

∥Vx − z∥2 ≤ ∥x − z∥2 − γ(1 − µ − γL)∥(I − T)Ax∥2;

(iii) x ∈ F(V) if Ax ∈ F(T) provided that γ ∈ (0, 1−µ
L ).

Lemma 2.15. ([8]) Let {xn} be a sequence of non-negative real numbers, such that there exists a subsequence {xn j }

of {xn}, such that xn j < xn j+1 for all j ∈ N. Then, there exists a nondecreasing sequence {mk} of N, such that
limk→∞mk = ∞, and the following properties are satisfied by all (sufficiently large) number k ∈ N:

xmk ≤ xmk+1 and xk ≤ xmk+1.

In fact, mk is the largest number n in the set {1, 2, · · · , k}, such that xn ≤ xn+1.

Lemma 2.16. ([19]) Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − bn)an + cn,

where bn is a sequence in (0, 1) and {cn} is a sequence such that

(i)
∑
∞

n=1 bn = ∞;
(ii) lim supn→∞

cn
bn
≤ 0 or

∑
∞

n=1 |cn| < ∞.

Then limn→∞ an = 0.

3. Main results

In this section, we first give the properties of demicontractive operator (supplement with the content in
[17]), and then present the main results of the paper.

The following Lemma supplements with the content of Lemma 2.12.

Lemma 3.1. Let U : H → H be a β-demicontractive operator and T : H → H be a α-strongly quasi-nonexpansive
operator with β < α. Then, the operator TU is αβ

α−β demicontractive and F(U)
⋂

F(T) = F(TU).

Proof. First, we show that F(U)
⋂

F(T) = F(TU).
It is suffices to show that F(TU) ⊆ F(U)

⋂
F(T). Let p ∈ F(TU), it is enough to show that p ∈ F(U). Picking

q ∈ F(U)
⋂

F(T), from the definition of U and T, we have that

∥p − q∥2 = ∥TUp − q∥2

≤ ∥Up − q∥2 − α∥Up − TUp∥2

≤ ∥p − q∥2 + β∥Up − p∥2 − α∥Up − TUp∥2

= ∥p − q∥2 + β∥Up − p∥2 − α∥Up − p∥2

= ∥p − q∥2 − (α − β)∥Up − p∥2.

It follows from the condition β < α that Up = p, that is, p ∈ F(U). Then Tp = TUp = p, that is, p ∈ F(T).
Therefore, F(U)

⋂
F(T) = F(TU).

Next, we show that the operator TU is αβ
α−β demicontractive.
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Picking x ∈ H and q ∈ F(TU). Let a = x − q, b = Ux − q, c = TUx − q, then we have that a − b = x − Ux,
a − c = x − TUx, b − c = Ux − TUx. From the definition of U and T, we obtain that

∥b∥2 ≤ ∥a∥2 + β∥a − b∥2

and

∥c∥2 ≤ ∥b∥2 − α∥b − c∥2,

which imply that

2β⟨a, b⟩ ≤ (1 + β)∥a∥2 − (1 − β)∥b∥2

and

−2α⟨b, c⟩ ≤ (1 − α)∥b∥2 − (1 + α)∥c∥2.

Moreover, we have that

0 ≤ ∥αc − (α − β)b − βa∥2 = α2
∥c∥2 + (α − β)2

∥b∥2 + β2
∥a∥2 − 2α(α − β)⟨b, c⟩

+ 2β(α − β)⟨b, a⟩ − 2αβ⟨a, c⟩

≤ α2
∥c∥2 + (α − β)2

∥b∥2 + β2
∥a∥2 + (α − β)[(1 − α)∥b∥2 − (1 + α)∥c∥2]

+ (α − β)[(1 + β)∥a∥2 − (1 − β)∥b∥2] − 2αβ⟨a, c⟩

= [α2
− (α − β)(1 + α)]∥c∥2 + [β2 + (α − β)(1 + β)]∥a∥2 − 2αβ⟨a, c⟩

= (αβ + β − α)∥c∥2 + (αβ + α − β)∥a∥2 − 2αβ⟨a, c⟩

= (αβ + β − α)∥c∥2 + (αβ + α − β)∥a∥2 + αβ(∥a − c∥2 − ∥a∥2 − ∥c∥2)

= (β − α)∥c∥2 + (α − β)∥a∥2 + αβ∥a − c∥2,

then

(α − β)∥c∥2 ≤ (α − β)∥a∥2 + αβ∥a − c∥2,

hence

∥c∥2 ≤ ∥a∥2 +
αβ

α − β
∥a − c∥2.

That is,

∥TUx − q∥2 ≤ ∥x − q∥2 +
αβ

α − β
∥x − TUx∥2.

The following Lemma modifies Lemma 2.11 from strict pseudo-contraction to demicontractive operator.

Lemma 3.2. Let Ui : H → H be a βi-demicontractive operator. Let V =
∑N

i=1 λiUi, {λi}
N
i=1 ⊂ [0, 1] and

∑N
i=1 λi = 1.

Let β = max1≤i≤N{βi}. Then the operator V is β demicontractive and
⋂

1≤i≤N F(Ui) = F(V).

Proof. Obviously, We only need to prove the case λi ∈ (0, 1) for 1 ≤ i ≤ N, and it is suffices to prove the
Lemma for N = 2 and the method can easily be applied to the general case.

First, we show that F(U)
⋂

F(T) = F(V).
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It is suffices to show that F(V) ⊆ F(U)
⋂

F(T). Let p ∈ F(V), it is enough to show that p ∈ F(U). Picking
q ∈ F(U)

⋂
F(T), from (4) and the definition of U and T, we have that

∥p − q∥2 = ∥Vp − q∥2 = ∥[λU + (1 − λ)T]p − q∥2

= ∥λ(Up − q) + (1 − λ)(Tp − q)∥2

= λ∥Up − q∥2 + (1 − λ)∥Tp − q∥2 − λ(1 − λ)∥Up − Tp∥2

≤ λ[∥p − q∥2 + β1∥p −Up∥2] + (1 − λ)[∥p − q∥2 + β2∥p − Tp∥2] − λ(1 − λ)∥Up − Tp∥2

= ∥p − q∥2 + λβ1∥p −Up∥2 + (1 − λ)β2∥p − Tp∥2 − λ(1 − λ)∥Up − Tp∥2.

Since p = Vp = λUp + (1 − λ)Tp, let Up = a, then Tp = p−λa
1−λ . We have

∥p − q∥2 ≤ ∥p − q∥2 + λβ1∥p −Up∥2 + (1 − λ)β2∥p − Tp∥2 − λ(1 − λ)∥Up − Tp∥2

= ∥p − q∥2 + λβ1∥p − a∥2 + (1 − λ)β2∥p −
p − λa
1 − λ

∥
2
− λ(1 − λ)∥a −

p − λa
1 − λ

∥
2

= ∥p − q∥2 +
λ[β1 − 1 + λ(β2 − β1)]

1 − λ
∥p − a∥2.

It is easy to vertify that β1 − 1 + λ(β2 − β1) < 0 always holds, so we have p = a, that is, p ∈ F(U). Therefore
F(V) ⊆ F(U)

⋂
F(T).

Next, we show that the operator V is β-demicontractive.
Picking x ∈ H and q ∈ F(V), from (4) and the definition of U and T, we have that

∥Vx − q∥2 = ∥[λU + (1 − λ)T]x − q∥2

= ∥λ(Ux − q) + (1 − λ)(Tx − q)∥2

= λ∥Ux − q∥2 + (1 − λ)∥Tx − q∥2 − λ(1 − λ)∥Ux − Tx∥2

≤ λ[∥x − q∥2 + β1∥x −Ux∥2] + (1 − λ)[∥x − q∥2 + β2∥x − Tx∥2] − λ(1 − λ)∥Ux − Tx∥2

= ∥x − q∥2 + λβ1∥x −Ux∥2 + (1 − λ)β2∥x − Tx∥2 − λ(1 − λ)∥Ux − Tx∥2

≤ ∥x − q∥2 + λβ∥x −Ux∥2 + (1 − λ)β∥x − Tx∥2 − λ(1 − λ)∥Ux − Tx∥2

= ∥x − q∥2 + β[λ∥x −Ux∥2 + (1 − λ)∥x − Tx∥2 − λ(1 − λ)∥Ux − Tx∥2]

+ βλ(1 − λ)∥Ux − Tx∥2 − λ(1 − λ)∥Ux − Tx∥2

= ∥x − q∥2 + β∥Vx − x∥2 − (1 − β)λ(1 − λ)∥Ux − Tx∥2

≤ ∥x − q∥2 + β∥Vx − x∥2.

That is, V is β-demicontractive.

Lemma 3.3. Let H is an infinite dimensional real Hilbert space, f : H → H be a Meir-Keeler-type contraction and
A be a strongly positive bounded linear self-adjoint operator on H with coefficient γ > 0. For any nonempty closed
convex subset D of H, if ∥A∥ ≤ 1 and constant γ ≤ γ̄, then PD(I − A + γ f ) has a unique fixed point in D. Or
equivalently, the following variational inequality:

⟨(A − γ f )x, z − x⟩ ≥ 0, ∀z ∈ D.

has a unique solution in D.

Proof. Since f is a Meir-Keeler-type contraction, then, for any ∥x− y∥ ≤ ϵ+ δ, we have that ∥ f (x)− f (y)∥ ≤ ϵ.
Observe that

∥(I − A + γ f )x − (I − A + γ f )y∥ ≤ ∥(I − A)(x − y)∥ + γ∥ f (x) − f (y)∥.
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Case 1. ∥x − y∥ ≤ ϵ, from Lemma 2.2, we have

∥(I − A + γ f )x − (I − A + γ f )y∥ ≤ ∥I − A∥∥x − y∥ + γψ(∥x − y∥)
≤ (1 − γ̄)∥x − y∥ + γ∥x − y∥
= (1 − γ̄ + γ)∥x − y∥
≤ ∥x − y∥ ≤ ϵ.

Case 2. ϵ + δ ≥ ∥x − y∥ > ϵ, from Lemma 2.2 and Proposition 2.5, we have

∥(I − A + γ f )x − (I − A + γ f )y∥ ≤ ∥I − A∥∥x − y∥ + γkϵ∥x − y∥
≤ (1 − γ̄)∥x − y∥ + γkϵ∥x − y∥
= (1 − γ̄ + γkϵ)∥x − y∥
≤ (1 − γ̄ + γkϵ)(ϵ + δ).

Taking δ = (γ̄−γkϵ)ϵ
1−γ̄+γkϵ

, we obtain that

∥(I − A + γ f )x − (I − A + γ f )y∥ ≤ ϵ.

Therefore, I −A + γ f is a Meir-Keeler-type contraction on H. From Lemma 2.7, we have PD(I −A + γ f ) is a
Meir-Keeler-type contraction from H onto D. It follows from Lemma 2.6 that PD(I − A + γ f ) has a unique
fixed point in D. By Lemma 2.1, we have that the variational inequality:

⟨(A − γ f )x, z − x⟩ ≥ 0, ∀z ∈ D.

has a unique solution in D.

Lemma 3.4. Let H be an infinite dimensional real Hilbert space, A be a strongly positive bounded linear self-adjoint
operator on H with coefficient γ > 0, Asumme that {βn} ⊂ (0, 1) and αn ≤ (1 − βn)∥A∥−1, for ∀n ≥ 1, then the
following inequality holds:

∥(1 − βn)I − αnA∥ ≤ 1 − βn − αnγ, ∀n ≥ 1.

Proof. From condition αn ≤ (1 − βn)∥A∥−1, for ∀x ∈ H, we have

⟨((1 − βn)I − αnA)x, x⟩ = (1 − βn)∥x∥2 − αn⟨Ax, x⟩

≥ (1 − βn − αn∥A∥)∥x∥2

≥ 0.

This is, (1 − βn)I − αnA is positive operator on H. Again since A be a strongly positive bounded linear
self-adjoint operator on H with coefficient γ > 0, we have

∥(1 − βn)I − αnA∥ = sup{⟨((1 − βn)I − αnA)x, x⟩ : x ∈ H, ∥x∥ = 1}
= sup{1 − βn − αn⟨Ax, x⟩ : x ∈ H, ∥x∥ = 1}
≤ 1 − βn − αnγ.

In what follows, we state and prove the main results of this paper.

Theorem 3.5. Let H be an infinite dimensional real Hilbert space. Let T : H→ H be aα-strongly quasi-nonexpansive
operator such that I − T is demiclosed at zero. Suppose that f : H → H is a Meir-Keeler-type contraction and A is
a strongly positive bounded linear self-adjoint operator on H with coefficient γ > 0. Assume that ∥A∥ ≤ 1, constant
γ ≤ γ̄ and F(T) , ∅. For an arbitrary x1 ∈ H, let {xn} be a sequence generated by the following algorithm:

xn+1 = αnγ f (xn) + βnxn + [(1 − βn)I − αnA]Txn. (5)

Asumme that {αn} and {βn} satisfying the following conditions:
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(i) {αn} ⊂ (0, 1), limn→∞ αn = 0,
∑

n αn = ∞;
(ii) {βn} ⊂ [0, 1), lim supn→∞ βn < 1

Then sequence {xn} converges strongly to a point x∗ ∈ F(T) which is also the unique solution of the variational
inequality

⟨(A − γ f )x∗, x − x∗⟩ ≥ 0, ∀x ∈ F(T). (6)

or equivalently, x∗ = PF(T)(I − A + γ f )x∗.

Proof. First, we show that the variational inequality (6) has a unique solution. Indeed, from Lemma 2.8, we
know that F(T) is closed and convex set of H. Then it follows from 3.3 that the variational inequality (6) has
a unique solution, denoted by x∗. That is, x∗ = PF(T)(I − A + γ f )x∗.

Next, we show that {xn} is bounded.
From the condition limn→∞ αn = 0, we may assume, without loss of generality, that αn ≤ (1 − βn)∥A∥−1,

by Lemma 3.4, we know that

∥(1 − βn)I − αnA∥ ≤ 1 − βn − αnγ, ∀n ≥ 1.

Suppose that ∀p ∈ F(T), fixed ϵ0, for ∀n ≥ 1.
Case 1. ∥xn − p∥ < ϵ0. It is obvious that {xn} is bounded.
Case 2. ∥xn − p∥ ≥ ϵ0. By Proposition 2.5, there exists kϵ0 ∈ (0, 1) such that ∥ f (xn) − f (p)∥ ≤ kϵ0∥xn − p∥.

From (5) and Lemma 3.4, we have

∥xn+1 − p∥ = ∥αnγ f (xn) + βnxn + ((1 − βn)I − αnA)Txn − p∥
= ∥αnγ f (xn) − αnγ f (p) + βnxn − βnp + [(1 − βn)I − αnA](Txn − p)
+ αnγ f (p) + βnp + [(1 − βn)I − αnA]p − p∥
≤ αnγkϵ0∥xn − p∥ + βn∥xn − p∥ + ∥(1 − βn)I − αnA∥∥Txn − p∥ + αn∥γ f (p) − Ap∥
≤ αnγkϵ0∥xn − p∥ + βn∥xn − p∥ + (1 − βn − αnγ)∥xn − p∥ + αn∥γ f (p) − Ap∥
≤ (1 − αnγ + αnγkϵ0 )∥xn − p∥ + αn∥γ f (p) − Ap∥

≤ (1 − αn(γ − γkϵ0 ))∥xn − p∥ + αn(γ − γkϵ0 )
1

γ − γkϵ0

∥γ f (p) − Ap∥.

Set M = max{∥x1−p∥, 1
γ−γkϵ0

∥γ f (p)−Ap∥}. Assume that ∥xn−p∥ ≤M, By induction, we have ∥xn+1−p∥ ≤M.
Hence {xn} is bounded and { f (xn)}, {Txn}, {Axn} and {A(Txn)} are also bounded.

Observe that

∥xn+1 − xn∥
2 = ∥αnγ f (xn) + βnxn + [(1 − βn)I − αnA]Txn − xn∥

2

= ∥αn(γ f (xn) − Axn) + [(1 − βn)I − αnA](Txn − xn)∥2

= α2
n∥γ f (xn) − Axn∥

2 + ∥[(1 − βn)I − αnA](Txn − xn)∥2

+ 2αn⟨γ f (xn) − Axn, [(1 − βn)I − αnA](Txn − xn)⟩

≤ α2
n∥γ f (xn) − Axn∥

2 + (1 − βn − αnγ)2
∥Txn − xn∥

2

+ 2αn⟨γ f (xn) − Axn, [(1 − βn)I − αnA](Txn − xn)⟩.

and

∥xn+1 − p∥2 − ∥xn − p∥2 − ∥xn+1 − xn∥
2 = 2⟨xn+1 − xn, xn − p⟩
= 2⟨αn(γ f (xn) − Axn) + [(1 − βn)I − αnA](Txn − xn), xn − p⟩
= 2αn⟨γ f (xn) − Axn, xn − p⟩ + 2⟨[(1 − βn)I − αnA](Txn − xn), xn − p⟩
= 2αn⟨γ f (xn) − Axn, xn − p⟩ + 2(1 − βn)⟨Txn − xn, xn − p⟩
− 2αn⟨A(Txn − xn), xn − p⟩

≤ 2αn⟨γ f (xn) − Axn, xn − p⟩ − (1 − βn)(α + 1)∥Txn − xn∥
2

− 2αn⟨A(Txn − xn), xn − p⟩.
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Therefore

∥xn+1 − p∥2 − ∥xn − p∥2 ≤ 2αn⟨γ f (xn) − Axn, xn − p⟩ − (1 − βn)(α + 1)∥Txn − xn∥
2

− 2αn⟨A(Txn − xn), xn − p⟩ + α2
n∥γ f (xn) − Axn∥

2 + (1 − βn − αnγ)2
∥Txn − xn∥

2

+ 2αn⟨γ f (xn) − Axn, [(1 − βn)I − αnA](Txn − xn)⟩

= 2αn⟨γ f (xn) − Axn, xn − p⟩ − [(1 − βn)(α + 1) − (1 − βn − αnγ)2]∥Txn − xn∥
2

− 2αn⟨A(Txn − xn), xn − p⟩ + α2
n∥γ f (xn) − Axn∥

2

+ 2αn⟨γ f (xn) − Axn, [(1 − βn)I − αnA](Txn − xn)⟩.

Let Λ = (1 − βn)(α + 1) − (1 − βn − αnγ)2, it is easy to vertify that lim infn→∞Λ > 0. Then we can obtain that

Λ∥Txn − xn∥
2
≤ 2αn⟨γ f (xn) − Axn, xn − p⟩ − 2αn⟨A(Txn − xn), xn − p⟩ + α2

n∥γ f (xn) − Axn∥
2

+ 2αn⟨γ f (xn) − Axn, [(1 − βn)I − αnA](Txn − xn)⟩ + ∥xn − p∥2 − ∥xn+1 − p∥2

≤ 2αn∥γ f (xn) − Axn∥∥xn − p∥ + 2αn∥A(Txn − xn)∥∥xn − p∥ + α2
n∥γ f (xn) − Axn∥

2

+ ∥xn − p∥2 − ∥xn+1 − p∥2 + 2αn(1 − βn − αnγ)∥γ f (xn) − Axn∥∥Txn − xn∥.

(7)

Next, We analyze the inequality (7) by considering the following two cases.
Case 1. Assume that there exists n0 large enough such that ∥xn+1 − p∥2 ≤ ∥xn − p∥2 for all n ≥ n0. Since

∥xn − p∥2 is bounded, we have that limn→∞ ∥xn − p∥2 exists. Since lim infn→∞Λ > 0, limn→∞ αn = 0 and {xn},
{ f (xn)}, {T(xn)}, {A(xn)} and {A(Txn)} are bounded, we can obtain

∥Txn − xn∥ → 0 (n→∞).

For any q ∈ ωω(xn), there exists some subsequence {xnl }of {xn} such that xnl ⇀ q as l→∞. Since ∥Txn−xn∥ → 0
and I − T is demiclosed at zero, it follows from Definition 2.9 that q ∈ F(T), that is, ωω(xn) ⊆ F(T).

Next, we show that

lim sup
n→∞

⟨(A − r f )x∗, xn − x∗⟩ ≥ 0, (8)

Indeed, taking a subsequence {xni } of {xn} such that

lim sup
n→∞

⟨(A − r f )x∗, xn − x∗⟩ = lim
i→∞
⟨(A − r f )x∗, xni − x∗⟩.

Since {xn} is bounded, without loss of generality, we may assume that xni ⇀ q ∈ F(T). From Lemma 3.3, we
have

lim sup
n→∞

⟨(A − r f )x∗, xn − x∗⟩ = ⟨(A − r f )x∗, q − x∗⟩ ≥ 0.

Again from ∥Txn − xn∥ → 0, (n→∞), we have that

lim sup
n→∞

⟨(A − r f )x∗,Txn − x∗⟩ = ⟨(A − r f )x∗, q − x∗⟩ ≥ 0. (9)

Finally, we show that xn → x∗ as n→∞.
Assume that the sequence {xn} does not converge strongly to x∗ ∈ F(T), then there exists ϵ > 0 and a

subsequence {xni } of {xn} such that ∥xni − x∗∥ ≥ ϵ, for all i ≥ 0. From Proposition 2.5, for this ϵ there exists
kϵ ∈ (0, 1) such that

∥ f (xni ) − f (x∗)∥ ≤ kϵ∥xni − x∗∥.
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Then we have

∥xni+1 − x∗∥2 = ∥αniγ f (xni ) + βni xni + ((1 − βni )I − αni A)Txni − x∗∥2

= ∥αni (γ f (xni ) − Ax∗) + βni (xni − x∗) + ((1 − βni )I − αni A)(Txni − x∗)∥2

= α2
ni
∥γ f (xni ) − Ax∗∥2 + ∥βni (xni − x∗) + ((1 − βni )I − αni A)(Txni − x∗)∥2

+ 2⟨αni (γ f (xni ) − Ax∗), βni (xni − x∗) + ((1 − βni )I − αni A)(Txni − x∗)⟩

≤ α2
ni
∥γ f (xni ) − Ax∗∥2 + [βni∥xni − x∗∥ + (1 − βni − αniγ)∥Txni − x∗∥]2

+ 2αniβni⟨γ f (xni ) − Ax∗, xni − x∗⟩ + 2αni⟨γ f (xni ) − Ax∗, ((1 − βni )I − αni A)(Txni − x∗)⟩

≤ α2
ni
∥γ f (xni ) − Ax∗∥2 + (1 − αniγ)2

∥xni − x∗∥2 + 2αniβni⟨γ f (xni ) − γ f (x∗), xni − x∗⟩
+ 2αniβni⟨γ f (x∗) − Ax∗, xni − x∗⟩ + 2αni⟨γ f (xni ) − γ f (x∗), ((1 − βni )I − αni A)(Txni − x∗)⟩
+ 2αni⟨γ f (x∗) − Ax∗, ((1 − βni )I − αni A)(Txni − x∗)⟩

≤ [(1 − αniγ)2 + 2αniβniγkϵ + 2αniγkϵ(1 − βni − αniγ)]∥xni − x∗∥2

+ α2
ni
∥γ f (xni ) − Ax∗∥2 + 2αniβni⟨γ f (x∗) − Ax∗, xni − x∗⟩

+ 2αni (1 − βni )⟨γ f (x∗) − Ax∗,Txni − x∗⟩ − 2α2
ni
⟨γ f (x∗) − Ax∗,A(Txni − x∗)⟩

≤ [1 − 2αni (γ − γkϵ) + α2
ni
γ2]∥xni − x∗∥2 + α2

ni
∥γ f (xni ) − Ax∗∥2 + 2αniβni⟨γ f (x∗) − Ax∗, xni − x∗⟩

+ 2αni (1 − βni )⟨γ f (x∗) − Ax∗,Txni − x∗⟩ + 2α2
ni
∥γ f (x∗) − Ax∗∥∥A(Txni − x∗)∥

≤ [1 − 2αni (γ − γkϵ)]∥xni − x∗∥2 + αniξni .

(10)

where

ξni = αniγ
2
∥xni − x∗∥2 + αni∥γ f (xni ) − Ax∗∥2 + 2βni⟨γ f (x∗) − Ax∗, xni − x∗⟩

+ 2αni∥γ f (x∗) − Ax∗∥∥A(Txni − x∗)∥ + 2(1 − βni )⟨γ f (x∗) − Ax∗,Txni − x∗⟩.

Set bni = 2αni (γ − γkϵ), cni = αniξni . then (10) reduces to formula

∥xni+1 − x∗∥2 ≤ (1 − bni )∥xni − x∗∥2 + cni .

From condition
∑
∞

n=0 αn = ∞, we know that
∑
∞

i=0 bni = ∞. Also from condition limn→ αn = 0, (8) and (9), we
have that lim supi→∞

cni
bni
= lim supi→∞

ξni
2(γ−γkϵ)

≤ 0, then it follows form Lemma 2.16 that xni → x∗ as i→ ∞.
The contradiction permits us to conclude that sequence {xn} converges strongly to x∗ ∈ F(T).

Case 2. Assume that there exists a subsequence {∥xn j −p∥2} of {∥xn−p∥2} such that ∥xn j −p∥2 < ∥xn j+1−p∥2

for all j ∈ N. Then it follows from Lemma 2.15 that there exists a nondecreasing sequence {mk} of N, such
that limk→∞mk = ∞, and the following inequalities hold for all k ∈ N:

∥xmk − p∥2 ≤ ∥xmk+1 − p∥2 and ∥xk − p∥2 ≤ ∥xmk+1 − p∥2. (11)

Similarly, we get

∥Txmk − xmk∥ → 0 (n→∞).

Following an argument similar to that in Case 1 we have ωω(xmk ) ⊆ F(T). Also, we can obtain that

lim sup
n→∞

⟨(A − r f )x∗, xmk − x∗⟩ ≥ 0, (12)

and

lim sup
n→∞

⟨(A − r f )x∗,Txmk − x∗⟩ = ⟨(A − r f )x∗, q − x∗⟩ ≥ 0. (13)
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Assume that the sequence {xmk } does not converge strongly to x∗ ∈ F(T), then there exists ϵ > 0 and a
subsequence {xmki

} of {xmk } such that ∥xmki
− x∗∥ ≥ ϵ, for all i ≥ 0. From Proposition 2.5, for this ϵ there exists

kϵ ∈ (0, 1) such that
∥ f (xmki

) − f (x∗)∥ ≤ kϵ∥xmki
− x∗∥.

Similarly, we get
∥xmki+1 − x∗∥2 ≤ (1 − bmki

)∥xmki
− x∗∥2 + cmki

.

where bmki
= 2αmki

(γ − γkϵ), cmki
= αmki

ξmki
.

ξmki
= αmki

γ2
∥xmki

− x∗∥2 + αmki
∥γ f (xmki

) − Ax∗∥2 + 2βmki
⟨γ f (x∗) − Ax∗, xmki

− x∗⟩

+ 2αmki
∥γ f (x∗) − Ax∗∥∥A(Txmki

− x∗)∥ + 2(1 − βmki
)⟨γ f (x∗) − Ax∗,Txmki

− x∗⟩.

From condition
∑
∞

n=0 αn = ∞, we know that
∑
∞

i=0 bmki
= ∞. Also from condition limn→ αn = 0, (12) and

(13), we have that lim supi→∞

cmki
bmki

= lim supi→∞

ξmki
2(γ−γkϵ)

≤ 0, then it follows form Lemma 2.16 that xmki
→ x∗

as i→∞. The contradiction permits us to conclude that sequence {xmk } converges strongly to x∗ ∈ F(T). By
(11), we get ∥xk − x∗∥ ≤ ∥xmk − x∗∥, ∀k ∈ N. Therefore, xk → x∗ as k→∞.

4. Applications

4.1. Applications to approximating the common fixed points of nonlinear operators
Theorem 4.1. Let H be an infinite dimensional real Hilbert space. Let T : H → H be a β-demicontractive such that
I − T is demiclosed at zero. Suppose that f : H → H is a Meir-Keeler-type contraction and A is a strongly positive
bounded linear self-adjoint operator on H with coefficient γ > 0. Assume that ∥A∥ ≤ 1, constant γ ≤ γ̄ and F(T) , ∅.
For an arbitrary x1 ∈ H, let {xn} be a sequence generated by the following algorithm:

xn+1 = αnγ f (xn) + βnxn + [(1 − βn)I − αnA]Tλxn. (14)

where Tλ = (1 − λ)I + λT. Assume that the parameter λ and the sequence {αn} and {βn} satisfying the following
conditions:

(i) λ ∈ (0, 1 − β);
(ii) {αn} ⊂ (0, 1), limn→∞ αn = 0,

∑
n αn = ∞;

(iii) {βn} ⊂ [0, 1), lim supn→∞ βn < 1

Then sequence {xn} converges strongly to a point x∗ ∈ F(T) which is also the unique solution of the variational
inequality (6), or equivalently, x∗ = PF(T)(I − A + γ f )x∗.

Proof. From Lemma 2.13 and the condition (i), we have that Tλ is 1−β−λ
λ -strongly quasi- nonexpansive and

F(Tλ) = F(T), and from λ(I−T) = I−Tλ, it is obvious that I−Tλ is demiclosed at zero. The remaining of the
proof is followed from Theorem 3.5.

Theorem 4.2. Let H be an infinite dimensional real Hilbert space. Let Ti : H→ H be a τi-demicontractive such that
I − Ti are demiclosed at zero, for 1 ≤ i ≤ N. Suppose that f : H → H is a Meir-Keeler-type contraction and A is a
strongly positive bounded linear self-adjoint operator on H with coefficient γ > 0. Assume that ∥A∥ ≤ 1, constant
γ ≤ γ̄ and Γ =

⋂N
i=1 F(Ti) , ∅. For an arbitrary x1 ∈ H, let {xn} be a sequence generated by the following algorithm:

xn+1 = αnγ f (xn) + βnxn + [(1 − βn)I − αnA]Tλxn.

where Tλ = (1 − λ)I + λ
∑N

i=1 µiTi. Assume that the parameter λ and the sequence {µi}, {αn} and {βn} satisfying the
following conditions:

(i) λ ∈ (0, 1 − τ), τ = max1≤i≤N{τi};
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(i) µi ∈ (0, 1),
∑N

i=1 µi = 1;
(iii) {αn} ⊂ (0, 1), limn→∞ αn = 0,

∑
n αn = ∞;

(iv) {βn} ⊂ [0, 1), lim supn→∞ βn < 1

Then sequence {xn} converges strongly to a point x∗ ∈ Γ which is also the unique solution of the variational inequality
(6), or equivalently, x∗ = PΓ(I − A + γ f )x∗.

Proof. Set T =
∑N

i=1 µiTi. It follows from Lemma 3.2 that T is τ-demicontractive and F(T) =
⋂

1≤i≤N F(Ti).
From Lemma 2.13 and the condition (i), we have that Tλ is 1−τ−λ

λ -strongly quasi-nonexpansive and F(Tλ) =
F(T), and from I − Tλ = λ(I − T) = λ

∑N
i=1 µi(I − Ti), it is obvious that I − Tλ is demiclosed at zero. The

remaining of the proof is followed from Theorem 3.5.

Remark 4.3. Since the class of quasi-nonexpansive operators and the class of strictly pseudocontractive operators
with nonempty fixed points belong to the class of demicontractive, then we can apply the results of Theorem 4.1 and
Theorem 4.2 to quasi-nonexpansive operators and strictly pseudocontractive operators (Lemma 2.11 and Lemma 2.10
to be used).

Theorem 4.4. Let H be an infinite dimensional real Hilbert space. Let U : H → H be a β-demicontractive operator
and T : H → H be a α-strongly quasi-nonexpansive operator with β < α such that I − U and I − T are demiclosed
at zero. Suppose that f : H → H is a Meir-Keeler-type contraction and A is a strongly positive bounded linear
self-adjoint operator on H with coefficient γ > 0. Assume that ∥A∥ ≤ 1, constant γ ≤ γ̄ and Γ = F(S)

⋂
F(T) , ∅.

For an arbitrary x1 ∈ H, let {xn} be a sequence generated by the following algorithm:

xn+1 = αnγ f (xn) + βnxn + [(1 − βn)I − αnA]Sxn.

where S = (1 − λ)I + λUT or S = (1 − λ)I + λTU. Assume that the parameter λ and the sequence {αn} and {βn}

satisfying the following conditions:

(i) λ ∈ (0, 1 − αβ
α−β );

(ii) {αn} ⊂ (0, 1), limn→∞ αn = 0,
∑

n αn = ∞;
(iii) {βn} ⊂ [0, 1), lim supn→∞ βn < 1

Then sequence {xn} converges strongly to a point x∗ ∈ Γ which is also the unique solution of the variational inequality
(6), or equivalently, x∗ = PΓ(I − A + γ f )x∗.

Proof. It follows from Lemma 2.12 and 3.1 that UT and TU is αβ
α−β -demicontractive and F(UT) = F(TU) =

F(U)
⋂

F(T). From Lemma 2.13 and the condition (i), we have that S is
1− αβ

α−β−λ

λ -strongly quasi-nonexpansive
and F(S) = F(UT) = F(TU),

Next, we show that the operator I − S is demiclosed at zero, whereS = (1 − λ)I + λUT. Let {xn} be a
sequence such that xn − Sxn → 0 and xn ⇀ x. Since xn − Sxn = λ(xn −UTxn), we have that xn −UTxn → 0.
Picking any p ∈ F(S), we have that

∥UTxn − p∥2 ≤ ∥Txn − p∥2 + β∥Txn −UTxn∥
2

≤ ∥xn − p∥2 − α∥xn − Txn∥
2 + β∥Txn −UTxn∥

2

= ∥xn − p∥2 − α∥xn − Txn∥
2 + β∥Txn − xn + xn −UTxn∥

2

= ∥xn − p∥2 − α∥xn − Txn∥
2 + β∥Txn − xn∥

2 + 2β⟨Txn − xn, xn −UTxn⟩ + β∥xn −UTxn∥
2.

Then we get that

(α − β)∥Txn − xn∥
2 = ∥xn − p∥2 − ∥UTxn − p∥2 + 2β⟨Txn − xn, xn −UTxn⟩ + β∥xn −UTxn∥

2

= ∥xn − p∥2 − ∥UTxn − p∥2 + 2β∥Txn − xn∥∥xn −UTxn∥ + β∥xn −UTxn∥
2.
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From the condition α > β, we can obtain that Txn − xn → 0. Since xn ⇀ x and the demiclosedness of I − T,
we get x ∈ F(T).

Observe that

∥UTxn − Txn∥ ≤ ∥UTxn − xn∥ + ∥xn − Txn∥ → 0.

Since Txn ⇀ x and the demiclosedness of I − U, we get x ∈ F(U). Therefore, x ∈ F(S). That is, I − S is
demiclosed at zero. When the case S = (1 − λ)I + λTU, The method of proof is similar to that of the above
case. The remaining of the proof is followed from Theorem 3.5.

4.2. Applications to solving the split common fixed point problems of nonlinear operators

Theorem 4.5. Let H1 and H2 be an infinite dimensional real Hilbert space. Let U : H2 → H2 be a β-demicontractive
operator and T : H1 → H1 be a α-demicontractive operator such that I −U and I − T are demiclosed at zero. Suppose
that f : H1 → H1 is a Meir-Keeler-type contraction, B : H1 → H2 be a bounded linear operator with L = ∥B∗B∥,
and A is a strongly positive bounded linear self-adjoint operator on H1 with coefficient γ > 0. Assume that ∥A∥ ≤ 1,
constant γ ≤ γ̄ and Γ = {x ∈ F(T) : Bx ∈ F(U)} , ∅. For an arbitrary x1 ∈ H1, let {xn} be a sequence generated by
the following algorithm:

xn+1 = αnγ f (xn) + βnxn + [(1 − βn)I − αnA]Sλxn.

where Sλ = (1 − λ)I + λS, S = T[I + ξB∗(U − I)B]. Assume that the parameter ξ, λ and the sequence {αn} and {βn}

satisfying the following conditions:

(i) ξ ∈ (0, (1−α)(1−β)
L );

(ii) λ ∈ (0, 1 − α1α
α1−α

), where α1 =
1−β−ξL
ξL ;

(iii) {αn} ⊂ (0, 1), limn→∞ αn = 0,
∑

n αn = ∞;
(iv) {βn} ⊂ [0, 1), lim supn→∞ βn < 1

Then sequence {xn} converges strongly to a point x∗ ∈ Γ which is also the unique solution of the variational inequality
(6), or equivalently, x∗ = PΓ(I − A + γ f )x∗.

Proof. Let V = I+ξB∗(U− I)B. From Lemma 2.14, we have that V is a α1-strongly quasi-nonexpansive. From
the condition (i), we know α < α1, and from Lemma 2.12, we get S is α1α

α1−α
-demicontractive operator. From

Lemma 2.13 and the condition (ii), we have that Sλ is
1−

α1α
α1−α
−λ

λ -strongly quasi-nonexpansive. Also, we have

Γ = {x ∈ H1 : x ∈ F(T) and Bx ∈ F(U)}
= {x ∈ H1 : x ∈ F(T) and x ∈ F(V)}
= F(TV) = F(S) = F(Sλ).

Next, we show that the operator I−Sλ is demiclosed at zero, that is, we need to show that the operator I−S
is demiclosed at zero. Let {xn} be a sequence such that xn − Sxn → 0 and xn ⇀ x. By the method similar to
Theorem 4.4, we can obtain that Vxn − xn → 0, then, we have ∥(U − I)Bxn∥ → 0. Since Bxn ⇀ Bx and the
demiclosedness of I −U, we get Bx ∈ F(U).

Observe that

∥TVxn − Vxn∥ ≤ ∥TVxn − xn∥ + ∥xn − Vxn∥ → 0.

From Vxn − xn → 0 and xn ⇀ x, we have Vxn ⇀ x, and by the demiclosedness of I − T, we get x ∈ F(T).
Therefore, x ∈ F(S) = F(Sλ). That is, I − Sλ is demiclosed at zero. The remaining of the proof is followed by
Theorem 3.5.
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Theorem 4.6. Let H1 and H2 be an infinite dimensional real Hilbert space. Let Ui : H2 → H2 be a τi-demicontractive
operator, for 1 ≤ i ≤ N1 and T j : H1 → H1 be a σ j-demicontractive operator, for 1 ≤ j ≤ N2 such that I − Ui and
I−T j are demiclosed at zero. Suppose that f : H1 → H1 is a Meir-Keeler-type contraction, B : H1 → H2 be a bounded
linear operator with L = ∥B∗B∥, and A is a strongly positive bounded linear self-adjoint operator on H with coefficient
γ > 0. Assume that ∥A∥ ≤ 1, constant γ ≤ γ̄ and Γ = {x ∈

⋂N2
j=1 F(T j) : Bx ∈

⋂N1
i=1 F(Ui)} , ∅. For an arbitrary

x1 ∈ H1, let {xn} be a sequence generated by the following algorithm:

xn+1 = αnγ f (xn) + βnxn + [(1 − βn)I − αnA]Sλxn.

where Sλ = (1 − λ)I + λS, S = T[I + ξB∗(U − I)B], U =
∑N1

i=1 µiUi, T =
∑N2

j=1 ν jT j. Set τ = max1≤i≤N1 {τi},
σ = max1≤ j≤N2 {σ j}. Assume that the parameter ξ, λ and the sequence {µi}, {ν j}, {αn} and {βn} satisfying the following
conditions:

(i) ξ ∈ (0, (1−σ)(1−τ)
L );

(ii) λ ∈ (0, 1 − α1σ
α1−σ

), where α1 =
1−τ−ξL
ξL ;

(iii) µi ∈ (0, 1),
∑N1

i=1 µi = 1, ν j ∈ (0, 1),
∑N2

j=1 ν j = 1;
(iv) {αn} ⊂ (0, 1), limn→∞ αn = 0,

∑
n αn = ∞;

(v) {βn} ⊂ [0, 1), lim supn→∞ βn < 1

Then sequence {xn} converges strongly to a point x∗ ∈ Γ which is also the unique solution of the variational inequality
(6), or equivalently, x∗ = PΓ(I − A + γ f )x∗.

Proof. The method of the proof is the same as Theorem 4.5, and we omit it.

5. Numerical examples

In this section, we give a numerical example of Theorem 4.1 to illustrate the implementation of the
algorithm (14). All codes were written in Matlab 2010b and run on Dell i - 5 Dual-Core laptop.

Example 5.1. Let H = R. For each x ∈ R, define the mappings T and f as follows:

T(x) =

x, x ∈ (−∞, 0),
−2x, x ∈ [0,∞).

and f (x) =


0, x ∈ (−∞, 0),
1
2 x, x ∈ [0, 1],
√

x
2 , x ∈ (1,+∞).

we have that T is 1
3 -demicontractive mapping(for details, see [14]). Also we define Ax = 3

4 x, put γ = 1
2 , αn =

1
n+1

and βn =
1
2 −

1
4n . Obviously, T, A, f , γ αn, βn satisfy all the conditions of Theorem 4.1. Then we have the following

algorithm:

xn+1 =
1

2(n + 1)
f (xn) + (

1
2
−

1
4n

)xn + (
1
2
+

1
4n
−

3
4(n + 1)

)Tλxn. (15)

Next, we will analyze the convergence of the algorithm (15) from two aspects.
First, we take three initial points randomly generated with parameter λ = 1

2 , then we have the following numerical
results in Figure 1. We can observe that the sequence {xn} generated by the algorithm (15) converges to the same
solution 0 ∈ F(T).

In addition, we take different parameter λ with x1 = 1 to test the convergence of this algorithm (15), Figure 2
presents the behaviour of xn by choosing three different values λ = 1

2 , λ = 1
3 , λ = 1

4 .

Remark 5.2. In fact, we can easily observe that the mapping f is a contraction in the above example. Because the
Meir-Keeler-type contraction is not easy to find, and the class of contraction belongs to the class of Meir-Keeler-type
contraction, so, we use a contraction to demonstrate the convergence of our algorithm. In addition, for the contraction,
the research results in this paper are novel and have not been studied before from a theoretical point of view.
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Figure 1: Behaviours of xn with three random initial point x1

0 2 4 6 8 10 12 14 16 18 20

Number of Iterations (n)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
n
-V

a
lu

e
s

 =1/2

 =1/3

 =1/4

Figure 2: Behaviours of xn with three different parameter λ
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