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Reverse order laws and absorption laws of the weak group inverse
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Abstract. In a proper ∗-ring, reverse order laws of the weak group inverse are investigated under certain
conditions. Some new equivalent characterizations which ensure that reverse order laws of the weak group
inverse hold are presented. Finally, absorption laws of the weak group inverse are studied.

1. Introduction

Let R be a unitary ring with an involution. An involution a 7→ a∗ in ring R is an anti-isomorphism of
degree 2, that is, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, (a∗)∗ = a, for any a, b ∈ R. We denote by N+ the set of all
positive integers.

In 1958, Drazin [6] introduced pseudo inverses in associative rings and semigroups. Later, this type of
generalized inverse is called the Drazin inverse. Let a ∈ R. If there exist x ∈ R and k ∈N+ such that

xak+1 = ak, xax = x, xa = ax,

then x is called the Drazin inverse of a. It is unique and denoted by aD when the Drazin inverse exists. If k
is the smallest positive integer such that above equations hold, then k is the Drazin index of a and denoted
by ind(a) = k.When k = 1, the Drazin inverse is reduced to the group inverse and denoted by a#.

In 2014, Manjunatha Prasad et al. [14] introduced core-EP inverses of complex matrices. In 2017, Gao
et al. [9] generalized the core-EP inverse to rings with involution, and characterized the core-EP inverse by
three equations. Let a ∈ R. If there exist x ∈ R and k ∈N+ such that

xak+1 = ak, ax2 = x, (ax)∗ = ax,

then x is called the pseudo core inverse. The smallest positive integer k satisfying above equations is called
the pseudo core index of a. They proved that the pseudo core index of a equals to its Drazin index. If x
exists, then it is unique and denoted by a DO. When the pseudo core index of a is 1, the pseudo core inverse
is the core inverse and denoted by a #O [1, 20, 23].

In 2018, Wang et al. [21] defined weak group inverses of complex matrices by the core-EP inverse.
Recall that a ring R with involution is called proper ∗-ring if a∗a = 0 implies a = 0, for arbitrary a ∈ R. If the
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involution is defined as conjugate transpose, then the complex matrix ring is a proper ∗-ring. In [25], Zhou
et al. extended this generalized inverse to proper ∗-rings and characterized it by three equations. Let a ∈ R.
If there exist x ∈ R and k ∈N+ satisfying three equations:

xak+1 = ak, ax2 = x, (ak)∗a2x = (ak)∗a,

then x is called the weak group inverse of a. If such x exists, then it is unique and denoted by aWO. When k is
the smallest positive integer such that above equations hold, the integer k is called the weak group index of
a. When k = 1 and R is a proper ∗-ring , the weak group inverse is the group inverse. The authors showed
that the weak group index of a is equal to the Drazin index of a. For more details of the weak group inverse,
readers refer to [8, 18, 19, 21, 24, 26, 27].

The symbols R−1, RD and RWO denote the sets of all invertible, Drazin invertible and weak group invertible
elements in R, respectively.

Let a, b ∈ R−1. As it is well known, we have a−1(a + b)b−1 = a−1 + b−1 which is called the absorption law.
Also, we have (ab)−1 = b−1a−1 which is called reverse order law. However, absorption laws and reverse
order laws of generalized inverses may not hold in general. In 2011, Deng [5] studied some necessary
and sufficient conditions about the reverse order law of the group inverse of linear bounded operators in
Hilbert spaces. In 2013, Mosić et al. [17] investigated reverse order laws of the group inverse in rings. In
2015, Mary [15] studied reverse order law for the group inverse in semigroups and rings. At the same year,
Jin et al. [11] presented the absorption law of the group inverse in rings. Recently, Gao et al. [10] studied
absorption laws and reverse order laws for the pseudo core inverse. For more details about absorption
laws and reverse order laws of generalized inverses, readers can see [2–4, 13, 16, 22, 28, 29] for example.

We know that the group inverse is a special case of the weak group inverse. Motivated by above
discussion, we exploit reverse order laws and absorption laws for the weak group inverse.

The paper is organized as follows. In Section 2, some auxiliary lemmas are given. In Section 3, we
investigate necessary and sufficient conditions which ensure that reverse order laws for the weak group
inverse hold. In Section 4, some equivalent characterizations about absorption laws of the weak group
inverse are studied.

2. Preliminaries

In the rest of this paper, we restrict R is a proper ∗-ring. We will write aR = {ax : x ∈ R} and Ra = {xa :
x ∈ R}. The right annihilator of a is defined by a◦ = {x ∈ R : ax = 0}. Similarly, the set ◦a = {x ∈ R : xa = 0}
represents the left annihilator of a. In the following, some necessary lemmas and definitions are presented.

Definition 2.1. [12] An element a ∈ R is left ∗-cancellable if a∗ax = a∗ay implies ax = ay, it is right ∗-cancellable if
xaa∗ = yaa∗ implies xa = ya, and ∗-cancellable if it is both left and right ∗-cancellable.

It is easy to see that R is a proper ∗-ring if and only if every element in R is ∗-cancellable.

Lemma 2.2. [9] Let a ∈ R. If there exists x ∈ R such that

(i) xak+1 = ak f or some positive inte1er k, (ii) ax2 = x,

then we have

(i) ax = amxm for arbitrary positive integer m;

(ii) xax = x;

(iii) axam = am for any m ≥ k;

(iv) a is Drazin invertible, aD = xk+1ak and ind(a) ≤ k.

Lemma 2.3. [6] Let a, x, y ∈ R. If there exists m ∈N+ such that am = xam+1 = am+1y, then a ∈ RD.
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Lemma 2.4. [7] Let a1, a2 ∈ RD and x ∈ R. If a1x = xa2, then aD
1 x = xaD

2 .

Lemma 2.5. [26] If a ∈ RWO with ab = ba and a∗b = ba∗, then aWOb = baWO.

Lemma 2.6. [26] If a, b ∈ RWO with ab = ba and a∗b = ba∗, then ab ∈ RWO with (ab)WO = aWObWO = bWOaWO.

Lemma 2.7. [27] If each idempotent element in R is left ∗-cancellable and a ∈ RD, then a is weak group invertible if
and only if there exists x ∈ R such that (aD)∗a = (aD)∗aDx.

Lemma 2.8. [20] Let a, b ∈ R. Then

(i) If aR ⊆ bR, then ◦b ⊆ ◦a;

(ii) If Ra ⊆ Rb, then b◦ ⊆ a◦.

3. Reverse order laws

In this section, some sufficient and necessary conditions, which ensure that reverse order laws of the
weak group inverse hold, are presented.

Proposition 3.1. Let a, b, ab ∈ RWO. Then the following statements are equivalent:

(i) (ab)WO = bWOaWO;

(ii) (ab)WOa = bWOaWOa and (ab)WO = (ab)WOaaWO;

(iii) b(ab)WO = bbWOaWO and (ab)WO = bWOb(ab)WO.

Proof. (i)⇒ (ii), (iii): According to aWOaaWO = aWO and bWObbWO = bWO, it is obvious.
(ii)⇒ (i): Since (ab)WOa = bWOaWOa and (ab)WO = (ab)WOaaWO, we have (ab)WO = (ab)WOaaWO = bWOaWOaaWO = bWOaWO.
(iii)⇒ (i): Since b(ab)WO = bbWOaWO and (ab)WO = bWOb(ab)WO,
we obtain that (ab)WO = bWOb(ab)WO = bWObbWOaWO = bWOaWO.

In the following theorem, we exploit equivalent characterizations of reverse order laws for the weak
group inverse under certain conditions. First of all, an auxiliary lemma is given.

Lemma 3.2. Let b ∈ R and a ∈ RWO with aba = a2b and aba∗ = a∗ab. Then ab ∈ RWO if and only if aWOab ∈ RWO. In this
case, the following statements hold:

(i) (aWOab)WO = (ab)WOa = a(ab)WO;

(ii) (ab)WO = (aWOab)WOaWO = aWO(aWOab)WO.

Proof. Suppose that ab ∈ RWO. Since aba = a2b, we have (ab)n = anbn for any n ∈ N+. From aba = a2b and
aba∗ = a∗ab, by Lemma 2.5 and Lemma 2.6, we get that

abaWO = aWOab,

(ab)∗aWO = aWO(ab)∗,

(ab)WOa = a(ab)WO,

(ab)WOaWO = aWO(ab)WO.

Suppose that m = max{ind(a), ind(ab)}. Since

(ab)WOa(aWOab)m+1 = (ab)WOa(aWO)m+1(ab)m+1 = (ab)WO(aWO)m(ab)m+1

= (aWO)m(ab)WO(ab)m+1 = (aWO)m(ab)m = (aWOab)m,
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aWOab((ab)WOa)2 = aWOa(ab)m((ab)WO)m(ab)WOa = aWOam+1bm((ab)WO)m(ab)WOa
= ambm((ab)WO)m(ab)WOa = ab(ab)WO(ab)WOa = (ab)WOa

and

((aWOab)m)∗(aWOab)2(ab)WOa = ((aWOab)m)∗aWOabaWOa(ab)m((ab)WO)m

= ((aWOab)m)∗aWOabaWOam+1bm((ab)WO)m

= ((aWOab)m)∗aWOabambm((ab)WO)m

= ((aWOab)m)∗aWO(ab)2(ab)WO

= ((aWO)m)∗aWO((ab)m)∗(ab)2(ab)WO

= ((aWO)m)∗aWO((ab)m)∗ab = ((aWOab)m)∗aWOab,

we get that aWOab ∈ RWO and (aWOab)WO = (ab)WOa = a(ab)WO. Thus, (i) holds.
Conversely, suppose that aWOab ∈ RWO. Set m = max{ind(a), ind(aWOab)}. Since aba = a2b,(ab)n = anbn,abaWO =

aWOab, we obtain that

(aWOab)WOaWO(ab)m+1 = (aWOab)WOaWOam+1bm+1

= (aWOab)WOaWO(aWO)ma2m+1bm+1

= (aWOab)WO(aWO)m+1(ab)m+1am

= (aWOab)WO(aWOab)m+1am = (aWOab)mam

= (aWO)m(ab)mam = (aWO)ma2mbm = ambm = (ab)m

and

(ab)m+1(aWO)m+1(aWOab)Dam = (aWOab)m+1(aWOab)Dam = (aWOab)mam

= (aWO)m(ab)mam = (aWO)mam(ab)m

= (aWO)ma2mbm = ambm = (ab)m.

Thus, (ab)m
∈ (ab)m+1R ∩ R(ab)m+1. By Lemma 2.3, we get that ab ∈ RD. From

(ab)D = (ab)m((ab)D)m+1 = (aWOab)WOaWO(ab)m+1((ab)D)m+1

= (aWOab)m((aWOab)WO)m+1aWOab(ab)D,

we have (ab)D = (aWOab)mt, where t = ((aWOab)WO)m+1aWOab(ab)D. So,

((ab)D)∗(ab)D(ab)m+2(aWO)m+1((aWOab)WO)ma = ((ab)D)∗(aWOab)m+1((aWOab)WO)ma
= ((aWOab)mt)∗(aWOab)2(aWOab)WOa
= t∗((aWOab)m)∗(aWOab)2(aWOab)WOa
= t∗((aWOab)m)∗aWOaba
= ((aWOab)mt)∗aWOaba
= ((ab)D)∗aWOaba.

By Lemma 2.4, we obtain that

(ab)D((ab)D)∗aWOaba = aWOa(ab)D((ab)D)∗ab = aWOa(ab)m((ab)D)m+1((ab)D)∗ab
= aWOam+1bm((ab)D)m+1((ab)D)∗ab
= (ab)m((ab)D)m+1((ab)D)∗ab = (ab)D((ab)D)∗ab,

that is, (ab)D((ab)D)∗(ab)D(ab)m+2(aWO)m+1((aWOab)WO)ma = (ab)D((ab)D)∗aWOaba = (ab)D((ab)D)∗ab. Since R is a proper
∗-ring, we know that (ab)D is ∗-cancellable. Hence,

((ab)D)∗(ab)D(ab)m+2(aWO)m+1((aWOab)WO)ma = ((ab)D)∗ab.

That is, ((ab)D)∗ab ∈ ((ab)D)∗(ab)DR. By Lemma 2.7, we obtain that ab ∈ RWO.
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Now, we prove that (ab)WO = (aWOab)WOaWO = aWO(aWOab)WO. According to (i), it is sufficient to prove that
(ab)WO = (ab)WOaaWO = aWOa(ab)WO. Set k = ind(ab). Since

ab((ab)WOaaWO)2 = ab(ab)WO(ab)WOaaWO = (ab)WOaaWO,

(ab)WOaaWO(ab)k+1 = (ab)WOaaWOak+1bk+1 = (ab)WO(ab)k+1 = (ab)k

and

((ab)k)∗(ab)2(ab)WOaaWO = ((ab)k)∗(ab)2aaWO(ab)WO

= ((ab)k)∗aaWO(ab)2(ab)WO

= ((ab)k)∗aaWOak+1bk+1((ab)WO)k

= ((ab)k)∗(ab)k+1((ab)WO)k

= ((ab)k)∗(ab)2(ab)WO = ((ab)k)∗ab,

we have (ab)WO = (ab)WOaaWO = (aWOab)WOaWO. Similarly, we get that (ab)WO = aWOa(ab)WO = aWO(aWOab)WO. Hence, (ii) is
proved.

Theorem 3.3. Let a, b ∈ RWO with aba = a2b and aba∗ = a∗ab. Then the following statements are equivalent:

(i) ab ∈ RWO and (ab)WO = bWOaWO;

(ii) aWOab ∈ RWO and (aWOab)WO = bWOaWOa.

Proof. (i) ⇒ (ii): Suppose that m = max{ind(a), ind(ab)}. From (ab)WO = bWOaWO, it is sufficient to prove that
(aWOab)WO = (ab)WOa. The rest proof is the same as the proof of Lemma 3.2 (i).

(ii) ⇒ (i): According to Lemma 3.2, we know that (ab)WO = (aWOab)WOaWO. Since (aWOab)WO = bWOaWOa, we have
(ab)WO = bWOaWOaaWO = bWOaWO.

Applying Lemma 3.2, the equivalent condition of (ab)WO = aWObWO is obtained.

Theorem 3.4. Let a, b ∈ RWO with aba = a2b and aba∗ = a∗ab. Then the following statements are equivalent:

(i) ab ∈ RWO and (ab)WO = aWObWO;

(ii) aWOab ∈ RWO and (aWOab)WO = aaWObWO.

Proof. The proof is analogous to the proof of Theorem 3.3.

According to Theorem 3.3 and 3.4, we have the following corollary.

Corollary 3.5. Let a, b ∈ RWO with aba = a2b and aba∗ = a∗ab. Then the following statements are equivalent:

(i) ab ∈ RWO and (ab)WO = bWOaWO = aWObWO;

(ii) aWOab ∈ RWO and (aWOab)WO = bWOaWOa = aaWObWO.

Dually, we have the following results.

Lemma 3.6. Let a ∈ R and b ∈ RWO with bab = ab2 and abb∗ = b∗ab. Then ab ∈ RWO if and only if abbWO
∈ RWO. In this

case, the following statements hold:

(i) (abbWO)WO = b(ab)WO = (ab)WOb;

(ii) (ab)WO = bWO(abbWO)WO = (abbWO)WObWO.
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Proof. Suppose that ab ∈ RWO. Since bab = ab2 and abb∗ = b∗ab, we have abbWO = bWOab, (ab)WOb = b(ab)WO and
(ab)WObWO = bWO(ab)WO. By induction, we get that

(ab)n = anbn and (abbWO)n = anbbWO

for any n ∈N+. Set m = max{ind(b), ind(ab)}. Applying Lemma 2.2, we have

abbWOb(ab)WO = bWObab(ab)WO = bWOb(ab)m+1((ab)WO)m+1

= bWObam+1bm+1((ab)WO)m+1 = bWObam+1bbWObm+1((ab)WO)m+1

= bWOb(abbWO)m+1bm+1((ab)WO)m+1 = bWOb(bWO)m+1(ab)m+1bm+1((ab)WO)m+1

= (bWO)m+1(ab)m+1bm+1((ab)WO)m+1 = (abbWO)m+1bm+1((ab)WO)m+1

= am+1bbWObm+1((ab)WO)m+1 = am+1bm+1((ab)WO)m+1

= ab(ab)WO.

The rest of proof is analogous to the proof of Lemma 3.2.

Theorem 3.7. Let a, b ∈ RWO with bab = ab2 and abb∗ = b∗ab. Then the following statements are equivalent:

(i) (ab)WO = bWOaWO;

(ii) (abbWO)WO = bbWOaWO.

Theorem 3.8. Let a, b ∈ RWO with bab = ab2 and abb∗ = b∗ab. Then the following statements are equivalent:

(i) (ab)WO = aWObWO;

(ii) (abbWO)WO = aWObWOb.

Corollary 3.9. Let a, b ∈ RWO with bab = ab2 and abb∗ = b∗ab. Then the following statements are equivalent:

(i) (ab)WO = bWOaWO = aWObWO;

(ii) (abbWO)WO = bbWOaWO = aWObWOb.

Applying Lemma 3.6, we exploit the reverse order law (aWOabbWO)WO = b(aWOab)WO and (aWOab)WO = bWO(aWObbWO)WO

in the following proposition.

Proposition 3.10. Let a, b ∈ RWO. If aWOab2 = baWOab and aWOabb∗ = b∗aWOab, then the following statements are
equivalent:

(i) (aWOabbWO)WO = b(aWOab)WO;

(ii) (aWOab)WO = bWO(aWOabbWO)WO.

In addition, ind(aWOabbWO) ≤ max{ind(b), ind(aWOab)}.

Proof. According to Lemma 3.6, we obtain that aWOab ∈ RWO if and only if aWOabbWO
∈ RWO. Set d = aWOa, by using

Lemma 3.6 (i) and (ii), it is easy to know that (i)⇔ (ii).

Similar to Proposition 3.10, we have the following proposition by using Lemma 3.2.

Proposition 3.11. Let a, b,∈ RWO. If abbWOa = a2bbWO and a∗abbWO = abbWOa∗, then the following statements are
equivalent:

(i) (aWOabbWO)WO = (abbWO)WOa;

(ii) (abbWO)WO = aWO(aWOabbWO)WO.

In addition, ind(aWOabbWO) ≤ max{ind(a), ind(abbWO)}.
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4. Absorption laws

In this section, we present sufficient and necessary conditions to ensure that absorption laws of the weak
group inverse hold.

Theorem 4.1. Let a, b ∈ RWO with k = max{ind(a), ind(b)}. Then the following statements are equivalent:

(i) aWO(a + b)bWO = aWO + bWO;

(ii) aaWO = bbWO;

(iii) akR = bkR and RaWO = RbWO;

(iv) ◦(ak) = ◦(bk) and (aWO)◦ = (bWO)◦;

(v) akR ⊆ bkR and RbWO
⊆ RaWO;

(vi) ◦(ak) ⊆ ◦(bk) and (bWO)◦ ⊆ (aWO)◦;

(vii) bWO(a + b)aWO = aWO + bWO.

Proof. (i)⇒ (ii): Pre-multiplying aWO(a + b)bWO = aWO + bWO by aaWOa , we get that aaWO(a + b)bWO = aaWO + aaWOabWO,
i.e., aaWObbWO = aaWO. Then, by Lemma 2.2, we have

bWOb2bWO = bWObk+1(bWO)k = bk(bWO)k = bbWO.

Post-multiplying aWO(a+b)bWO = aWO+bWO by b2bWO, it follows that aWO(a+b)bbWO = (aWO+bWO)b2bWO, i.e., aWOabbWO = bbWO.
Then aWOabbWO = aaWOaWOabbWO = aaWObbWO. So, bbWO = aWOabbWO = aaWObbWO = aaWO.

(ii)⇒ (i): Since aaWO = bbWO, we have aWO = aWOaaWO = aWObbWO and

aWOabWO = aWOabbWObWO = aWOaaaWObWO = aWOaam(aWO)mbWO = am(aWO)mbWO = aaWObWO = bbWObWO = bWO.

Thus, aWO(a + b)bWO = aWObbWO + aWOabWO = aWO + bWO.
(ii)⇔ (vii): It is analogous to (i)⇔ (ii).
(ii) ⇒ (iii): Since ak = aWOak+1 = aaWOak = bbWOak = bk(bWO)kak, akR ⊆ bkR. Similarly, we have bkR ⊆ akR. So,

akR = bkR. Since aaWO = bbWO, aWO = aWObbWO and bWO = bWOaaWO. Thus, RaWO
⊆ RbWO and RbWO

⊆ RaWO, i.e., RaWO = RbWO.
(iii)⇒ (iv): It is clear by Lemma 2.8.
(iv)⇒ (iii): Since a, b ∈ RWO, we have (1−aWOa) ∈ ◦(ak), (1−bWOb) ∈ ◦(bk), (1−aaWO) ∈ (aWO)◦ and (1−bbWO) ∈ (bWO)◦.

Since ◦(ak) = ◦(bk)⇔ ◦(ak) ⊆ ◦(bk) and ◦(bk) ⊆ ◦(ak), we obtain that (1 − aWOa)bk = 0 and (1 − bWOb)ak = 0, that is,
bk = aWOabk = ak(aWO)k+1abk and ak = bWObak = bk(bWO)k+1bak. Hence, bkR ⊆ akR and akR ⊆ bkR, that is, akR = bkR.
Since (aWO)◦ = (bWO)◦⇔ (aWO)◦ ⊆ (bWO)◦ and (bWO)◦ ⊆ (aWO)◦, we have bWO(1 − aaWO) = 0 and aWO(1 − bbWO) = 0, that is,
bWO = bWOaaWO and aWO = aWObbWO. Thus, RbWO

⊆ RaWO and RaWO
⊆ RbWO, that is, RaWO = RbWO.

(iii)⇒ (v) and (iv)⇒ (vi) are obvious.
(v) ⇒ (ii): Since akR ⊆ bkR and RbWO

⊆ RaWO, there exist u, v ∈ R such that ak = bku and bWO = vaWO. Then
bbWOak = bbWObku = bku = ak. By Lemma 2.2, we have

aaWO = ak(aWO)k = bbWOak(aWO)k = bbWOaaWO.

Since bWOaaWO = vaWOaaWO = vaWO = bWO, bbWOaaWO = bbWO. Thus, aaWO = bbWO.
(vi) ⇒ (ii): Since ◦(ak) ⊆ ◦(bk), (1 − aaWO)bk = 0, i.e., aaWObbWO = bbWO. Since (bWO)◦ ⊆ (aWO)◦, we have

aWO(1 − bbWO) = 0, i.e., aaWO = aaWObbWO. Hence, aaWO = bbWO.

Since the group inverse is a special weak group inverse, we have the following corollary.

Corollary 4.2. Let a, b ∈ R#. Then the following statements are equivalent:

(i) a#(a + b)b# = a# + b#;
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(ii) aa# = bb#;

(iii) aR = bR and Ra# = Rb#;

(iv) ◦a = ◦b and (a#)◦ = (b#)◦;

(v) aR ⊆ bR and Rb#
⊆ Ra#;

(vi) ◦a ⊆ ◦b and (b#)◦ ⊆ (a#)◦;

(vii) b#(a + b)a# = a# + b#.

Remark 4.3. According to the definition of the group inverse, we know that Ra# = Rb# is equivalent to Ra = Rb. So,
Corollary 4.2 is the same as [11, Theorem 3.4].

Finally, we give special case of absorption laws for the weak group inverse.

Theorem 4.4. Let a, b ∈ RWO. Then the following statements are equivalent:

(i) aWO(a + b)bWO = aWO + bWO;

(ii) RaWO = R(aWObbWO) and bWOR = (aWOabWO)R;

(iii) RaWO
⊆ RbWO and bWOR ⊆ aWOR.

Proof. (i) ⇒ (ii): Pre-multiplying aWO(a + b)bWO = aWO + bWO by aWOa, we have aWO = aWObbWO. Post-multiplying
aWO(a + b)bWO = aWO + bWO by bbWO, we get that bWO = aWOabWO. Thus, RaWO = R(aWObbWO) and bWOR = (aWOabWO)R.

(ii)⇒ (iii): It is evident.
(iii)⇒ (i): Since RaWO

⊆ RbWO and bWOR ⊆ aWOR, there exist u, v ∈ R such that aWO = ubWO and bWO = aWOv. Then
we have

aWOabWO = aWOaaWOv = aWOv = bWO, aWObbWO = ubWObbWO = ubWO = aWO.

So, aWO(a + b)bWO = aWOabWO + aWObbWO = aWO + bWO.

Dually, we have the following theorem.

Theorem 4.5. Let a, b ∈ RWO. Then the following statements are equivalent:

(i) bWO(a + b)aWO = aWO + bWO;

(ii) aWOR = (bWObaWO)R and RbWO = R(bWOaaWO);

(iii) aWOR ⊆ bWOR and RbWO
⊆ RaWO.
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