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Generic submanifolds of quaternion Kaehler manifolds and Wintgen
type inequality

Amine Yılmaza

aMinistry of Education, 35100, Izmir, Turkey

Abstract. We define and study generic submanifolds of a quaternion Kaehler manifolds, give examples
and obtain integrability conditions for distributions and investigate the geometry of their leaves. Further,
we investigate the main properties of both, totally umbilical and totally geodesic generic submanifolds and
we study mixed foliate generic submanifolds. Finally, we obtain generalized Wintgen type inequality for
generic submanifolds in a quaternionic space form.

1. Introduction

The theory of submanifolds of an almost Hermitian manifold is one of the most interesting topics in
differential geometry. We note that submanifolds of a Kaehler manifold are determined by the behaviour of
its tangent bundle under the action of the almost complex structure J of the ambient manifold. There are two
well-known classes of submanifolds, namely, holomorphic(invariant) submanifolds and totally real(anti-
invariant) submanifolds. In the first case the tangent space of the submanifold remains invariant under the
action of the almost complex structure J where as in the second case it is mapped into the normal space.
In 1978, A.Bejancu [5] introduced the notion of CR-submanifold, which is a generalization of holomorphic
submanifolds, and totally real submanifolds. The first detailed research on this subject was investigated by
Chen in [8] and [9]. This topic is still a very active field of research in the submanifold theory [16]. On the
other hand, the topology of CR-submanifolds was also studied, see: [7], [28], [29] and [30]. Quaternion CR-
submanifolds were defined by Barros, Chen and Urbano [3] as an analog of CR-submanifolds in quaternion
Kaehler manifolds. A submanifold M of a quaternion Kaehler manifold M̄ is called a quaternion CR-
submanifold if there exist two orthogonal complementary distributions D and D⊥ such that D is invariant
under quaternion structure, that is, JaD = D, i = 1, 2, 3 and D⊥ is totally real, that is, Ja(D⊥) ⊂ TM⊥, i = 1, 2, 3.
Such submanifolds have been studied by many authors (see, [1], [6], [18], [19], [21], [22], [23], [27], [26], [25],
[34]). Generic submanifold was defined as generalization of the concept of CR-submanifold [11]. These
submanifolds are known by relaxing the condition on the complementary distribution of holomorphic
distribution. More precisely, if the maximal complex subspaces Dp = TpM ∩ J(TpM) determine on M a
distribution D : Dp ⊂ TpM , the M is called a generic submanifold of M̄. Generic submanifolds have been
studied widely by many authors, see[12], [14], [15], [20], [31], for recent papers on this topic.
The present paper is organized as follows: In section 2, we recall basic notions and results of quaternion
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Kaehler manifolds. In section 3, we introduce and study generic submanifolds, a new submanifold that also
includes quaternion totally real and quaternion CR-submanifolds, give examples and obtain integrability
condition for two distributions. In section 4, we obtain some basic lemmas for later use and for totally
umbilical generic submanifold of a quaternion Kaehler manifold, we investigate integrability conditions for
distributions and we show that there exist no proper totally umbilical generic submanifolds in positively or
negatively curved quaternion Kaehler manifold. In section 5, we study mixed foliate generic submanifolds.
The classical Wintgen inequality is a geometric inequality established in [32]. Later, this inequality was
extended independently by Rouxel [24] and Gaudalupe and Rodriguez [17]. It was conjectured by P.J.De
Smet, F. Dillen, L.Vestraelen and L.Vrancken [13] that the following inequality holds at every point of an
n-dimensional Riemann submanifold Mn into a real space form M̄n+m(c) of constant sectional curvature c:

ρ + ρ⊥ ≤ ∥H∥2 + c

In section 6, we obtain generalized Wintgen type inequality for generic submanifolds in a quaternionic
space form.

2. Preliminaries

In this section we recall some basic notions from [4], [5] and [33] for later sections. Let M̄ be a 4m-
dimensional manifold with the Riemann metric <,> on M̄, m ≥ 1. Then M̄ is called quaternion Kaehler
manifold if there exist a 3-dimensional vector bundle σ of type (1,1) with local basis of almost Hermitian
structures J1, J2, J3 (that is,< JaX, JaY >=< X,Y >, a = 1, 2, 3) satisfying

J1 ◦ J2 = −J2 ◦ J1 = J3. (1)

Also, for a quaternionic Kaehler manifold, we have

∇̄X Ja =

3∑
b=1

Qab(X)Jb, a = 1, 2, 3,∀X ∈ (TM̄), (2)

where Qab are certain 1-forms locally defined on M̄ such that Qab +Qba = 0.
Let M̄ be a Riemann manifold and M a Riemann submanifold of M̄ with the Riemann metric induced by
the metric of M̄. Let ∇ and ∇̄ be the covariant differentiations on M and M̄, respectively. We denote by
TM and TM⊥ the tangent and normal bundle respectively. The Gauss and Weingarten formulae are given,
respectively by

∇̄XY = ∇XY + h(X,Y), (3)

∇̄Xξ = −AξX + ∇⊥Xξ (4)

for any vector fields X,Y tangent to M and any vector field ξ normal to M, where h denotes the second
fundamental form,∇⊥X is the normal connection on the TM⊥ and Aξ is the fundamental tensor of Weingarten
with respect to the normal section. We also have the relation

< h(X,Y), ξ >=< AξX,Y > . (5)

Let X be a unit vector in M̄. Then the 4-plane spanned by {X, J1X, J2X, J3X} denoted by Q(X) is called
a quaternionic 4-plane. Any 2-plane in Q(X) is called a quaternionic plane. The sectional curvature of
a quaternionic plane is a quaternionic sectional curvature. A quaternionic Kaehler manifold is called a
quaternionic space form if its quaternionic sectional curvature is constant and a quaternionic space form is
denoted by M̄(c). In this case, the curvature tensor of M̄(c) is given by

R̄(X,Y)Z =
c
4
{< Y,Z > X− < X,Z > Y +

3∑
a=1

< Z, JaY > JaX (6)

− < Z, JaX > JaY + 2 < X, JaY > JaZ}



A. Yılmaz / Filomat 38:12 (2024), 4167–4185 4169

∀X,Y,Z ∈ Γ(TM), [33].For give a space the second fundamental form h, the covariant derivation is defined
by

(∇Xh)(Y,Z) = ∇⊥Xh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ) (7)

and the Gauss, Codazzi and Ricci equations of M are then given by

R(X,Y,Z,W) = R̄(X,Y,Z,W)+ < h(X,W), h(Y,Z) > − < h(X,Z), h(Y,W) >, (8)

(R̄(X,Y)Z)⊥ = (∇Xh)(Y,Z) − (∇Yh)(X,Z) (9)

R̄(X,Y, ξ, η) = R⊥(X,Y, ξ, η)+ <
[
Aξ,Aη

]
X,Y >, (10)

∀X,Y,Z,W ∈ Γ(TM) and ξ, η ∈ Γ(TM)⊥.

The mean curvature vector H of M in M̄ is defined by H = (
1
n

)trace h,where n denotes the dimension of M.
If we have

h(X,Y) =< X,Y > H (11)

for any X,Y ∈ Γ(TM), M is called totally umbilical submanifold. Finally M is called totally geodesic if
h(X,Y) = 0 identically on M.

3. Generic Submanifolds and Integrability of the Distributions

In this section, we introduce generic submanifolds and investigate the integrability of the totally real
distribution D̃ and the quaternion distribution D.

Definition 3.1. Let M be a real submanifold of a quaternion Kaehler manifold M̄ and TM the tangent bundle of M.
Suppose there are two subbundles D and D̃ with constant ranks on M such that

D = JaTM ∩ TM (12)

and D̃ is complementary orthogonal to D, then M is called generic submanifold of M̄.

From definition, we have

TM = D ⊕ D̃, Ja(D) = D, a ∈ {1, 2, 3}.

For X ∈ Γ(D̃), we have

JaX = TaX + FaX (13)

where TaX ∈ Γ(D̃) and FaX ∈ Γ(ϑ⊥).
On the other hand, we denote the complementary orthogonal distribution to ϑ⊥ by ϑ then we have
Ja(ϑ) = ϑ.For V ∈ Γ(ϑ⊥), we have

JaV = taV + faV (14)

where taX ∈ Γ(TM) and faX ∈ Γ(ϑ⊥).
Now we give some examples of generic submanifolds.

Example 3.2. Every holomorphic submanifold M of a quaternion Kaehler manifold is generic with D̃ = {0} and
D = TM.

Example 3.3. Every totally real submanifold M of a quaternion Kaehler manifold is generic with D = {0} and
D̃ = TM.
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Example 3.4. Every real hypersurface of a quaternion Kaehler manifold is generic submanifold with ϑ = {0} and
D̃ = Sp{JaN}, where N is the unit normal vector field of the hypersurface.

Example 3.5. Every CR-submanifold [3] of a quaternion Kaehler manifold is generic submanifold such that D and
D̃ is orthogonal.

We now present an elementary example of generic submanifolds.

Example 3.6. For any α ∈ (0,
π
2

), let M be a submanifold of R16 given by

x1 = x2 = x3 = x4 = const,

x5 = u2 − u3 cosα − u4 sinα

x6 = −u1 + u3 sinα − u4 cosα

x7 = u1 cosα − u2 sinα − u4

x8 = u1 sinα + u2 cosα + u3

x9 = u5 + u6 + u7

x10 = u5 − u6 + u7

x11 = u5 + u6 − u7

x12 = −u5 + u6 + u7

x13 = −u6 sinα − u7 cosα + u9 cosα − u10 sinα

x14 = u6 cosα − u7 sinα − u9 sinα + u10 cosα

x15 = −u8 sinα

x16 = −u8 cosα.

Then TM is spanned by
Z1 = −∂x6 + cosα∂x7 + sinα∂x8

Z2 = ∂x5 − sinα∂x7 + cosα∂x8

Z3 = − cosα∂x5 + sinα∂x6 + ∂x8

Z4 = − sinα∂x5 − cosα∂x6 − ∂x7

Z5 = ∂x9 + ∂x10 + ∂x11 − ∂x12

Z6 = ∂x9 − ∂x10 + ∂x11 + ∂x12 − sinα∂x13 + cosα∂x14

Z7 = ∂x9 + ∂x10 − ∂x11 + ∂x12 − cosα∂x13 − sinα∂x14.

Z8 = − sinα∂x15 − cosα∂x16

Z9 = cosα∂x13 − sinα∂x14

Z10 = − sinα∂x13 + cosα∂x14.

And TM⊥ is spanned by
V1 = −∂x3 − ∂x4

V2 = ∂x3 − ∂x4

V3 = ∂x1 − ∂x2

V4 = ∂x1 + ∂x2
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V5 = ∂x9 − ∂x10 − ∂x11 − ∂x12

V6 = − cosα∂x15 + sinα∂x16.

We have J1(Z1) = Z2, J2(Z1) = Z3 and J3(Z1) = Z4, thus D = Span{Z1,Z2,Z3,Z4} is an invariant distribution in
TM and

J1(Z5) = −V5, J2(Z5) = −Z7 − Z9, J3(Z5) = Z6 − Z10,

J1(Z6) = Z7, J2(Z6) = −V5 + Z8, J3(Z6) = −Z5 − V6,

J1(Z7) = −Z6, J2(Z7) = Z5 + V6, J3(Z7) = −V5 + Z8,

J1(Z8) = −V6, J2(Z8) = −Z10, J3(Z8) = Z9,

J1(Z9) = Z10, J2(Z9) = −V6, J3(Z9) = −Z8,

J1(Z10) = −Z9, J2(Z10) = Z8, J3(Z10) = −V6,

that is D̃ = Span{Z5,Z6,Z7,Z8,Z9,Z10}.Also, we have

J1(V5) = Z5, J2(V5) = Z6 − Z10, J3(V5) = Z7 + Z9,

J1(V6) = Z8, J2(V6) = Z9, J3(V6) = Z10.

Hence M is generic submanifold of R16 with ϑ = Span{V1,V2,V3,V4} and ϑ⊥ = Span{V5,V6}.

We now give the following definition by adjusting notion in [5].

Definition 3.7. Let M be generic submanifold of a quaternion Kaehler manifold. M is called D-geodesic if h(X,Y) = 0,
∀X,Y ∈ Γ(D)

We now investigate the integrability of distributions on a generic submanifold M.

Theorem 3.8. Let M be a generic submanifold of a quaternion Kaehler manifold M̄. The the following assertions are
equivalent:
(i) the second fundamental form of M satisfies

h(X, JaY) = h(Y, JaX) (15)

for any X,Y ∈ Γ(D) and a ∈ {1, 2, 3},
(ii)M is D-geodesic,
(iii) the distribution D is integrable.

Proof. (i)⇒ (ii) By (1) and (15) we obtain

h(J3X,Y) = h(X, J3Y) = h(X, (J1 ◦ J2)Y) = h(J1X, J2Y) = −h(J3X,Y). (16)

From (16), M is D-geodesic.
(ii)⇒ (iii) The distribution D is integrable if and only if

Ja < [X,Y],Z >= 0

for any X,Y ∈ Γ(D), Z ∈ Γ(ϑ⊥). By (2) and (3) we have

< h(X, JaY) − h(Y, JaX),Z >=< Ja[X,Y],Z > . (17)

Since M is D-geodesic, we find
< Ja[X,Y],Z >= 0,

which implies [X,Y] ∈ Γ(D). Thus D is integrable.
(iii)⇒ (i) This implication follows from (17).
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Theorem 3.9. Let M be a generic submanifold of a quaternion Kaehler manifold M̄. The distribution D̃ is integrable
if and only if

∇UTaV − ∇VTaU − AFaVU + AFaUV ∈ Γ(D⊥), (18)

for all U,V ∈ Γ(D̃).

Proof. By (2), (3), (4) and (13) we obtain

∇UTaV + h(U,TaV) − AFaVU + ∇⊥UFaV = Qab(U)JbV +Qac(U)JcV + Ja(∇UV + h(U,V)).

For any X ∈ Γ(D) we have

< ∇UTaV − ∇VTaU − AFaVU + AFaUV,X >=< Ta[U,V],X >= 0

where TaV, TaU (resp., FaV, FaU) are the tangential (resp. the normal) component of JaV and JaU. Thus
proof is completes.

4. Totally Umbilical Generic Submanifolds

We first give several lemmas for later use in this section and other section.

Lemma 4.1. Let M be a generic submanifold of a quaternion Kaehler manifold M̄. Then we have
(i)

< h(JaX,Z), ξ >=< ∇⊥XFaZ, ξ > + < h(X,TaZ), ξ >=< Jah(X,Z), ξ >, (19)

(ii)

< h(D,D), ϑ >= 0 (20)

for any X ∈ Γ(D), Z ∈ Γ(D̃) and ξ ∈ Γ(ϑ).

Proof. (i) From (2) we obtain

Qab(X)JbZ +Qac(X)JcZ = ∇̄X JaZ − Ja∇̄XZ. (21)

From (3), (4) and (13) we have

Qab(X)JbZ +Qac(X)JcZ = ∇XTaZ + h(X,TaZ) − AFaZX + ∇⊥XFaZ (22)
−Ja(∇XZ + h(X,Z)).

For any ξ ∈ Γ(ϑ) we get

< Jah(X,Z), ξ >=< ∇⊥XFaZ, ξ > + < h(X,TaZ), ξ > . (23)

In a similar way, for X ∈ Γ(D), Z ∈ Γ(D̃) by using (3), we obtain

< h(JaX,Z), ξ >=< Jah(X,Z), ξ > . (24)

From (23) and (24) we obtain (i).
(ii) By using (2) and (3) we have

Qab(X)JbY +Qac(X)JcY = ∇X JaY + h(X, JaY) − Ja(∇XY + h(X,Y)).

For ξ ∈ Γ(ϑ), we obtain

< h(X,Y), Jaξ >= − < h(X, JaY), ξ > . (25)

Replacing X by JbX, from (1) and (25), we have

< h(X,Y), Jcξ >= 0.

Thus proof is completed.
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For any X,Y ∈ Γ(D) we put

∇XY = ∇̇XY + ḣ(X,Y), (26)

where ∇̇XY and ḣ(X,Y) are D and D̃ components of ∇XY respectively.

Lemma 4.2. Let M be a generic submanifold of a quaternion Kaehler manifold M̄. The distribution D is integrable if
and only if

ḣ(X, JaY) = ḣ(Y, JaX)

for all X,Y ∈ Γ(D).

Proof. From (2) and (3) we have

Qab(X)JbY +Qac(X)JcY = ∇X JaY + h(X, JaY) − Ja(∇XY + h(X,Y)).

For Z ∈ Γ(D̃), by using (13), we obtain

− < ∇XY,TaZ > − < h(X,Y),FaZ >=< ∇X JaY,Z > .

From (26), we get

< ∇XY,TaZ >= − < ḣ(X, JaY),Z > − < h(X,Y),FaZ > . (27)

By interchanging X and Y in (27) we obtain

< [X,Y],TaZ >=< ḣ(Y, JaX) − ḣ(X, JaY),Z >

which proves the assertion.

Lemma 4.3. Let M be a generic submanifold of a quaternion Kaehler manifold M̄. If D̃ is integrable and its leaves
are totally geodesic in M, then we have

< h(D, D̃),FaD̃ >= 0. (28)

Proof. Under the hypothesis, for X ∈ Γ(D) and Z ∈ Γ(D̃) we have ∇ZX ∈ Γ(D). From (2) and (3) we have

Qab(Z)JbX +Qac(Z)JcX = ∇Z JaX + h(Z, JaX) − Ja(∇ZX + h(Z,X)).

For W ∈ Γ(D̃), we obtain

< ∇ZX,W >=< ∇Z JaX,TaW > + < h(Z, JaX),FaW >

< h(Z, JaX),FaW >= 0.

Thus the proof is completed.

Lemma 4.4. Let M be a generic submanifold of a quaternion Kaehler manifold M̄. If D is integrable and its leaves
are totally geodesic in M, then we have

< h(D,D),FaD̃ >= 0. (29)

Proof. Similar to proof of the Lemma 4.3 by using (2), (3), (4) we obtain the assertion.

Definition 4.5. A real submanifold M of a quaternion Kaehler manifold is called a 1eneric product if it is locally the
Riemann product MT

×M⊥ where MT(resp.M⊥) is a leaf of D(resp.D̃) if and only if both distributions D and D̃ are
integrable and their leaves are totally geodesic in M [11].
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Lemma 4.6. Let M be a generic submanifold of a quaternion Kaehler manifold M̄. If M is a generic product
submanifold of a quaternion Kaehler manifold M̄, then we have

AFaD̃D = 0. (30)

Proof. From Lemma 4.3 and Lemma 4.4 we proves assertion of the Lemma 4.6.

We now start to examine the geometry of totally umbilical generic submanifolds.

Theorem 4.7. Let M be a totally umbilical generic submanifold of a quaternion Kaehler manifold M̄. Then we have
(i) the distribution D̃ is involutive if and only if

∇UTaV − ∇VTaU ∈ Γ(D̃), (31)

for all U,V ∈ Γ(D̃)
(ii) the distribution D is involutive if and only if M is totally geodesic.

Proof. From Theorem 3.8, Theorem 3.9 and by using (11), we obtain the assertion.

Lemma 4.8. Let M be a totally umbilical generic submanifold of a quaternion Kaehler manifold M̄. Then we have
the following expression;

∇XZ = Qab(X)TcZ −Qac(X)TbZ − Ta∇XTaZ − ta∇
⊥

XFaZ + JaAFaZX (32)

X ∈ Γ(D) and Z ∈ Γ(D̃).

Proof. From (2), we have
∇̄X JaZ = Qab(X)JbZ +Qac(X)JcZ + Ja∇̄XZ.

By (3), (4) and (13) we obtain

∇XTaZ + h(X,TaZ) − AFaZX + ∇⊥XFaZ = Qab(X)JbZ −Qac(X)JcZ + Ja(∇XZ + h(X,Z)).

Since M is totally umbilical we find

∇XTaZ − AFaZX + ∇⊥XFaZ = Qab(X)JbZ −Qac(X)JcZ + Ja∇XZ.

Thus using quaternion structures Ja and taking the tangential parts, we obtain

∇XZ = Qab(X)TcZ −Qac(X)TbZ − Ta∇XTaZ − ta∇
⊥

XFaZ + JaAFaZX.

For a quaternionic space form, we have the following result.

Theorem 4.9. Let M be a totally umbilical generic submanifold of a quaternionic space form with c , 0. Then we
have
(i) M is totally geodesic,
(ii) M is generic product.

Proof. (i)For ∀X,Y ∈ Γ(D) and Z ∈ Γ(D̃) from (6), (7) and (9) we get

(∇Xh)(Y,Z) − (∇Yh)(X,Z) =
c
2
1(X, JaY)FaZ.

∇
⊥

Xh(Y,Z) − ∇⊥Y h(X,Z) − h([X,Y],Z) − h(Y,∇XZ) + h(X,∇YZ)

=
c
2
1(X, JaY)FaZ.
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Since M is totally umbilical we have

−1([X,Y],Z)H − 1(Y,∇XZ)H + 1(X,∇YZ)H =
c
2
1(X, JaY)FaZ.

From (32) we obtain

c
2
1(X, JaY)FaZ = −1([X,Y],Z)H + 1(Y,Ta∇XTaZ)H − 1(Y, JaAFaZX)H

−1(X,Ta∇YTaZ)H + 1(X, JaAFaZY)H.

Then by direct calculations we get

−1(∇X JaY,TaZ)H + 1(∇Y JaX,TaZ)H − 1(JaY,∇XTaZ)H

+1(JaX,∇YTaZ)H =
c
2
1(X, JaY)FaZ.

Hence, for X = JaY we have

−1(∇XX,TaZ)H + 1(∇−JaX JaX,TaZ)H − 1(X,∇XTaZ)H

+1(JaX,∇−JaXTaZ)H =
c
2
1(X,X)H.

This implies

0 =
c
2
1(X,X)H.

Hence we have H = 0, that is, M is totally geodesic in M̄.
(ii) If M is a proper generic quaternion submanifold and M is totally umbilical, then we have

h(X,Y) =< X,Y > H.

Thus from (20), < H, ξ >= 0, that is, H ∈ ϑ⊥ for any vector X,Y tangent to M. From (11), we have

< h(D, D̃),FaD̃ >=< D, D̃ >< H,FaD̃ >= 0. (33)

Since M is totally geodesic, from Theorem 4.7 (ii) we obtain

< h(D,D),FaD̃ >= 0. (34)

From (33) and (34) proof is completed.

In the sequel, we show that there are some restrictions for the existence of totally umbilical generic sub-
manifolds. we first present the following general expression.

Theorem 4.10. Let M be a totally umbilical generic submanifold of a quaternionic space form with c = 0. Then we
have

KM(X ∧ Y) = ∥H∥2

for any unit vectors X ∈ Γ(D), Y ∈ Γ(D̃).

Proof. From (6) and (8) we have

R(X,Y,Z,W) =
c
4
{< Y,Z >< X,W > − < X,Z >< Y,W > +

3∑
a=1

< Z, JaY >< JaX,W >

− < Z, JaX >< JaY,W > +2 < X, JaY >< JaZ,W >}
+ < h(X,W), h(Y,Z) > − < h(X,Z), h(Y,W) > .
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For X = Z ∈ Γ(D), Y =W ∈ Γ(D̃) we obtain

R(X,Y,X,Y) = −
c
4
< X,X >< Y,Y > + < h(X,Y), h(Y,X) > − < h(X,X), h(Y,Y) > .

From (11) and for c = 0 we get
KM(X ∧ Y) = ∥H∥2 .

From Theorem 4.10 we have

Corollary 4.11. There exist no proper totally umbilical negatively curved generic submanifold of a quaternion space
form.

Corollary 4.12. Let M be a totally umbilical generic submanifold of a quaternionic Euclidean space form. Then any
proper totally geodesic generic submanifold of constant sectional curvature is flat.

Theorem 4.13. There exist no proper totally umbilical generic submanifolds in positively or negatively curved
quaternion Kaehler manifolds.

Proof. Let M be a totally umbilical generic submanifold of a quaternion Kaehler manifolds. Thus (7) and
(11) implies

∇̄Xh(Y,Z) = ∇
⊥

X(< Y,Z > H)− < ∇XY,Z > H− < Y,∇XZ > H (35)
= ∇

⊥

X < Y,Z > H+ < Y,Z > ∇⊥XH− < ∇XY,Z > H− < Y,∇XZ > H
= < Y,Z > ∇⊥XH. (36)

For any X,Y ∈ Γ(D) and Z,W ∈ Γ(D̃), by using the equation (36) in (9), we obtain

R̄(X,Y,Z,FaW) =< Y,Z >< ∇⊥XH,FaW > − < X,Z >< ∇⊥Y H,FaW >= 0,

which is a contradiction.

Lemma 4.14. Let M be a totally umbilical generic submanifold of a quaternion Kaehler manifold M̄. If the distribution
D̃ is integrable, then we have

AFaWX = AFaXW (37)

for all X,W ∈ Γ(D̃).

Proof. From (2) we have

(∇̄X Ja)W = ∇̄X JaW − Ja∇̄XW
Qab(X)JbW +Qac(X)JcW = ∇̄X JaW − Ja∇̄XW.

By using (3), (4), (13), we have

∇XTaW + h(X,TaW) − AFaWX + ∇⊥XFaW (38)
= Qab(X)JbW +Qac(X)JcW + Ja(∇XW + h(X,W)).

By interchanging X and W in (38) and for JaY ∈ Γ(D), we obtain

< AFaWX − AFaXW, JaY >=< ∇XTaW − ∇WTaX, JaY > − < [X,W],Y > .

From Theorem 4.7 this completes proof.

Theorem 4.15. Let M be a totally umbilical generic submanifold of a quaternion Kaehler manifold M̄. If the
distribution D̃ is integrable, then we have
(i)∇⊥Y H ∈ Γ(ϑ), Y ∈ Γ(D) and Ja∇

⊥

Y H = h(Y,TaH) + ∇⊥Y FaH.
(ii) the totally real distribution is one dimensional, that is,dim(D̃) = 1 or H⊥FaX, X ∈ Γ(D̃).
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Proof. (i) We take Y ∈ Γ(D), V ∈ Γ(ϑ⊥). Since M is a totally umbilical generic submanifold, from (9), we have

R̄(J1Y, J2Y, J3Y,V) =< J2Y, J3Y >< ∇⊥J1YH,V > − < J1Y, J3Y >< ∇⊥J2YH,V >= 0 (39)

and

R̄(J1Y, J2Y, J3Y,V) = < R̄(J3Y,V)J1Y, J2Y > (40)
= − < J2R̄(J3Y,V)J1Y,Y >
=< R̄(J3Y,V)J3Y,Y >
= R̄(J3Y,Y, J3Y,V)
= −R̄(Y, J3Y, J3Y,V).

From (9) and (11) we get

R̄(Y, J3Y, J3Y,V) = − < J3Y, J3Y >< ∇⊥Y H,V > + < Y, J3Y >< ∇⊥J3YH,V >

= − ∥Y||2 < ∇⊥Y H,V > .

From (39) and (41) we obtain ∇⊥Y H ∈ Γ(ϑ), Y∈ Γ(D).
From (2), for H ∈ Γ(ϑ⊥)

∇YTaH + h(Y,TaH) − AFaHY + ∇⊥Y FaH
= Qab(Y)JbH +Qac(Y)JcH + Ja(−AHX + ∇⊥XH).

For Jaξ ∈ Γ(ϑ), we obtain

< h(Y,TaH) + ∇⊥Y FaH, Jaξ >=< Ja∇
⊥

XH, Jaξ > .

Thus, we have

Ja∇
⊥

Y H = h(Y,TaH) + ∇⊥Y FaH.

(ii) From Lemma 4.14 we have

AFaWX = AFaXW.

For X ∈ Γ(D̃) we get

< AFaXW,X >=< AFaWX,X > .

Since M is a totally umbilical generic submanifold, we obtain

<W,X >< H,FaX >=< X,X >< H,FaW > . (41)

By interchanging X and W in (41), we have

< X,W >< H,FaW >=<W,W >< H,FaX > (42)

This together with (41) gives

< H,FaX >=
< X,X ><W,W >
< X,W >2 < H,FaX > .

Thus the distribution D̃ is one dimensional or H⊥FaX.
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5. Mixed Foliate Generic Submanifolds

Definition 5.1. Let M be generic submanifold of a quaternion Kaehler manifold. Then we say that
i) M is mixed geodesic if h(X,Y) = 0, ∀X ∈ Γ(D),Y ∈ Γ(D̃)
ii) M is mixed foliated if M is mixed geodesic and D is integrable[5].

In this section we study an important class of generic submanifolds of a quaternion Kaehler manifolds. We
give the following preparatory lemma.

Lemma 5.2. Let M be a foliate generic submanifold of a quaternion Kaehler manifold M̄. If the leaves of the
distribution D̃ are totally geodesic, then we have

AFaZ JaX = −JaAFaZX (43)

for any X ∈ Γ(D), Z ∈ Γ(D̃).

Proof. Lemma 4.3 gives
< h(D, D̃),FaD̃ >= 0.

Thus, we have
AFaD̃D ∈ Γ(D).

Since the distribution D is foliate, we have

h(X, JaY) = h(JaX,Y).

For Z ∈ Γ(D̃), from (13) we find

< h(X, JaY),FaZ >=< h(JaX,Y),FaZ >

< AFaZX, JaY >=< AFaZ JaX,Y >

< AFaZ JaX + JaAFaZX,Y >= 0.

Let M be a mixed foliate generic submanifold of a quaternion Kaehler manifold M̄ and the leaves of the
distribution D̃ are totally geodesic. From Lemma 4.3 we have

AFaD̃D̃ ∈ Γ(D̃),AFaD̃D ∈ Γ(D). (44)

By the equation of Codazzi, for any X,Y ∈ Γ(D) and Z,W ∈ Γ(D̃)

R̄(X,Y,Z,FaW) =< ∇⊥Xh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ),FaW > (45)
− < ∇⊥Y h(X,Z) − h(∇YX,Z) − h(X,∇YZ),FaW > .

By using (2), (3), (4), Lemma 4.3 and Lemma 4.1, we find

< ∇⊥Xh(Y,Z),FaW >=< h(JaY,Z), h(X,W) > + < h(Y,Z), h(TaZ,X) > .

Hence, for Y = JaX and W = Z, we have

< ∇⊥Xh(JaX,Z),FaZ >= − ∥h(X,Z)∥2 + < Jah(X,Z), h(TaZ,X) > . (46)

Similarly we may also prove that

< ∇⊥JaXh(X,Z),FaZ >= ∥h(X,Z)∥2 − < Jah(X,Z), h(TaZ,X) > . (47)
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By using (2), (3), (4), (5) and Lemma 5.2, we obtain

< h(Y,∇XZ),FaW >=< JaAFaWY,∇XTaZ > − < JaAFaWY,AFaZX > .

Thus, for Y = JaX and W = Z, from Lemma 5.2 we have

< h(JaX,∇XZ),FaZ >= −
∥∥∥AFaZX

∥∥∥2 + < AFaZX,∇XTaZ > . (48)

Similarly we may also prove that

< h(X,∇JaXZ),FaZ >=
∥∥∥AFaZX

∥∥∥2 + < JaAFaZX,∇JaXTaZ > . (49)

On the other hand, from (44) < JaAFaZX,TaZ >= 0,

< JaAFaZX,∇JaXTaZ > + < ∇JaX JaAFaZX,TaZ >= 0.

By using (2) and (3), we find

< [AFaZX,X],TaZ > + < ∇XAFaZX,TaZ >= 0.

Hence, we obtain

< JaAFaZX,∇JaXTaZ >= − < AFaZX,∇XTaZ > . (50)

Substituting (50) equation into (49) we have

< h(X,∇JaXZ),FaZ >=
∥∥∥AFaZX

∥∥∥2 − < AFaZX,∇XTaZ > . (51)

Combining (45), (46), (47), (48) and (51) we get

R̄(X, JaX,Z,FaZ) = −2 ∥h(X,Z)∥2 + 2 < Jah(X,Z), h(TaZ,X) > (52)

+2
∥∥∥AFaZX

∥∥∥2 − 2 < AFaZX,∇XTaZ > .

Thus we have the following result.

Theorem 5.3. Let M be a mixed foliate generic submanifold of a quaternionic space form M̄(c). If the leaves of D̃ are
totally geodesic in M, then we have

−
c
4

3∑
a=1

∥FaZ∥2 =
∥∥∥AFaZX

∥∥∥2 .
Proof. If M̄ is quaternionic space form , then, by (6), we find

R̄(X, JaX,Z,FaZ) = −
c
2

3∑
a=1

< X,X >< FaZ,FaZ > (53)

for any unit vector X ∈ Γ(D).
Since M is mixed geodesic, from equation (52) thus gives

R̄(X, JaX,Z,FaZ) = 2
∥∥∥AFaZX

∥∥∥2 . (54)

Substituting (53) equation into (54) this completes proof.

From Theorem 5.3 we have

Corollary 5.4. Let M be a mixed foliate generic submanifold of a quaternionic space form with c = 0. If the leaves of
D̃ are totally geodesic in M, then M is generic product.
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Corollary 5.5. Let M be a mixed foliate generic submanifold of a quaternionic space form with c , 0. If the leaves of
D̃ are totally geodesic in M, then there exist no holomorphic submanifold in M̄.

Let QPm(4) be the quaternion projective space of quaternion sectional curvature 4. If M is mixed foliate
generic submanifold of QPm(4) such that the leaves of D̃ are totally geodesic in M, then (6) and (52) imply

∥h(X,Z)∥2 + < AFaZX,∇XTaZ >= 1 +
∥∥∥AFaZX

∥∥∥2 . (55)

Since M is mixed foliate, we have

∥h(X,Z)∥2 = 1 +
∥∥∥AFaZX

∥∥∥2 . (56)

Theorem 5.6. Let M be the mixed foliate generic submanifold in QPm(4). If the leaves of D̃ are totally geodesic in
M, then for any unit vectors X ∈ Γ(D) and Z ∈ Γ(D̃) we have

K(X,Z) ≤ 0.

The equality sign holds if and only if M is a generic product.

Proof. From the Gauss equation we get

K(X,Z) = 1+ < h(X,X), h(Z,Z) > − ∥h(X,Z)∥2 .

Thus by (56) we have

K(X,Z) =< h(X,X), h(Z,Z) > −
∥∥∥AFaZX

∥∥∥2 .
Since the distribution D is integrable, we obtain

K(X,Z) = −
∥∥∥AFaZX

∥∥∥2 ≤ 0. (57)

Therefore the equality of (57) holds if and only if the M is a Riemann product.

Theorem 5.7. Let M be a generic product in QPm(4). Then we have
(i) ∥h(X,Z)∥ = 1, for any unit vectors X ∈ Γ(D), Z ∈ Γ(D̃),
(ii) m ≥ h + p + hp, where h = dimD, p = dimD̃.

Proof. From the equation of Gauss and (19), we have

R̄(X, JaX,Z,TaZ) = R(X, JaX,Z,TaZ) − 2 < Jah(X,Z), h(X,TaZ) > . (58)

Combining (52) and (58) we obtain

R̄(X, JaX,Z,TaZ) = R(X, JaX,Z,TaZ) − 2 ∥h(X,Z)∥2 + 2
∥∥∥AFaZX

∥∥∥2 − 2 < AFaZX,∇XTaZ > . (59)

By the Lemma 4.6, this gives

R̄(X, JaX,Z,TaZ) = R(X, JaX,Z,TaZ) − 2 ∥h(X,Z)∥2 . (60)

Since M is the Riemann product of MT and M⊥, R(X, JaX,Z,TaZ) = 0. This gives

∥h(X,Z)∥ =< h(X,Z), h(X,Z) >= 1. (61)

Thus by linearity we obtain

< h(Xi,Z), h(X j,Z) >= 0, i , j, (62)
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where X1, ...,X4h and Z1, ...,Zp are orthonormal bases for D and D̃ respectively. We see that for any X,Y ∈
Γ(D), Z,W ∈ Γ(D̃),

< h(X,Z), h(Y,W) > + < h(X,W), h(Y,Z) >= 0. (63)

On the other hand, by (6) and (8) we obtain

< h(X,Z), h(Y,W) > − < h(X,W), h(Y,Z) >= 0. (64)

From (61), (62), (63) and (64), we see that{
h(Xi,Zβ)|i = 1, ..., 4h, β = 1, ..., p }

are orthonormal vectors in ϑ. From Lemma 4.3, these vectors are perpendicular to FaD̃, a = 1, 2, 3. Thus we
conclude that the quatenion dimension of QPm(4) is greater than or equal to h + p + hp.

6. Generalized Wintgen Inequality for Generic Submanifolds of Quaternionic Space Form

A generalized Wintgen inequality for quaternionic CR-submanifolds obtained in [2]. In this section, we
obtain generalized Wintgen type inequality for generic submanifolds in a quaternionic space form.
Let M be a generic submanifold of real dimension n in quaternionic space form M̄(c) of quaternion dimension
m + n. In the following, let {e1, ..., en} and {ξ1, ..., ξm} are orthonormal bases of the tangent and the normal
bundle respectively.
The squared norm of Ta in (13) is

∥Ta∥
2 =

n∑
i, j=1

< Taei, e j >
2, (65)

while the mean curvature vector field is given by

H =
1
n

n∑
i=1

h(ei, ei). (66)

Hence we get

∥H∥2 =< H,H >=
1
n2

m∑
r=1

(
n∑

i=1

hr
ii)

2. (67)

We also set

hr
i j =< h(ei, e j), ξr >, i, j = 1, ...,n, r = 1, ...,m (68)

and

∥h∥2 =
n∑

i, j=1

< h(ei, e j), h(ei, e j) > (69)

[10]. We finally recall the following normalized scalar normal curvature from [10].

ρN =
2

n(n − 1)

√√√ ∑
1≤i< j≤n

∑
1≤r<s≤m

(
n∑

k=1

(hr
jkhs

ik − hr
ikhs

jk))2. (70)
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Let R be the curvature tensor of M, R⊥ is the normal curvature tensor of the immersion, {e1, ..., en} and
{ξ1, ..., ξm} are orthonormal bases of the tangent and the normal bundle respectively. If we denote by τ the
scalar curvature, then the normalized scalar curvature ρ of M can be expressed as [2]

ρ =
2τ

n(n − 1)
=

2
n(n − 1)

∑
1≤i< j≤n

R(ei, e j, e j, ei). (71)

On the other hand, the normalized normal scalar curvature of M is given by [33]

ρ⊥ =
2τ⊥

n(n − 1)
=

2
n(n − 1)

√ ∑
1≤i< j≤n

∑
1≤r<s≤m

< R⊥(ei, e j)ξr, ξs >2. (72)

The following theorem is the main theorem of this section.

Theorem 6.1. Let M be a generic submanifold of real dimension n in a quaternionic space form M̄(c) of quaternion
dimension 4m. Then we have

ρ ≤ ∥H∥2 − ρN +
c
4
+

9qc
n(n − 1)

+
9c

4n(n − 1)
∥Ta∥

2, (73)

where

∥Ta∥
2 =

n∑
i, j=4q+1

< Tae j, ei >
2

.

Proof. Let
{
e1, ..., e4q, e4q+1, ..., en

}
be orthonormal frame on TM such that

{
e1, ..., e4q

}
is in D,

{
e4q+1, ..., en

}
is in

D̃ and let {ξ1, ..., ξ4m−n} be orthonormal frame on TM⊥.
From (6), (8) and (13) we derive

R(X,Y,Z,W) =
c
4
{< Y,Z >< X,W > − < X,Z >< Y,W > (74)

+

3∑
a=1

< Z, JaY >< JaX,W >

− < Z, JaX >< JaY,W > +2 < X, JaY >< JaZ,W >}
+ < h(X,W), h(Y,Z) > − < h(X,Z), h(Y,W) > .

∀X,Y,Z,W ∈ Γ(TM).
Taking X =W = ei, Y = Z = e j in (74) and summing over i and j from 1 to n, we get

R(ei, e j, e j, ei) =
c
4
{< e j, e j >< ei, ei > − < ei, e j >< ei, e j > (75)

+

3∑
a=1

< e j, Jae j >< Jaei, ei >

− < e j, Jaei >< Jae j, ei > +2 < ei, Jae j >< Jae j, ei >}

+ < h(ei, ei), h(e j, e j) > − < h(ei, e j), h(ei, e j) >

n∑
i, j=1

R(ei, e j, e j, ei) = 2τ =
c
4

[n(n − 1) + 3
n∑

i, j=1

3∑
a=1

< ei,Tae j >
2] (76)

+

n∑
i, j=1

< h(ei, ei), h(e j, e j) > −
n∑

i, j=1

< h(ei, e j), h(ei, e j) > .
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Taking now into account that Tae j = Jae j ∈ D for i = 1, ..., 4q and Tae j ∈ D̃ for i = 4q + 1, ...,n and using (67)
and (69) in (76) we obtain

2τ =
c
4

n(n − 1) + 9qc +
9
4

c∥Ta∥
2 + n2H2

− h2 (77)

where

∥Ta∥
2 =

n∑
i, j=4q+1

< ei,Tae j >
2 .

Thus (71) and (77) implies

2τ
n(n − 1)

= ρ =
c
4
+

9qc
n(n − 1)

+
9c

4n(n − 1)
∥Ta∥

2 +
2

n(n − 1)

4m−n∑
r=1

∑
1≤i< j≤n

[hr
iih

r
j j − (hr

i j)
2]. (78)

Further, from [2], we have

n2
∥H∥2 − n2ρN ≥

2n
n − 1

4m−n∑
r=1

∑
1≤i< j≤n

[hr
iih

r
j j − (hr

i j)
2] (79)

.Combining Equations (78) and (79),we find

n2[ρ −
c
4
−

9qc
n(n − 1)

−
9c

4n(n − 1)
∥Ta∥

2] ≤ n2H2
− n2ρN.

For particular cases, we have the following results.

Corollary 6.2. Let M be a totally umbilical generic submanifold of a quaternion Kaehler manifold M̄. Then

ρ + ρN ≤
c
4
+

9qc
n(n − 1)

+
9c

4n(n − 1)
∥Ta∥

2.

Corollary 6.3. Let Mn be a quaternionic generic submanifold of the quaternionic Euclidean space Hm. Then

ρ + ρN ≤ ∥H∥2.

Corollary 6.4. Let Mn be a quaternionic generic submanifold of the quaternionic projective space HPm of constant
quaternionic sectional curvature 4. Then

ρ + ρN − 1 −
36q

n(n − 1)
−

36
n(n − 1)

∥Ta∥
2
≤ ∥H∥2.

Corollary 6.5. Let Mn be a quaternionic generic submanifold of the quaternionic hyperbolic space HHm of constant
quaternionic sectional curvature -4. Then

ρ + ρN + 1 +
36q

n(n − 1)
+

36
n(n − 1)

∥Ta∥
2
≤ ∥H∥2.

Theorem 6.6. Let Mn be a generic submanifold of quaternionic space form M̄4m(c) with minimal codimension. Then

(ρ⊥)2
≤ 3[∥H∥2 − ρ +

c
4
+

9qc
n(n − 1)

+
9c

4n(n − 1)
∥Ta∥

2]2 +
9q(q − 1)c2

8n2(n − 1)2 +
27c2

n2(n − 1)2 ∥Ta∥
2
∥Fa∥

2 (80)

where

∥Ta∥
2 =

n∑
i, j=4q+1

< Tae j, ei >
2, ∥Fa∥

2 =

4m−n∑
r,s=1

< Jaξr, ξs >
2

.
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Proof. Let
{
e1, ..., e4q, e4q+1, ..., en = e4q+p

}
be orthonormal bases on TM such that

{
e1, ..., e4q

}
is in D,

{
e4q+1, ..., e4q+p

}
is in D̃ and let {ξ1, ..., ξ4m−n} of TM⊥.
The Ricci equation implies

R⊥(ei, e j, ξr, ξs) =
c
4

3∑
a=1

{< ξr, Jae j >< Jaei, ξs > − < ξr, Jaei >< Jae j, ξs > (81)

+2 < ei, Jae j >< Jaξr, ξs >}− <
[
Aξr ,Aξs

]
ei, e j >

=
c
4

3∑
a=1

{−(δirδ js − δisδ jr) + 2 < ei, Jae j >< Jaξr, ξs >}− <
[
Aξr ,Aξs

]
ei, e j >

for all i, j ∈ {1, ...,n}, r, s ∈ {1, ..., 4m − n}. Then from (72) we have

(τ⊥)2 =
∑

1≤i< j≤n

∑
1≤r<s≤4m−n

< R⊥(ei, e j)ξr, ξs >
2 (82)

=
∑

1≤i< j≤n

∑
1≤r<s≤4m−n

[
c
4

3∑
a=1

{−(δirδ js − δisδ jr) + 2 < ei, Jae j >< Jaξr, ξs >}

− <
[
Aξr ,Aξs

]
ei, e j >]2.

Using the (a + b + c)2
≤ 3(a2 + b2 + c2) inequality in (83)

(τ⊥)2
≤ 3(

n2(n − 1)2

4
ρ2

N +
3p(p − 1)c2

32
+

9c2

4
∥Ta∥

2
∥Fa∥

2) (83)

(ρ⊥)2
≤ 3ρ2

N +
9p(p − 1)c2

8n2(n − 1)2 +
27c2

n2(n − 1)2 ∥Ta∥
2
∥Fa∥

2. (84)

From (73), we have

(ρ⊥)2
≤ 3[∥H∥2 − ρ +

c
4
+

9qc
n(n − 1)

+
9c

4n(n − 1)
∥Ta∥

2]2 +
9p(p − 1)c2

8n2(n − 1)2 +
27c2

n2(n − 1)2 ∥Ta∥
2
∥Fa∥

2.

Corollary 6.7. Let M be a totally umbilical generic submanifold of a quaternion Kaehler manifold M̄. Then

(ρ⊥)2
≤ [−ρ +

c
4
+

9qc
n(n − 1)

+
9c

4n(n − 1)
∥Ta∥

2]2 +
3p(p − 1)c2

8n2(n − 1)2 +
9c2

n2(n − 1)2 ∥Ta∥
2
∥Fa∥

2.

References

[1] E.Abedi, G. Haghighatdoost, M. Ilmakchi and Z. Nazari, Contact 3-structure QR-warped product submanifold in Sasakian space form,
Turkish J. Math. 37(2) (2013), 340—347.

[2] H. Alodan, B.Y. Chen, S. Deshmukh, G.E. Vilcu, A generalized Wintgen inequality for quaternionic CR-submanifolds, Rev. R. Acad.
Cienc. Exactas Fis. Nat. Ser. A Mat. 114(3), Art 129 (2020), 14 pp.

[3] M. Barros and F. Urbano, Quaternion CR-submanifolds of quaternion manifolds, Kodai Math. J. 4(3) (1981), 399–417.
[4] A. Bejancu, QR-submanifolds of quaternion Kaehlerian manifolds, Chinese J. Math. 14(2), (1986).
[5] A. Bejancu, Geometry of CR-Submanifolds, Kluwer, Dortrecht, (1986).
[6] A. Bejancu and H.R. Farran, On totally umbilical QR-submanifolds of quaternion Kaehlerian manifolds, Bull. Austral. Math. Soc. 62(1)

(2000), 95–103.
[7] B.Y. Chen,Cohomology of CR-submanifolds, Ann. Fac. Sci. Toulouse Math. 3(2) (1981), 167–172.
[8] B.Y. Chen, On CR-submanifolds of Kaehler manifold I, J. Differential Geom. 16(2) (1981), 305–322.
[9] B.Y. Chen, On CR-submanifolds of Kaehler manifold III, J. Differential Geom. 16(2) (1981), 305–322.

[10] B.Y. Chen, Recent Developments in Wintgen Inequality and Wintgen Ideal Submanifolds, Int. Electron. J. Geom. 14(1) (2021), 6–45.
[11] B.Y. Chen, Differential geometry of real submanifolds in a Kaehler manifold, Monatshefte für Mathematik 1981; 91:257-274.



A. Yılmaz / Filomat 38:12 (2024), 4167–4185 4185

[12] YW Choe, UH Ki, R. Takagi, Compact minimal generic submanifolds with parallel normal section in a complex projective space, Osaka
Journal of Mathematics 2000; 37 (2): 489-499.

[13] PJ De Smet, F. Dillen, L. Verstraelen and L. Vrancken, A pointwise inequality in submanifold theory, Arch. Math. (1999), 35, 115–128.
[14] UC De, AK Sengupta, C. Calin, Generic submanifolds of quasi-Sasakian manifolds, Demonstratio Mathematica 2004; 37 (2): 429-437.
[15] UC De, AK Sengupta, Generic submanifolds of a Lorentzian para-Sasakian manifold, Soochow Journal of Mathematics 2001; 27 (1):

29-36.
[16] S. Dragomir, M.H. Shahid, F. Al-Solamy and S.M. Hasan, Geometry of Cauchy-Riemann Submanifolds, Springer, Singapore, 2016.
[17] I.V. Guadalupe, L. Rodriguez, Normal curvature of surfaces in space forms, Pac. J. Math., 14(1) (1983), 106, 95–103.
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