The semigroups of orientation-preserving transformations with restricted range

Ping Zhao ${ }^{\text {a,b }}$, Huabi Hu ${ }^{\text {a,* }}$
${ }^{a}$ School of Biology and Engineering, Guizhou Medical University, Guiyang 50004, Guizhou Province, China
${ }^{b}$ School of Mathematical Sciences, Guizhou Normal University, Guiyang 550001, Guizhou Province, China

Abstract

Let X_{n} be a chain with n elements $(n \in \mathcal{N})$, and let $O \mathcal{P}_{n}$ be the monoid of all orientation-preserving transformations of X_{n}. Given a non-empty subset Y of X_{n}, we denote by $O \mathcal{P}_{n}(Y)$ the subsemigroup of $O \mathcal{P}_{n}$ of all full orientation-preserving transformations with range contained in Y. We also denote by $\overline{O \mathcal{P}}_{Y}$ the semigroup of all singular orientation-preserving transformations of Y. In this article, we consider the subsemigroup $\mathcal{F} O \mathcal{P}_{n}(Y)=\left\{\alpha \in O \mathcal{P}_{n}(Y) \mid \operatorname{im}(\alpha)=Y \alpha\right\}$ of $O \mathcal{P}_{n}(Y)$: We characterize the connections between the maximal (regular) subsemibands of the $\operatorname{core} \mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$ of $\mathcal{F} O \mathcal{P}_{n}(Y)$ and the maximal (regular) subsemibands of $\overline{O \mathcal{P}}_{Y}$. Moreover, we compute the rank of the semigroup $\mathcal{F} O \mathcal{P}_{n}(Y)$ and characterize the structure of the idempotent generating sets of the semigroup $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. We also determine the maximal subsemibands as well as the maximal regular subsemibans of the semigroup $\mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$.

1. Introduction and preliminaries

Let X_{n} be a chain with n elements, say $X_{n}=\{1<2<\cdots<n\}$. We denote by \mathcal{T}_{n} the monoid of all full transformations on X_{n}. We say that a transformation $\alpha \in \mathcal{T}_{n}$ is order-preserving if $x \leq y$ implies $x \alpha \leq y \alpha$, for all $x, y \in X_{n}$. Denote by O_{n} the submonoid of \mathcal{T}_{n} of all full order-preserving transformations of X_{n}. Let $c=\left(c_{1}, c_{2}, \ldots, c_{t}\right)$ be a sequence of $t(t \geq 0)$ elements from the chain X_{n}. We say that c is cyclic if there exists no more than one index $i \in\{1, \ldots, t\}$ such that $c_{i}>c_{i+1}$, where c_{t+1} denotes c_{1}. We say that $\alpha \in \mathcal{T}_{n}$ is orientation-preserving if the sequence of its image $(1 \alpha, 2 \alpha, \ldots, n \alpha)$ is cyclic. Denote by $O \mathcal{P}_{n}$ the submonoid of \mathcal{T}_{n} of all full orientation-preserving transformations of X_{n}.

The notion of an orientation-preserving transformation was introduced by McAlister in [3] and, independently, by Catarino and Higgins in [3]. Several properties of the monoid $O \mathcal{P}_{n}$ have been investigated in these two articles. A presentation for the monoid $O \mathcal{P}_{n}$, in terms of $2 n-1$ generators, was given by Catarino in [2]. Another presentation for $O \mathcal{P}_{n}$, in terms of 2 (its rank) generators, was found by Arthur and Ruškuc [1]. The congruences of the monoid $O \mathcal{P}_{n}$ was completely described by Fernandes et al. in [5].

Let Y be a non-empty subset of X_{n}, we denote by $O \mathcal{P}_{n}(Y)$ the subsemigroup $\left\{\alpha \in O \mathcal{P}_{n} \mid \operatorname{im}(\alpha) \subseteq Y\right\}$ of $O \mathcal{P}_{n}$ of all elements with range (image) restricted to Y. We also denote by $O \mathcal{P}_{Y}$ the monoid of all full

[^0]orientation-preserving transformations of Y, by C_{Y} the cycle group on Y and by $\overline{O \mathcal{P}}_{Y}$ the subsemigroup $O \mathcal{P}_{Y} \backslash C_{Y}$ of $O \mathcal{P}_{Y}$ of all singular orientation-preserving transformations.

In the abstract theory of semigroups, idempotents are extremely important in the structure theory of semigroups, both finite and infinite. They help classify different types of semigroups, identify subgroups, determine left or right ideals, and describe the general structure of a given semigroup. In 2016, Fernandes et al.[6] consider the subsemigroup of $O \mathcal{P}_{n}(Y)$ defined by

$$
\mathcal{F} O \mathcal{P}_{n}(Y)=\left\{\alpha \in O \mathcal{P}_{n}(Y) \mid \operatorname{im}(\alpha)=Y \alpha\right\}
$$

Notice that, if $Y=X_{n}$, then $\mathcal{F} O \mathcal{P}_{n}(Y)=O \mathcal{P}_{n}$. They computed the rank of $O \mathcal{P}_{n}(Y)$ and showed that $\mathcal{F} O \mathcal{P}_{n}(Y)$ is the largest regular subsemigroup of $O \mathcal{P}_{n}(Y)$. However, the results about algebraic and maximal properties of the semigroup $\mathcal{F} O \mathcal{P}_{n}(Y)$ are very few. In view of the above work, we can consider the $\operatorname{core} \mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$ of the semigroup $\mathcal{F} O \mathcal{P}_{n}(Y)$. The main aim of this paper is to study the semigroup $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right.$), the structure of the idempotent generating sets of the semigroup $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$ are characterized and complete classifications of maximal subsemigroups as well as the maximal regular subsemibans of the semigroup $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right.$) are obtained.

This paper is organized as follows. We characterize the connections between the maximal (regular) subsemibands of the core $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$ of the semigroup $\mathcal{F} O \mathcal{P}_{n}(Y)$ and the maximal (regular) subsemibands of $\overline{O \mathcal{P}}_{Y}$ in Sec.2. In Sec.3, we compute the rank of the semigroup $\mathcal{F} O \mathcal{P}_{n}(Y)$. In Sec.4, we characterize the structure of the idempotent generating sets of the core $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$ of the semigroup $\mathcal{F} O \mathcal{P}_{n}(Y)$. As applications, we compute the number of distinct minimal (idempotent) generating sets of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right.$). In Sec.5, we determine the maximal subsemibands as well as the maximal regular subsemibands of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$.
Remark 1 In this paper, it will always be from context when additions are taken modulo n (or modulo t where t is the number of elements of any sequence).

Let S be a semigroup. Given a subset U of a semigroup S and $\alpha \in S$, we denote by $E(U)$ the set of idempotents of S belonging to U and by L_{α}, R_{α} and H_{α} the \mathscr{L}-class, \mathscr{R}-class and \mathscr{H}-class of α, respectively. For general background on Semigroup Theory, we refer the reader to Howie's book [8].

2. Preliminary results

In this section, we present several structural properties of the core $\mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$ of the semigroup $\mathcal{F} O \mathcal{P}_{n}(Y)$.

Let Y be a non-empty subset of X_{n} with $|Y|=r$. Throughout this paper we always assume that $Y=\left\{y_{1}<y_{2}<\cdots<y_{r}\right\}$.

If $\alpha \in \mathcal{T}_{n}$, we will write

$$
\alpha=\left(\begin{array}{ccc}
A_{1} & \ldots & A_{m} \\
a_{1} & \ldots & a_{m}
\end{array}\right)
$$

to indicate that $X_{n}=A_{1} \cup \cdots \cup A_{m}, \operatorname{im}(\alpha)=\left\{a_{1}, \ldots, a_{m}\right\}$ and $A_{i} \alpha=a_{i}$ for each $i \in\{1, \ldots, m\}$. As usual, we denote the kernel of $\alpha \in \mathcal{T}_{n}$ by

$$
\operatorname{ker}(\alpha)=\left\{(x, y) \in X_{n} \times X_{n} \mid x \alpha=y \alpha\right\}
$$

We will sometimes write $\operatorname{ker}(\alpha)=\left(A_{1}|\ldots| A_{m}\right)$ to indicate that $\operatorname{ker}(\alpha)$ has equivalence classes A_{1}, \ldots, A_{m}, and this notation will always imply that A_{i} are pairwise disjoint and non-empty.

Green's relations on $\mathcal{F} O \mathcal{P}_{n}(Y)$ are characterized by
$\alpha \mathscr{L} \beta$ if and only if $\operatorname{im}(\alpha)=\operatorname{im}(\beta)$,
$\alpha \mathscr{R} \beta$ if and only if $\operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$,

$$
\alpha \mathscr{J} \beta \text { if and only if }|\operatorname{im}(\alpha)|=|\operatorname{im}(\beta)| .
$$

Regarding Green's relation \mathcal{H}, if α is an element of $\mathcal{F} O \mathcal{P}_{n}(Y)$ of rank k, for $1 \leq k \leq r$, then the \mathcal{H}-class in $\mathcal{F} O \mathcal{P}_{n}(Y)$ of α is a cycle group of order k (see [6, Theorem 2.2]). Notice that the \mathcal{J}-class J_{r} has exactly one \mathcal{L}-class. Thus each \mathcal{R}-class in J_{r} is an \mathcal{H}-class.

From the above fact, we know that the semigroup $\mathcal{F} O \mathcal{P}_{n}(Y)$ has $r \mathcal{J}$-classes, namely J_{1}, \ldots, J_{r}, where $J_{k}=\left\{\alpha \in \mathcal{F} O \mathcal{P}_{n}(Y)| | \operatorname{im}(\alpha) \mid=k\right\}$. For $1 \leq k \leq r$, let

$$
Q_{n}(k)=\left\{\alpha \in \mathcal{F} O \mathcal{P}_{n}(Y)| | \operatorname{im}(\alpha) \mid \leq k\right\} .
$$

Then the sets $Q_{n}(k)$ are the two-sided ideals of $\mathcal{F} O \mathcal{P}_{n}(Y)$ and $Q_{n}(k)=J_{1} \cup J_{1} \cdots \cup J_{k}$.
Lemma 2.1. Let $\alpha \in \mathcal{F} O \mathcal{P}_{n}(Y)$. Then there exists $\lambda_{\alpha} \in E\left(J_{r}\right)$ such that $\alpha=\lambda_{\alpha} \alpha=\lambda_{\alpha}\left(\left.\alpha\right|_{Y}\right)$.
Proof. Suppose that $\operatorname{ker}(\alpha)=\left(A_{1}|\ldots| A_{k}\right)$. Put

$$
\varepsilon=\left(\begin{array}{ccc}
A_{1} & \ldots & A_{k} \\
\min A_{1} & \ldots & \min A_{k}
\end{array}\right) .
$$

Then $\varepsilon^{2}=\varepsilon$ and $\alpha=\varepsilon \alpha$. By refining adequately the kernel of ε we can get an idempotent λ_{α} of rank r which is \mathscr{R}-above ε, that is, satisfies $\lambda_{\alpha} \varepsilon=\varepsilon$. Then

$$
\lambda_{\alpha} \alpha=\lambda_{\alpha}(\varepsilon \alpha)=\left(\lambda_{\alpha} \varepsilon\right) \alpha=\varepsilon \alpha=\alpha
$$

Thus clearly $\alpha=\lambda_{\alpha} \alpha=\lambda_{\alpha}\left(\left.\alpha\right|_{Y}\right)$.
Let $\lambda \in E\left(J_{r}\right)$ and $\alpha \in O \mathcal{P}_{Y}$. Notice that $\operatorname{im}(\lambda)=\operatorname{dom}(\alpha)=Y$. Then clearly $\lambda \alpha \in \mathcal{F} O \mathcal{P}_{n}(X, Y)$. Thus $E\left(J_{r}\right) O \mathcal{P}_{Y} \subseteq \mathcal{F} O \mathcal{P}_{n}(Y)$. From Lemma 2.1, we easily obtain the following result:

Lemma 2.2. $\mathcal{F} O \mathcal{P}_{n}(Y)=E\left(J_{r}\right) O \mathcal{P}_{\gamma}$.

For $1 \leq k \leq r$, let

$$
\mathcal{I}_{\mathbf{r}}(k)=\left\{\alpha \in O \mathcal{P}_{Y} \| \operatorname{im}(\alpha) \mid \leq k\right\} .
$$

Then the sets $I_{\mathbf{r}}(k)$ are the two-sided ideals of $O \mathcal{P}_{Y}$. Clearly $I_{\mathbf{r}}(r)=O \mathcal{P}_{Y}$ and $I_{\mathbf{r}}(r-1)=\overline{O \mathscr{P}}_{Y}$.
Notice that $Q_{n}(r)=\mathcal{F} O \mathcal{P}_{n}(Y)=E\left(J_{r}\right) I_{\mathbf{r}}(r)$ (by Lemma 2.2). In fact, we have the following lemma:
Lemma 2.3. Let $1 \leq k \leq r-1$. Then $\mathcal{Q}_{n}(k)=E\left(J_{r}\right) \mathcal{I}_{\mathbf{r}}(k)$.
Proof. Let $\alpha \in Q_{n}(k)$ be arbitrary. Then, by Lemma 2.1, there exists $\lambda_{\alpha} \in E\left(J_{r}\right)$ such that $\alpha=\lambda_{\alpha}\left(\left.\alpha\right|_{Y}\right)$. Notice that $\left|\operatorname{im}\left(\left.\alpha\right|_{Y}\right)\right|=|\operatorname{im}(\alpha)| \leq k$ and $\left.\alpha\right|_{Y} \in O \mathcal{P}_{Y}$. Then $\alpha=\lambda_{\alpha}\left(\left.\alpha\right|_{Y}\right) \in E\left(J_{r}\right) \mathcal{I}_{\mathbf{r}}(k)$. Thus $Q_{n}(k) \subseteq E\left(J_{r}\right) \mathcal{I}_{\mathbf{r}}(k)$.

Conversely, let $\lambda \in E\left(J_{r}\right)$ and $\gamma \in \mathcal{I}_{\mathbf{r}}(k)$ be arbitrary. Then $|\operatorname{im}(\lambda \gamma)|=|\operatorname{im}(\gamma)| \leq k$ and $\lambda \gamma \in E\left(J_{r}\right) \mathcal{I}_{\mathbf{r}}(k) \subseteq$ $E\left(J_{r}\right) O \mathcal{P}_{Y}=\mathcal{F} O \mathcal{P}_{n}(Y)$ (by Lemma 2.2). Thus $\lambda \gamma \in Q_{n}(k)$. Hence $E\left(J_{r}\right) I_{\mathbf{r}}(k) \subseteq Q_{n}(k)$.

Recall that a right identity of a semigroup S is an element $u \in S$ such that $x=x u$ for all $x \in S$. It is obvious that the elements of $E\left(J_{r}\right)$ are right identities of $\mathcal{F} O \mathcal{P}_{n}(Y)$.

Lemma 2.4. Let $1 \leq k \leq r-1$. Then $Q_{n}(k)=\left\langle E\left(J_{k}\right)\right\rangle$.
Proof. Let $\alpha \in Q_{n}(k)$ be arbitrary. Then, by Lemma 2.1, there exist $\lambda \in E\left(J_{r}\right)$ and $\beta \in I_{\mathbf{r}}(k)$ such that $\alpha=\lambda \beta$. Notice that $\alpha \in O \mathcal{P}_{Y}$ and $|\operatorname{im}(\alpha)| \leq k$. Since $k \leq r-1$, then, by [12, Lemma 2.3], there exist idempotents $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{m} \in O \mathcal{P}_{Y}$ each of which has rank k such that $\beta=\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{m}$. Notice that the elements of $E\left(J_{r}\right)$ are right identities. It follows that $\left(\lambda \varepsilon_{i}\right)^{2}=\left(\lambda \varepsilon_{i}\right)\left(\lambda \varepsilon_{i}\right)=\lambda\left(\varepsilon_{i}\right)^{2}=\lambda \varepsilon_{i}$ and so $\alpha=\lambda \beta=\lambda \varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{m}=$ $\left(\lambda \varepsilon_{1}\right)\left(\lambda \varepsilon_{2}\right) \ldots\left(\lambda \varepsilon_{m}\right) \in\left\langle E\left(J_{k}\right)\right\rangle$.

Recall that the subsemigroup $\langle E(S)\rangle$ of a semigroup S is called the core of S, and S is said to be a semiband if T equals its own core. We denote by $C(S)$ the core of S.

Lemma 2.5. Let $n \geq 3$. Then $E\left(J_{r}\right)$ is a left zero subsemigroup of $\mathcal{F} O \mathcal{P}_{n}(Y)$ and

$$
C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)=E\left(J_{r}\right) \cup Q_{n}(r-1) .
$$

Proof. Let $\lambda, \mu \in E\left(J_{r}\right)$ be arbitrary. Then $\left.\lambda\right|_{Y}=\left.\mu\right|_{Y}=1_{Y}$ and $\operatorname{im}(\lambda)=\operatorname{im}(\mu)=Y$. Then $\lambda \mu=\lambda 1_{Y}=\lambda$. Then $E\left(J_{r}\right)$ is a left zero subsemigroup of $\mathcal{F} O \mathcal{P}_{n}(Y)$. Notice that $Q_{n}(r-1)=\left\langle E\left(Q_{n}(r-1)\right)\right\rangle$ (by Lemma 2.4). It follows that

$$
E\left(J_{r}\right) \cup Q_{n}(r-1)=\left\langle E\left(J_{r}\right) \cup Q_{n}(r-1)\right\rangle=\left\langle E\left(J_{r}\right) \cup E\left(Q_{n}(r-1)\right)\right\rangle=\left\langle E\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)\right\rangle .
$$

Thus $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)=E\left(J_{r}\right) \cup Q_{n}(r-1)$.
Notice that $\overline{O \mathcal{P}}_{Y}=O \mathcal{P}_{Y} \backslash C_{Y}$. Let S be a subsemigroup of $\overline{O \mathcal{P}}_{Y}$. We define

$$
S^{\Delta}=E\left(J_{r}\right) S^{1_{Y}}
$$

Notice that the elements of $E\left(J_{r}\right)$ are right identities of $\mathcal{F} O \mathcal{P}_{n}(X, Y)$. In fact, it is obvious that $\alpha \lambda=\alpha$, for $\alpha \in O \mathcal{P}_{\gamma}, \lambda \in E\left(J_{r}\right)$. Then S^{Δ} is a semigroup. Now, we define a mapping $\phi: S^{\Delta} \longrightarrow S^{1_{\gamma}}$ by the rule that, for any $\lambda \alpha \in S^{\Delta}$ with $\lambda \in E\left(J_{r}\right)$ and $\alpha \in S^{1 \gamma}$,

$$
(\lambda \alpha) \phi=\alpha
$$

Notice again that the elements of $E\left(J_{r}\right)$ are right identities. The following lemma is immediate by the definition of the mapping ϕ :

Lemma 2.6. Let S be a subsemigroup of $\overline{\mathcal{O P}}_{Y}$. Then the map ϕ is an epimorphism.

Let $\lambda \in E\left(J_{r}\right)$ and $\alpha \in O \mathcal{P}_{Y}$. Notice that $\left.\lambda\right|_{Y}=1_{Y}$. Then clearly $\left.(\lambda \alpha)\right|_{Y}=\alpha$. With this fact, we can prove the following result:

Lemma 2.7. Let S and T be subsemigroups of $\overline{O \mathcal{P}}_{Y}$. Then $S^{\Delta}=T^{\Delta}$ if and only if $S=T$.
Proof. If $S=T$, then clearly $S^{\Delta}=T^{\Delta}$. Conversely, suppose that $S^{\Delta}=T^{\Delta}$, i.e., $E\left(J_{r}\right) S^{1_{\gamma}}=E\left(J_{r}\right) T^{1_{\gamma}}$. Let $\alpha \in S$ be arbitrary, and let $\lambda \in E\left(J_{r}\right)$. Then $\lambda \alpha \in E\left(J_{r}\right) S^{1_{\gamma}}=E\left(J_{r}\right) T^{1_{\gamma}}$. Thus there exist $\mu \in E\left(J_{r}\right)$ and $\beta \in T^{1_{\gamma}}$ such that $\lambda \alpha=\mu \beta$. It follows that $\alpha=\left.(\lambda \alpha)\right|_{Y}=\left.(\mu \beta)\right|_{Y}=\beta \in T^{1_{Y}}$. Since $\alpha \in S \subseteq \overline{O P}_{Y}$, we have $\alpha \neq 1_{Y}$ and so $\alpha=\beta \in T$. Thus $S \subseteq T$. Similarly, we can prove that $T \subseteq S$. Hence $S=T$.

Notice also that the elements of $E\left(J_{r}\right)$ are right identities. This observation allows us to easily deduce the following properties:

Lemma 2.8. Let S be a subsemigroup of $\overline{O \mathcal{P}}_{Y}$. Then
(1) S is regular if and only if S^{Δ} is regular.
(2) S is a semiband if and only if S^{Δ} is a semiband.
(3) $S=\overline{O \mathcal{P}}_{Y}$ if and only if $S^{\Delta}=C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$.

Proof. (1) Suppose that S^{Δ} is regular. Then, by Lemma 2.6, $S^{1_{Y}}$ is regular and so S is regular. Conversely, suppose that S is regular. Let $\alpha \in S^{\Delta}$ be arbitrary. Then there exist $\lambda \in E\left(J_{r}\right)$ and $\beta \in S^{1_{\gamma}}$ such that $\alpha=\lambda \beta$. Then $\left.\lambda\right|_{Y}=1_{Y}$, and there exists $\beta^{*} \in S^{1_{Y}}$ such that $\beta=\beta \beta^{*} \beta$. Notice that the elements of $E\left(J_{r}\right)$ are right identities. Let $\alpha^{*}=\lambda \beta^{*}$. Then $\alpha^{*} \in E\left(J_{r}\right) S^{1 \gamma}=S^{\Delta}$ and $\alpha \alpha^{*} \alpha=(\lambda \beta)\left(\lambda \beta^{*}\right)(\lambda \beta)=\lambda\left(\beta \beta^{*} \beta\right)=\lambda \beta=\alpha$. Thus S^{Δ} is regular.
(2) Suppose that S^{Δ} is a semiband. Then, by Lemma 2.6, $S^{1 Y}$ is a semiband and so S is a semiband. Conversely, suppose that S is a semiband. Then $S=\langle E(S)\rangle$ and so $S^{\Delta}=E\left(J_{r}\right)\langle E(S)\rangle^{1_{r}}$. Let $\alpha \in S^{\Delta}$ be arbitrary. Then there exist $\lambda \in E\left(J_{r}\right)$ and $\varepsilon_{1}, \ldots, \varepsilon_{m} \in E(S)^{1_{r}}$ such that $\alpha=\lambda \varepsilon_{1} \ldots \varepsilon_{m}$. Notice that the elements of $E\left(J_{r}\right)$ are right identities. Since $\left(\lambda \varepsilon_{i}\right)^{2}=\left(\lambda \varepsilon_{i}\right)\left(\lambda \varepsilon_{i}\right)=\lambda \varepsilon_{i} \varepsilon_{i}=\lambda \varepsilon_{i}$, we have $\lambda \varepsilon_{i} \in E\left(S^{\Delta}\right)$, for $1 \leq i \leq m$. Then $\alpha=\lambda \varepsilon_{1} \ldots \varepsilon_{m}=\left(\lambda \varepsilon_{1}\right)\left(\lambda \varepsilon_{2}\right) \ldots\left(\lambda \varepsilon_{m}\right) \in\left\langle E\left(S^{\Delta}\right)\right\rangle$. Thus S^{Δ} is a semiband.
(3) Suppose that $S=\overline{O \mathcal{P}}_{Y}$. Then, by Lemmas 2.3 and $2.5, S^{\Delta}=E\left(J_{r}\right) \overline{O \mathcal{P}}_{Y}^{1}=E\left(J_{r}\right) \cup E\left(J_{r}\right) \mathcal{I}_{\mathbf{r}}(r-1)=$ $E\left(J_{r}\right) \cup Q_{n}(r-1)=C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. Conversely, suppose that $S^{\Delta}=C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. Then, by Lemmas 2.3 and 2.5, $S^{\Delta}=C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)=E\left(J_{r}\right) \cup Q_{n}(r-1)=E\left(J_{r}\right) \cup E\left(J_{r}\right) \mathcal{I}_{\mathbf{r}}(r-1)=E\left(J_{r}\right) \overline{O \mathcal{P}}_{Y}^{1_{Y}}=\overline{O \mathcal{P}}_{Y}^{\Delta}$. Thus, by Lemma 2.7, $S=\overline{O P}_{Y}$.

Lemma 2.9. Let S be a subsemigroup of $\mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. Let $M_{S}=\left\{\left.\alpha\right|_{Y} \mid \alpha \in S\right\} \backslash\left\{1_{Y}\right\}$. If $E\left(J_{r}\right) \subseteq S$, then $S=M_{S}^{\Delta}$.
Proof. Let $\alpha \in S$ be arbitrary. Then, by Lemma 2.1, there exists $\lambda_{\alpha} \in E\left(J_{r}\right)$ such that $\alpha=\lambda_{\alpha}\left(\left.\alpha\right|_{Y}\right)$. Then $\alpha=\lambda_{\alpha}\left(\left.\alpha\right|_{Y}\right) \in E\left(J_{r}\right) M_{S}^{1_{Y}}=M_{S}^{\Delta}$. Thus $S \subseteq M_{S}^{\Delta}$. Conversely, let $\alpha \in M_{S}^{\Delta}=E\left(J_{r}\right) M_{S}^{1_{Y}}$ be arbitrary. Then there exist $\varepsilon \in E\left(J_{r}\right)$ and $\beta \in S$ such that $\alpha=\varepsilon\left(\left.\beta\right|_{Y}\right)$ (notice that, if $\beta \in E\left(J_{r}\right) \subseteq S$, then $\left.\beta\right|_{Y}=1_{Y}$). By Lemma 2.1, there exists $\lambda_{\beta} \in E\left(J_{r}\right)$ such that $\beta=\lambda_{\beta}\left(\left.\beta\right|_{\gamma}\right)$. Notice that the elements of $E\left(J_{r}\right)$ are right identities. Then $\alpha=\varepsilon\left(\left.\beta\right|_{Y}\right)=\varepsilon \lambda_{\beta}\left(\left.\beta\right|_{\gamma}\right)=\varepsilon\left[\lambda_{\beta}\left(\left.\beta\right|_{Y}\right)\right]=\varepsilon \beta$. It follows from $E\left(J_{r}\right) \subseteq S$ that $\alpha=\varepsilon \beta \in S$. Then $M_{S}^{\Delta} \subseteq S$.

We shall say that a proper subsemigroup S of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right.$) is maximal (regular) subsemiband if S is a (regular) subsemiband, and any (regular) subsemiband of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right.$) properly containing S must be $\mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. Using Lemmas 2.7, 2.8 and 2.9, we can prove the following result:

Theorem 2.10. Let S be a subsemigroup of $\overline{\mathcal{P}}_{Y}$. Then S is a maximal (regular) subsemiband of $\overline{\mathcal{P}}_{Y}$ if and only if S^{Δ} is a maximal (regular) subsemiband of $\mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$.

Proof. Suppose that S is a maximal (regular) subsemiband of $\overline{O \mathcal{P}}_{Y}$. Then, by Lemma $2.8, S^{\Delta}$ is a (regular) subsemiband of $\mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. Suppose that S^{Δ} is not a maximal (regular) subsemiband of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. Then there exists a maximal (regular) subsemiband T of $\mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$ such that $S^{\Delta} \subset T \subset C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. Notice that $E\left(J_{r}\right) \subseteq E\left(J_{r}\right) S^{1_{Y}}=S^{\Delta} \subset T$. Put $M_{T}=\left\{\left.\alpha\right|_{Y} \mid \alpha \in T\right\} \backslash\left\{1_{Y}\right\}$. Then, by Lemma 2.9, $T=M_{T}^{\Delta}$. Notice that T is a (regular) semiband. Thus, by Lemma 2.8, M_{T} is a (regular) semiband of $\overline{O \mathcal{P}}_{Y}$. Let $\alpha \in S \subseteq \overline{O \mathcal{P}}_{Y}$ be arbitrary, and let $\lambda \in E\left(J_{r}\right)$. Clearly $\alpha \neq 1_{Y}$. Then $\lambda \alpha \in E\left(J_{r}\right) S^{1_{Y}}=S^{\Delta} \subset T$. Thus $\alpha=\left.(\lambda \alpha)\right|_{Y} \in M_{T}$. Thus $S \subseteq M_{T}$. By the maximality of S, we have $M_{T}=\overline{O \mathcal{P}}_{Y}$ or $S=M_{T}$. If $M_{T}=\overline{O P}_{Y}$, then, by Lemma 2.8, $T=M_{T}^{\Delta}=\overline{O \mathscr{P}}_{Y}^{\Delta}=C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$, a contradiction. If $S=M_{T}$, then $S^{\Delta}=M_{T}^{\Delta}=T$, a contradiction.

Conversely, suppose that S^{Δ} is a maximal (regular) subsemiband of $\mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. Then, by Lemma 2.8, S is a (regular) subsemiband of $\overline{O \mathscr{P}}_{Y}$. Suppose that S is not a maximal (regular) subsemiband of $\overline{O \mathcal{P}}_{Y}$. Then there exists a maximal (regular) subsemiband M of $\overline{O \mathcal{P}}_{Y}$ such that $S \subset M \subset \overline{O \mathcal{P}}_{Y}$. Notice that $M^{\Delta}=E\left(J_{r}\right) M^{1_{\gamma}}$. Then, by Lemma 2.8, M^{Δ} is a (regular) subsemiband of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. Clearly $S^{\Delta} \subseteq M^{\Delta}$. By the maximality of S, we have $M^{\Delta}=C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$ or $S^{\Delta}=M^{\Delta}$. If $M^{\Delta}=C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$, then, by Lemma $2.8, M=\overline{O \mathcal{P}}_{Y}$, a contradiction. If $S^{\Delta}=M^{\Delta}$, then, by Lemma 2.7, $M=S$, a contradiction.

3. Rank of the semigroup $\mathcal{F} O \mathcal{P}_{n}(Y)$

In this section, we compute the rank of the semigroup $\mathcal{F} O \mathcal{P}_{n}(Y)$.
We denote by $[i, k]$ the set $\{i, i+1, \ldots, k-1, k\}$ for $i, k \in X_{n}$. A subset C of X_{n} is said to be convex if C has the form $[i, i+t]$, for some $i, k \in X_{n}$ and $0 \leq t \leq n-1$. We shall refer to an equivalence π on X_{n} as convex if its classes are convex subsets of X_{n}, and we shall say that π is of weight k if $|X / \pi|=k$. An convex equivalence π on X_{n} is Y-convex if each class of π contains at least one element of Y.

It is known that every kernel $\operatorname{ker}(\alpha)$ of $\alpha \in \mathcal{F} O \mathcal{P}_{n}(Y)\left(\subseteq O \mathcal{P}_{n}\right)$ is convex (see [3]). Let $\alpha \in J_{r}$. Considering the kernel classes of α, we obtain a type of partitions of the domain X_{n} of α into convex subsets:

$$
\operatorname{dom}(\alpha)=X_{n}=\cup_{i=1}^{r} P_{i} \text { with } \alpha=\left(\begin{array}{c|c|c}
P_{1} & \cdots & P_{r} \\
a_{1} & \ldots & a_{r}
\end{array}\right) \text {, and } P_{i} \cap Y \neq \emptyset, \text { for } 1 \leq i \leq r
$$

Notice that P_{1}, \ldots, P_{r} are precisely the kernel classes of α. We can associate to α a Y-convex relation of weight r (with classes P_{1}, \ldots, P_{r}). Therefore the number of \mathcal{R}-classes of $\mathcal{F} O \mathcal{P}_{n}(Y)$ of rank r is equal to the number of Y-convex equivalences of weight r on X_{n}.

Notice that $Y=\left\{y_{1}<y_{2}<\cdots<y_{r}\right\}$. Put

$$
m_{i}=\left|\left\{x \in X_{n} \mid y_{i}<x<y_{i+1}\right\}\right|, 1 \leq i \leq r-1, \text { and } m_{r}=\left|\left\{x \in X_{n} \mid x<y_{1}\right\} \cup\left\{x \in X_{n} \mid x>y_{r}\right\}\right| .
$$

Then $m_{i}+1=y_{i+1}-y_{i}$, for $1 \leq i \leq r-1$, and $m_{r}=n-\left(y_{r}-y_{1}+1\right)$. We denote by p_{r} the number of Y-convex equivalences of weight r on X_{n}. Then clearly

$$
p_{r}=\left(m_{1}+1\right)\left(m_{2}+1\right) \ldots\left(m_{r-1}+1\right)\left(m_{r}+1\right)=\prod_{i=1}^{r-1}\left(y_{i+1}-y_{i}\right)\left[n-\left(y_{r}-y_{1}\right)\right] .
$$

Thus the number of \mathcal{R}-classes of $\mathcal{F} O \mathcal{P}_{n}(Y)$ of rank r is p_{r}. Notice also that each \mathcal{H}-class in J_{r} is a cycle group of order r (see [6, Theorem 2.2]) and each \mathcal{R}-class in J_{r} is an \mathcal{H}-class. Then the \mathcal{J}-class J_{r} is a union of p_{r} groups, each of which is a cycle group of order r.

As usual, the rank of a semigroup S is defined by rank $S=\min \{|A| \mid A \subseteq S,\langle A\rangle=S\}$. If S is generated by its set E of idempotents, then the idempotent rank of S is defined by idrank $S=\min \{|A| \mid A \subseteq E,\langle A\rangle=S\}$. Clearly, rank $S \leq$ idrank S.

Let $\alpha, \beta \in J_{r}$ be arbitrary. Then $\operatorname{im}(\alpha)=\operatorname{im}(\beta)=Y$. Thus clearly $\operatorname{im}(\alpha \beta)=\operatorname{im}(\beta)$ and so $\alpha \beta \in J_{r}$. Hence J_{r} is a semigroup. Now, notice that, if α is an element of $\mathcal{F} O \mathcal{P}_{n}(Y)$ of rank r and β and γ are two elements of $\mathcal{F} O \mathcal{P}_{n}(Y)$ such that $\alpha=\beta \gamma$, then $\operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$ and $\operatorname{im}(\alpha)=\operatorname{im}(\gamma)$. Then any generating set of the semigroup J_{r} contains at least one element of rank r from each \mathscr{R}-classes of $\mathcal{F} O \mathcal{P}_{n}(Y)$ of rank r. Thus rank $J_{r} \geq p_{r}$.

Lemma 3.1. Let $2 \leq r \leq n$. Then $\operatorname{rank} J_{r}=\prod_{i=1}^{r-1}\left(y_{i+1}-y_{i}\right)\left[n-\left(y_{r}-y_{1}\right)\right]$.
Proof. Notice that the \mathcal{J}-class J_{r} is a union of p_{r} groups, each of which is a cycle group of order r. We can suppose that

$$
J_{r}=\bigcup_{i=1}^{p_{r}} H_{i}=\bigcup_{i=1}^{p_{r}}\left\langle\lambda_{i}\right\rangle,
$$

where H_{i} is a cycle group of order r and λ_{i} is a generator of cyclic group H_{i}, for $1 \leq i \leq r$. Let $G=$ $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p_{r}}\right\}$. Then $J_{r}=\bigcup_{i=1}^{p_{r}} H_{i} \subseteq\langle G\rangle$. Notice that $G \subseteq J_{r}$. Then $\langle G\rangle \subseteq\left\langle J_{r}\right\rangle=J_{r}$. Thus $J_{r}=\langle G\rangle$. Since the set G has cardinality p_{r}, which equals the number of \mathscr{R}-classes of $\mathcal{F} O \mathcal{P}_{n}(Y)$ of rank r, it follows immediately that rank $J_{r}=p_{r}=\prod_{i=1}^{r-1}\left(y_{i+1}-y_{i}\right)\left[n-\left(y_{r}-y_{1}\right)\right]$.

Since J_{r} is a subsemigroup of $\mathcal{F} O \mathcal{P}_{n}(Y)$, then any element of $Q_{n}(r-1)$ cannot be generated by elements of J_{r}. And it is clear that if $\alpha \in J_{r}$ and $\alpha=\beta \gamma$, then $\beta, \gamma \in J_{r}$. Then $\operatorname{rank} \mathcal{F} O \mathcal{P}_{n}(Y) \geq \operatorname{rank} J_{r}+1$.

Theorem 3.2. Let $2 \leq r \leq n$. Then

$$
\operatorname{rank} \mathcal{F} O \mathcal{P}_{n}(Y)=\prod_{i=1}^{r-1}\left(y_{i+1}-y_{i}\right)\left[n-\left(y_{r}-y_{1}\right)\right]+1
$$

Proof. Put

$$
g=\left(\begin{array}{cccc}
y_{1} & \ldots & y_{r-1} & y_{r} \\
y_{2} & \ldots & y_{r} & y_{1}
\end{array}\right) \text { and } \epsilon=\left(\begin{array}{cccc}
y_{1} & y_{2} & \cdots & y_{r} \\
y_{2} & y_{2} & \ldots & y_{r}
\end{array}\right) .
$$

Then $O \mathcal{P}_{Y}=\langle\epsilon, g\rangle$ (see [4, Proposition 1.3] and $C_{Y}=\langle g\rangle$. Now, take $\lambda \in E\left(J_{r}\right)$ and let $\eta=\lambda \epsilon$. Notice that the elements of $E\left(J_{r}\right)$ are right identities and $E\left(J_{r}\right) g \subseteq J_{r}$ and $\alpha \lambda=\alpha$, for $\alpha \in O \mathcal{P}_{\gamma}, \lambda \in E\left(J_{r}\right)$. It follows that

$$
E\left(J_{r}\right)\langle\epsilon, g\rangle=\left\langle E\left(J_{r}\right) \epsilon, E\left(J_{r}\right) g\right\rangle \subseteq\left\langle E\left(J_{r}\right) \epsilon, J_{r}\right\rangle
$$

and

$$
E\left(J_{r}\right) \epsilon=E\left(J_{r}\right) \lambda \epsilon=E\left(J_{r}\right) \eta \subseteq J_{r} \eta \subseteq\left\langle J_{r} \cup\{\eta\}\right\rangle
$$

Then, by Lemma 2.2,

$$
\mathcal{F} O \mathcal{P}_{n}(Y)=E\left(J_{r}\right) O \mathcal{P}_{Y}=E\left(J_{r}\right)\langle\epsilon, g\rangle=\left\langle E\left(J_{r}\right) \epsilon, E\left(J_{r}\right) g\right\rangle \subseteq\left\langle J_{r} \cup\{\eta\}\right\rangle
$$

Thus $\mathcal{F} O \mathcal{P}_{n}(Y)=\left\langle J_{r} \cup\{\eta\}\right\rangle$. Let A be a generating set of J_{r} with $|A|=\operatorname{rank} J_{r}$. Then $\mathcal{F} O \mathcal{P}_{n}(Y)=\langle A \cup\{\eta\}\rangle$ and so $\operatorname{rank} \mathcal{F} O \mathcal{P}_{n}(Y) \leq|A|+1=\operatorname{rank} J_{r}+1$. Since $\operatorname{rank} \mathcal{F} O \mathcal{P}_{n}(Y) \geq \operatorname{rank} J_{r}+1$, it follows that $\operatorname{rank} \mathcal{F} O \mathcal{P}_{n}(Y)=$ $\operatorname{rank} J_{r}+1$. Thus, by Lemma 3.1, $\operatorname{rank} \mathcal{F} O \mathcal{P}_{n}(Y)=p_{r}+1=\prod_{i=1}^{r-1}\left(y_{i+1}-y_{i}\right)\left[n-\left(y_{r}-y_{1}\right)\right]+1$.

4. The idempotent-generated sets of $\left.C \mathcal{F} O \mathcal{P}_{n}(Y)\right)$

In this section, we characterize the structure of the idempotent generating sets of the core $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$ of $\mathcal{F} O \mathcal{P}_{n}(Y)$. As applications, we compute the number of distinct minimal idempotent generating sets of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$.

Notice that $\overline{O \mathcal{P}}_{Y}=O \mathcal{P}_{Y} \backslash C_{Y}$. For $1 \leq i \leq r$, let

$$
\tau_{i}=\left(\begin{array}{cccccccc}
y_{1} & \ldots & y_{i-1} & y_{i} & y_{i+1} & y_{i+2} & \ldots & y_{r} \\
y_{1} & \ldots & y_{i-1} & y_{i+1} & y_{i+1} & y_{i+2} & \ldots & y_{r}
\end{array}\right)
$$

and

$$
\varsigma_{i}=\left(\begin{array}{cccccccc}
y_{1} & \cdots & y_{i-1} & y_{i} & y_{i+1} & y_{i+2} & \cdots & y_{r} \\
y_{1} & \cdots & y_{i-1} & y_{i} & y_{i} & y_{i+2} & \cdots & y_{r}
\end{array}\right)
$$

Then τ_{i} and ς_{i} are idempotents in $\overline{O P}_{Y}$ of rank $r-1$. Notice that $\tau_{r}=\left(\begin{array}{llll}y_{1} & \cdots & y_{r-1} & y_{r} \\ y_{1} & \cdots & y_{r-1} & y_{1}\end{array}\right)$ and $\varsigma_{r}=$ $\left(\begin{array}{llll}y_{2} & \cdots & y_{r} & y_{1} \\ y_{2} & \cdots & y_{r} & y_{r}\end{array}\right)$. We denoted by $E_{r-1}^{\overline{O P}_{Y}}$ the set of all idempotents in $\overline{O \mathcal{P}}_{Y}$ of rank $r-1$. For $1 \leq i \leq r$, let

$$
E_{r-1}^{\left(\overline{(\bar{P}}_{Y,+}\right.}=\left\{\tau_{i} \mid 1 \leq i \leq r\right\} \text { and } E_{n-1}^{\left(\overline{O \mathcal{P}}_{Y,-}\right)}=\left\{s_{i} \mid 1 \leq i \leq r\right\} .
$$

 lemma:

Lemma 4.1. Let G be subset of $E\left(\overline{O \mathcal{P}}_{Y}\right)$. Then

$$
\langle G\rangle=\overline{O \mathscr{P}}_{Y} \text { if and only if } E_{r-1}^{\left(\overline{\overline{\mathcal{P}}}_{Y},+\right)} \subseteq G \text { or } E_{r-1}^{\left(\overline{\overline{\mathcal{P}}}_{r},-\right)} \subseteq G .
$$

For $\alpha \in O \mathcal{P}_{Y}$, we define

$$
\Delta_{\alpha}=\left\{\beta \in \mathcal{F} O \mathcal{P}_{n}(Y)|\beta|_{Y}=\alpha\right\} .
$$

Notice that if $\beta \in \Delta_{\alpha}$, then $\operatorname{im}(\beta)=\operatorname{im}(\alpha)$.
Now, it is easy to prove the main result of this section:
Theorem 4.2. Let E be an idempotent set of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. Then E is an idempotent generating set of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$ if and only if $E\left(J_{r}\right) \subseteq E$ and $E \cap \Delta_{\varepsilon} \neq \emptyset$, for all $\varepsilon \in E_{r-1}^{\left(\overline{O P_{Y}}\right)}$ or $E \cap \Delta_{\varepsilon} \neq \emptyset$, for all $\varepsilon \in E_{r-1}^{\left(\overline{O P}_{r,-}\right)}$.
Proof. Notice that $\overline{O \mathscr{P}}_{Y}=I_{\mathbf{r}}(r-1)$. By Lemmas 2.3 and 2.5 , we have

$$
C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)=E\left(J_{r}\right) \cup E\left(J_{r}\right) \overline{O \mathcal{P}}_{Y}=E\left(J_{r}\right)\left(\overline{O \mathcal{P}}_{Y}\right)^{1_{Y}}
$$

Let E be an idempotent generating set of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. Let $\lambda \in E\left(J_{r}\right)$ be arbitrary. Then there exist $\varepsilon_{1}, \ldots, \varepsilon_{m} \in E$ such that $\lambda=\varepsilon_{1} \ldots \varepsilon_{m}$. Notice that the elements of $E\left(J_{r}\right)$ are right identities. Then

$$
\varepsilon_{1}=\varepsilon_{1} \lambda=\varepsilon_{1}^{2} \varepsilon_{2} \ldots \varepsilon_{m}=\varepsilon_{1} \ldots \varepsilon_{m}=\lambda
$$

and so $\lambda=\varepsilon_{1} \in E$. Thus $E\left(J_{r}\right) \subseteq E$. Suppose that there exist $\sigma \in E_{r-1}^{\left(\overline{O P}_{Y,+}\right)}$ and $\rho \in E_{r-1}^{\left(\overline{O P}_{Y,-}\right)}$ such that $E \cap \Delta_{\sigma}=\emptyset$ and $E \cap \Delta_{\rho}=\emptyset$. Notice that $E_{r-1}^{\overline{O \mathcal{P}}_{Y}}=E_{r-1}^{\left(\overline{O ्}_{Y},+\right)} \cup E_{r-1}^{\left(\overline{O P}_{r},-\right)}$ and $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)=E\left(J_{r}\right) \cup Q_{n}(r-1)$. Let $\delta \in E_{r-1}^{{\overline{O \mathcal{P}_{Y}}}^{\prime}}$ be arbitrary. Take $\widehat{\delta} \in \Delta_{\delta} \subseteq Q_{n}(r-1) \subseteq C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. Since E is an idempotent generating set of $\mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$, there exist $\varepsilon_{1}, \varepsilon_{2}, \cdots, \varepsilon_{m} \in E$ such that $\widehat{\delta}=\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{m}$. Since $|\operatorname{im}(\widehat{\delta})|=|\operatorname{im}(\delta)|=r-1$, we have $\left|\operatorname{im}\left(\varepsilon_{j}\right)\right| \geq r-1$, for $1 \leq j \leq m$ (otherwise $|\operatorname{im}(\widehat{\delta})|=\left|\operatorname{im}\left(\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{m}\right)\right| \leq r-2$, a contradiction). Notice again that $E \cap \Delta_{\sigma}=\emptyset$ and $E \cap \Delta_{\rho}=\emptyset$. If $\left|\operatorname{im}\left(\varepsilon_{j}\right)\right|=r-1$, then $\left.\varepsilon_{j}\right|_{Y} \in E_{r-1}^{\overline{O P}_{Y}} \backslash\{\sigma, \rho\} ;$ if $\left|\operatorname{im}\left(\varepsilon_{j}\right)\right|=r$, then $\left.\varepsilon_{j}\right|_{Y}=1_{Y}$. Thus

$$
\delta=\left.\widehat{\delta}\right|_{Y}=\left.\left.\left.\varepsilon_{1}\right|_{Y} \varepsilon_{2}\right|_{Y} \cdots \varepsilon_{m}\right|_{Y} \in\left\langle E_{r-1}^{\overline{\partial \bar{P}}_{Y}} \backslash\{\sigma, \rho\} \cup\left\{1_{Y}\right\}\right\rangle=\left\langle E_{r-1}^{\overline{O \bar{P}}_{Y}} \backslash\{\sigma, \rho\}\right\rangle \cup\left\{1_{Y}\right\} .
$$

It follows from $\delta \in E_{r-1}^{\overline{\sigma \bar{P}}_{Y}}$ that $\delta \in\left\langle E_{r-1}^{\overline{O \bar{P}}_{Y}} \backslash\{\sigma, \rho\}\right\rangle$. Hence $E_{r-1}^{\overline{O \bar{P}}_{Y}} \subseteq\left\langle E_{r-1}^{\overline{O \bar{P}}_{Y}} \backslash\{\sigma, \rho\}\right\rangle$. By Lemma 4.1, we have $\left\langle E_{r-1}^{\overline{O \mathcal{P}}_{Y}} \backslash\{\sigma, \rho\}\right\rangle=\left\langle E_{r-1}^{\overline{O \mathcal{P}}_{Y}}\right\rangle=\overline{O \mathcal{P}}_{Y}$. Then $E_{r-1}^{\overline{O \mathcal{P}}_{Y}} \backslash\{\sigma, \rho\}$ is an idempotent-generating set of $\overline{O \mathcal{P}}_{Y}$, a contradition (by Lemma 4.1 again).

Conversely, notice that $E\left(J_{r}\right) \subseteq E \subseteq\langle E\rangle$ and each $\alpha \in Q_{n}(r-1)$ has the form $\alpha=\lambda \beta$ with $\lambda \in E\left(J_{r}\right)$ and $\beta \in \overline{O \mathcal{P}}_{\gamma}$, where $\beta=\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{m}$ with $\varepsilon_{1}, \ldots, \varepsilon_{m} \in E_{r-1}^{\left(\overline{O P}_{r},+\right)}$ or $\varepsilon_{1}, \ldots, \varepsilon_{m} \in E_{r-1}^{\left(\overline{O P}_{r},-\right)}$ (by Lemmas 2.3 and 4.1). Since $\lambda \in E\left(J_{r}\right) \subseteq E$, and there exist $\widehat{\varepsilon_{i}} \in \Delta_{\varepsilon_{i}} \cap E$, for $1 \leq i \leq m$, we have

$$
\alpha=\lambda \beta=\lambda \varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{m}=\lambda\left(\left.\widehat{\varepsilon}_{1}\right|_{Y}\right)\left(\left.\widehat{\varepsilon}_{2}\right|_{\gamma}\right) \ldots\left(\left.\widehat{\varepsilon}_{m}\right|_{Y}\right)=\lambda \widehat{\varepsilon_{1}} \widehat{\varepsilon}_{2} \ldots \widehat{\varepsilon}_{m} \in\langle E\rangle
$$

Then $Q_{n}(r-1) \subseteq\langle E\rangle$. Thus $\mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)=E\left(J_{r}\right) \cup Q_{n}(r-1)=\langle E\rangle$.
Let E be an idempotent generating set of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. Then, by Theorem 4.2, E is a minimal idempotent generating set of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$ if and only if $E\left(J_{r}\right) \subseteq E$ and E be the subset having exactly one element from each Δ_{ε}, for all $\varepsilon \in E_{r-1}^{\left(\overline{O P}_{Y,}+\right)}$ or $\varepsilon \in E_{r-1}^{\left(\overline{(\bar{P}}_{Y},-\right)}$. Notice that $\prod_{\varepsilon \in E_{r-1}^{\left(\overline{O P}_{Y},+\right)}}\left|\Delta_{\varepsilon}\right|=\prod_{\left.\varepsilon \in E_{r-1}^{(\overline{O P}}{ }_{Y},-\right)}\left|\Delta_{\varepsilon}\right|$. Thus, we immediately deduce:

Corollary 4.3. Let E be a minimal idempotent generating set of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. Then the number of distinct sets E is

$$
\prod_{\varepsilon \in E_{r-1}^{\left(\partial_{\mathcal{O}},+\right)}}\left|\Delta_{\varepsilon}\right|+1
$$

5. The subsemigroups of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$

In this section, we determine the maximal subsemibands as well as the maximal regular subsemibands of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$.

As in [10], let $k \in\{0,1,2, \cdots, n-1\}$, define a total order \leq_{k} on X_{n} by

$$
k+1 \leq_{k} k+2 \leq_{k} \cdots \leq_{k} n \leq_{k} 1 \leq_{k} \cdots \leq_{k} k
$$

We also use ${ }_{k} \geq$ to denote \leq_{k}. Notice that $Y=\left\{y_{1}<y_{2}<\cdots<y_{r}\right\}$. We denote by \mathcal{O}_{Y} the subsemigroup of $\mathcal{T}(Y)$ of all order-preserving transformations of Y. Let $\bar{O}_{Y}=O(Y) \backslash\left\{1_{Y}\right\}$. For $1 \leq k \leq r$, let

$$
\bar{O}_{Y}^{k}=\left\{a^{-k} f a^{k}: f \in \bar{O}_{Y}\right\}
$$

where $a=\left(y_{1} y_{2} \ldots y_{r}\right)$ is the fixed generator of cyclic group C_{Y}. For $1 \leq i, j \leq r$, let

$$
M_{\mathbf{r},\left(y_{i}, y_{j}\right)}=\left\langle\bar{E}_{r-1}^{\overline{O_{r}}} \backslash\left\{\tau_{i}, \varsigma_{j-1}\right\}\right\rangle .
$$

The following lemma was proved by Zhao, Xu and Yang [13, Lemma 2.2]:
Lemma 5.1. Let $1 \leq i \leq r$. Then $\bar{O}_{Y}^{i}=M_{r,\left(y_{i}, y_{i+1}\right)}$.
For $1 \leq i, j, k \leq r$, let

$$
\begin{gathered}
S_{\mathbf{r}, j}^{k}=\left\{\alpha \in \bar{O}_{Y}^{k} \mid(\forall x \in Y) x_{y_{k}} \geq y_{j} \Longrightarrow x \alpha y_{y_{k}} \geq y_{j}\right\}, j \neq k+1(\bmod (r)), \\
T_{\mathbf{r}, j}^{k}=\left\{\alpha \in \bar{O}_{Y}^{k} \mid(\forall x \in Y) x \leq_{y_{k}} y_{j} \Longrightarrow x \alpha \leq_{y_{k}} y_{j}\right\}, j \neq k(\bmod (r)) . \\
S_{j}^{k}=\left\{\alpha \in \mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right) \mid\left(\forall x \in X_{n}\right) x_{y_{k}} \geq y_{j} \Longrightarrow x \alpha y_{y_{k}} \geq y_{j} \text { and }\left.\alpha\right|_{Y} \in \bar{O}_{Y}^{k}\right\}, j \neq k+1(\bmod (r)), \\
T_{j}^{k}=\left\{\alpha \in \mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right) \mid\left(\forall x \in X_{n}\right) x \leq_{y_{k}} y_{j} \Longrightarrow x \alpha \leq_{y_{k}} y_{j} \text { and }\left.\alpha\right|_{Y} \in \bar{O}_{Y}^{k}\right\}, j \neq k(\bmod (r)) .
\end{gathered}
$$

Lemma 5.2. Let $1 \leq j, k \leq r$. Then $S_{j}^{k}=E\left(J_{r}\right) S_{r, j}^{k}$ and $T_{j}^{k}=E\left(J_{r}\right) T_{r, j}^{k}$.
Proof. Let $\alpha \in S_{j}^{k}$ be arbitrary. Then $\left.\alpha\right|_{Y} \in \bar{O}_{Y}^{k}$ and $\left(\forall x \in Y \subseteq X_{n}\right) x_{y_{k}} \geq y_{j} \Longrightarrow x \alpha_{y_{k}} \geq y_{j}$. Thus $\left.\alpha\right|_{Y} \in S_{\mathbf{r}, j}^{k}$. By Lemma 2.1, there exists $\lambda_{\alpha} \in E\left(J_{r}\right)$ such that $\alpha=\lambda_{\alpha}\left(\left.\alpha\right|_{Y}\right)$. Then $\alpha=\lambda_{\alpha}\left(\left.\alpha\right|_{Y}\right) \in E\left(J_{r}\right) S_{\mathrm{r}, j}^{k}$. Thus $S_{j}^{k} \subseteq E\left(J_{r}\right) S_{\mathrm{r}, j}^{k}$.

Conversely, let $\lambda \in E\left(J_{r}\right)$ and $\alpha \in S_{\mathbf{r}, j}^{k}$ be arbitrary. Clearly $\lambda \alpha \in \mathcal{F} O \mathcal{P}_{n}(Y)$. Since $\alpha \in S_{\mathbf{r}, j}^{k}$ and $\left.\lambda\right|_{Y}=1_{Y}$, we have

$$
\left.(\lambda \alpha)\right|_{Y}=\alpha \in S_{\mathbf{r}, j}^{k} \subseteq \bar{O}_{Y}^{k}
$$

and

$$
x_{y_{k}} \geq y_{j} \Longrightarrow x \lambda \alpha=x \alpha y_{y_{k}} \geq y_{j}(\forall x \in Y) .
$$

Then $\lambda \alpha \in S_{j j}^{k}$. Thus $E\left(J_{r}\right) S_{\mathbf{r}, j}^{k} \subseteq S_{j}^{k}$. Hence $S_{j}^{k}=E\left(J_{r}\right) S_{\mathbf{r}, j}^{k}$. Similarly, we can prove that $T_{j}^{k}=E\left(J_{r}\right) T_{\mathrm{r}, j}^{k}$.

Lemma 5.3. Let $1 \leq i \leq r$. Then

$$
E\left(J_{r}\right) M_{r,\left(y_{i}, y_{i+1}\right)}=\left\{\alpha \in \mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)|\alpha|_{Y} \in \bar{O}_{Y}^{i}\right\}
$$

Proof. Let $S=\left\{\alpha \in \mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)|\alpha|_{Y} \in \bar{O}_{Y}^{i}\right\}$. Let $\alpha \in S$ be arbitrary. Then, Lemma 5.1, $\left.\alpha\right|_{Y} \in \bar{O}_{Y}^{i}=M_{\mathbf{r},\left(y_{i}, y_{i+1}\right)}$. By Lemma 2.1, there exists $\lambda_{\alpha} \in E\left(J_{r}\right)$ such that $\alpha=\lambda_{\alpha}\left(\left.\alpha\right|_{Y}\right)$. Then $\alpha=\lambda_{\alpha}\left(\left.\alpha\right|_{Y}\right) \in E\left(J_{r}\right) M_{\mathbf{r},\left(y_{i}, y_{i+1}\right)}$. Thus $S \subseteq E\left(J_{r}\right) M_{\mathbf{r},\left(y_{i}, y_{i+1}\right)}$. Conversely, let $\lambda \in E\left(J_{r}\right)$ and $\alpha \in M_{\mathbf{r},\left(y_{i}, y_{i+1}\right)}$ be arbitrary. Clearly $\lambda \alpha \in \mathcal{F} O \mathcal{P}_{n}(Y)$. Then, by Lemma 5.1, $\left.(\lambda \alpha)\right|_{Y}=\alpha \in M_{\mathbf{r},\left(y_{i}, y_{i+1}\right)}=\bar{O}_{Y}^{i}$ and so $\lambda \alpha \in S$. Thus $E\left(J_{r}\right) M_{\mathbf{r},\left(y_{i}, y_{i+1}\right)} \subseteq S$.

Recall that Zhao [10, Lemma 3.2 and Theorem 2.7] proved:
Lemma 5.4. Each maximal subsemiband S of $\overline{O \mathcal{P}}_{Y}$ must be one of the following forms:
(A) $S=\mathcal{I}_{\mathbf{r}}(r-2) \cup M_{r,\left(y_{i}, y_{i+1}\right)}, 1 \leq i \leq r$.
(B) $S=\mathcal{I}_{\mathbf{r}}(r-2) \cup S_{r, j}^{i} \cup T_{r, i}^{j-1}, j \neq i+1(\bmod (r)), 1 \leq i \leq r$.

Now, it is easy to prove the following result:

Theorem 5.5. Each maximal subsemiband S of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$ must be one of the following forms:
(A) $S=C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right) \backslash\{\varepsilon\}, \varepsilon \in E\left(J_{r}\right)$.
(B) $S=Q_{n}(r-2) \cup E\left(J_{r}\right) \cup\left\{\alpha \in J_{r-1}|\alpha|_{Y} \in \bar{O}_{Y}^{i}\right\}, 1 \leq i \leq r$.
(C) $S=Q_{n}(r-2) \cup E\left(J_{r}\right) \cup S_{j}^{i} \cup T_{i}^{j-1}, j \neq i+1(\bmod (r)), 1 \leq i \leq r$.

Proof. Notice that $E\left(J_{r}\right)$ is a zero subsemigroup of $\mathcal{F} O \mathcal{P}_{n}(Y)$ (by Lemma 2.5). It is obvious that, for $\varepsilon \in$ $E\left(J_{r}\right), \mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right) \backslash\{\varepsilon\}$ is a maximal subsemiband of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. Let S be a maximal subsemiband of $\mathcal{C}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. If $E\left(J_{r}\right) \backslash S \neq \emptyset$, then $S=C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right) \backslash\{\varepsilon\}$, for some $\varepsilon \in J_{r}$. Let $M_{S}=\left\{\left.\alpha\right|_{Y} \mid \alpha \in S\right\} \backslash\left\{1_{Y}\right\}$. If $E\left(J_{r}\right) \subseteq S$, then, by Lemma 2.9, $S=M_{S}^{\Delta}=E\left(J_{r}\right) M_{S}^{1 r}$. Thus, by the maximality of S and Theorem $2.10, M_{S}$ is a maximal subsemiband of $\overline{O \mathcal{P}}_{Y}$. Hence, by Lemmas 2.3, 5.2, 5.3, 5.4 and Theorem 2.10, S must be one of the following forms:

$$
\begin{aligned}
S & =E\left(J_{r}\right)\left[\mathcal{I}_{\mathbf{r}}(r-2) \cup M_{\mathbf{r},\left(y_{i}, y_{i+1}\right)}\right]^{1 /} \\
& =Q(r-2) \cup E\left(J_{r}\right) \cup E\left(J_{r}\right) M_{\mathbf{r},\left(y_{i}, y_{i+1}\right)} \\
& =Q_{n}(r-2) \cup E\left(J_{r}\right) \cup\left\{\alpha \in C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)|\alpha|_{Y} \in \bar{O}_{Y}^{i}\right\} \\
& =Q_{n}(r-2) \cup E\left(J_{r}\right) \cup\left\{\alpha \in J_{r-1}|\alpha|_{Y} \in \bar{O}_{Y}^{i}\right\}
\end{aligned}
$$

or

$$
\begin{aligned}
S & =E\left(J_{r}\right)\left[\mathcal{I}_{\mathbf{r}}(r-2) \cup\left(S_{\mathbf{r}, j}^{i} \cup T_{\mathbf{r}, i}^{j-1}\right)\right]^{1_{r}} \\
& =Q(r-2) \cup E\left(J_{r}\right) \cup E\left(J_{r}\right)\left(S_{\mathbf{r}, j}^{i} \cup T_{\mathbf{r}, i}^{j-1}\right) \\
& =Q_{n}(r-2) \cup E\left(J_{r}\right) \cup S_{j}^{i} \cup T_{i}^{j-1} .
\end{aligned}
$$

The following lemma was proved by Zhao [11, Lemma 2.4].
Lemma 5.6. Let $1 \leq i \leq r$. Then $M_{r,\left(y_{i} y_{i}\right)}=\left\{\alpha \in \overline{O P}_{Y} \mid y_{i} \alpha=y_{i}\right\}$.
With above lemma, we can prove the following lemma:
Lemma 5.7. Let $1 \leq i \leq r$. Then

$$
E\left(J_{r}\right) M_{r,\left(y_{i}, y_{i}\right)}=\left\{\alpha \in C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right) \mid y_{i} \alpha=y_{i}\right\} .
$$

Proof. Let $S=\left\{\alpha \in C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right) \mid y_{i} \alpha=y_{i}\right\}$. Let $\alpha \in S$ be arbitrary. Then, Lemma 5.6, $\left.\alpha\right|_{Y} \in\left\{\alpha \in \overline{O \mathcal{P}}_{Y} \mid y_{i} \alpha=\right.$ $\left.y_{i}\right\}=M_{\mathbf{r},\left(y_{i}, y_{i}\right)}$. By Lemma 2.1, there exists $\lambda_{\alpha} \in E\left(J_{r}\right)$ such that $\alpha=\lambda_{\alpha}\left(\left.\alpha\right|_{Y}\right)$. Then $\alpha=\lambda_{\alpha}\left(\left.\alpha\right|_{Y}\right) \in E\left(J_{r}\right) M_{\mathbf{r},\left(y_{i}, y_{i}\right)}$. Thus $S \subseteq E\left(J_{r}\right) M_{\mathbf{r},\left(y_{i}, y_{i}\right)}$. Conversely, let $\lambda \in E\left(J_{r}\right)$ and $\alpha \in M_{\mathbf{r},\left(y_{i}, y_{i}\right)}$ be arbitrary. Then, by Lemma 5.6, $y_{i} \alpha=y_{i}$ and so

$$
y_{i}(\lambda \alpha)=\left(y_{i} \lambda\right) \alpha=y_{i} \alpha=y_{i} .
$$

Thus $\lambda \alpha \in S$. Hence $E\left(J_{r}\right) M_{\mathbf{r},\left(y_{i}, y_{i}\right)} \subseteq S$.
Recall again that Zhao [11, Lemmas 2.4, 2.12 and Theorem 2.2] proved:
Lemma 5.8. Each maximal regular subsemiband S of $\overline{\mathcal{P}}_{Y}$ must be one of the following forms:
(A) $S=\mathcal{I}_{\mathbf{r}}(r-2) \cup M_{r,\left(y_{i}, y_{i+1}\right)}, 1 \leq i \leq r$.
(B) $S=\mathcal{I}_{\mathbf{r}}(r-2) \cup M_{r,\left(y_{i}, y_{i}\right)}, 1 \leq i \leq r$.

Finally, we can prove the following theorem:

Theorem 5.9. Each maximal regular subsemiband S of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$ must be one of the following forms:
(A) $S=C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right) \backslash\{\varepsilon\}, \varepsilon \in E\left(J_{r}\right)$.
(B) $S=Q_{n}(r-2) \cup E\left(J_{r}\right) \cup\left\{\alpha \in J_{r-1}|\alpha|_{Y} \in \bar{O}_{Y}^{i}\right\}, 1 \leq i \leq r$.
(C) $S=Q_{n}(r-2) \cup E\left(J_{r}\right) \cup\left\{\alpha \in J_{r-1} \mid y_{i} \alpha=y_{i}\right\}, 1 \leq i \leq r$.

Proof. Notice that $E\left(J_{r}\right)$ is a zero subsemigroup of $\mathcal{F} O \mathcal{P}_{n}(Y)$ (by Lemma 2.5). It is obvious that, for $\varepsilon \in E\left(J_{r}\right)$, $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right) \backslash\{\varepsilon\}$ is a maximal regular subsemiband of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. Let S be a maximal regular subsemiband of $C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)$. If $E\left(J_{r}\right) \backslash S \neq \emptyset$, then $S=C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right) \backslash\{\varepsilon\}$, for some $\varepsilon \in E\left(J_{r}\right)$. Let $M_{S}=\left\{\left.\alpha\right|_{Y} \mid \alpha \in S\right\} \backslash\left\{1_{Y}\right\}$. If $E\left(J_{r}\right) \subseteq S$, then, by Lemma 2.9, $S=M_{S}^{\Delta}=E\left(J_{r}\right) M_{S}^{1_{Y}}$. Thus, by the maximality of S and Theorem $2.10, M_{S}$ is a maximal regular subsemiband of $\frac{S}{O \mathcal{P}}_{Y}$. Hence, by Lemmas 2.3, 5.3, 5.7, 5.8 and Theorem 2.10, S must be one of the following forms:

$$
\begin{aligned}
S & =E\left(J_{r}\right)\left[I_{\mathbf{r}}(r-2) \cup M_{\mathbf{r},\left(y_{i}, y_{i+1}\right)}\right]^{1 r} \\
& =Q(r-2) \cup E\left(J_{r}\right) \cup E\left(J_{r}\right) M_{\mathbf{r},\left(y_{i}, y_{i+1}\right)} \\
& =Q_{n}(r-2) \cup E\left(J_{r}\right) \cup\left\{\alpha \in \mathcal{F}\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right)|\alpha|_{Y} \in \bar{O}_{Y}^{i}\right\} \\
& =Q_{n}(r-2) \cup E\left(J_{r}\right) \cup\left\{\alpha \in J_{r-1}|\alpha|_{Y} \in \bar{O}_{Y}^{i}\right\}
\end{aligned}
$$

or

$$
\begin{aligned}
S & =E\left(J_{r}\right)\left[\mathcal{I}_{\mathbf{r}}(r-2) \cup M_{\mathbf{r},\left(y_{i}, y_{i}\right)}\right]^{1 r} \\
& =Q(r-2) \cup E\left(J_{r}\right) \cup E\left(J_{r}\right) M_{\mathbf{r},\left(y_{i}, y_{i}\right)} \\
& =Q_{n}(r-2) \cup E\left(J_{r}\right) \cup\left\{\alpha \in C\left(\mathcal{F} O \mathcal{P}_{n}(Y)\right) \mid y_{i} \alpha=y_{i}\right\} \\
& =Q_{n}(r-2) \cup E\left(J_{r}\right) \cup\left\{\alpha \in J_{r-1} \mid y_{i} \alpha=y_{i}\right\} .
\end{aligned}
$$

Acknowledgments We wish to thank the anonymous referee for her/his valuable suggestions.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

[1] R.E. Arthur, N. Ruškuc, Presentations for two extensions of the monoid of order-preserving mappings on a finite chain, Southeast Asian Bull. Math., 24(1)(2000), 1-7.
[2] P.M. Catarino, Monoids of orientation-preserving transformations of a finite chain and their presentation, Semigroups and Applications, J.M. Howie and N. Ruškuc, eds., World Scientific, Singapore, 1998, pp. 39-46.
[3] P.M. Catarino, P.M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum, 58(2)(1999),190-206.
[4] I. Dimitrova, V.H. Fernandes, J. Koppitz, The maximal subsemigroups of semigroups of transformations preserving or reversing the orientation on a finite chain, Publicationes Mathematicae Debrecen, 81(1-2)(2012), 11-29.
[5] V.H. Fernandes, G.M.S. Gomes, M.M. Jesus, Congruences on monoids of transformation preserving the orientation on a finite chain, J. Algebra, 321(3)(2009), 743-757.
[6] V.H. Fernandes, P. Honyam, T.M. Quinteiro, B. Singha, On Semigroups of Orientation-preserving Transformations with Restricted Range, Comm. Algebra, 44(1)(2016), 253-264.
[7] G.U. Garba, On the idempotent ranks of certain semigroups of order-preserving transformations, Portugaliae Mathematica, 51(2)(1994), 185-204.
[8] J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, London, 2003.
[9] D.B. McAlister, Semigroups generated by a group and an idempotent, Comm. Algebra, 26(2)(1998),515-547.
[10] P. Zhao, A classifification of maximal idempotent-generated subsemigroups of singular orientation-preserving transformation semigroups, Semigroup Forum, 79(2)(2009), 377-384.
[11] P. Zhao, Locally maximal subsemibands of $S O P_{n}$, Bull. Malays. Math. Sci. Soc., 37(4)(2014), 881-891.
[12] P. Zhao, V.H. Fernandes, The ranks of ideals in various transformation monoids, Comm. Algebra, 43(2)(2015), 674-692.
[13] P. Zhao, B. Xu, Mei, Y., Locally maximal idempotent-generated subsemigroups of singular orientation-preserving transformation semigroups, Semigroup Forum, 77(2)(2008), 187-195.

[^0]: 2020 Mathematics Subject Classification. 20M20; 20M10.
 Keywords. rank, maximal subsemiband, maximal regular subsemiband.
 Received: 19 April 2023; Revised: 24 October 2023; Accepted: 08 November 2023
 Communicated by Dijana Mosić
 Research supported by the National Natural Science Foundation of China (No.12261022) and the National Natural Science Foundation of China (No.11461014).

 * Corresponding author: Huabi Hu

 Email addresses: zhaoping731108@hotmail.com (Ping Zhao), huhuabi1978@163.com (Huabi Hu)

