Hermitian elements and solutions of related equations in a ring with involution

Mengge Guan ${ }^{\text {a }}$, Anqi Li ${ }^{\text {a }}$, Junchao Wei ${ }^{\text {a }}$
${ }^{a}$ College of mathematical science, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China

Abstract

In this paper, we mainly give some new equivalence portrayals of Hermitian elements in a ring with involution. Firstly, we discuss some properties of Hermitian elements by means of MoorePenrose inverses, invertible elements and EP elements. Next, the Hermitian element is deconstructed by constructing equations on the ring so that it has a solution on a specific set. Finally, we characterize Hermitian elements by constructing the group inverses and MP inverses.

1. Introduction

Let R be a ring and $a \in R$. If there exists $b \in R$ such that

$$
a b a=a, b a b=a, a b=b a
$$

then a is called a group invertible element of R and b is called a group inverse of $a[4,8,9]$, and it is unique, usually we write it by $a^{\#}$. We write $R^{\#}$ to denote the set of all group invertible elements of R.

If a map $*: R \rightarrow R$ satisfies

$$
\left(a^{*}\right)^{*}=a,(a+b)^{*}=a^{*}+b^{*},(a b)^{*}=b^{*} a^{*} \text { for } \mathrm{a}, \mathrm{~b} \in \mathrm{R},
$$

then R is said to be an involution ring or a $*-$ ring.
Let R be a *-ring and $a \in R$. If there exists $b \in R$ such that

$$
a=a b a, b=b a b,(a b)^{*}=a b,(b a)^{*}=b a,
$$

then a is called a Moore Penrose invertible element, and b is called the Moore Penrese inverse of $a[3,6]$, and it is unique, usually we record it as a^{+}. Let R^{+}denote the set of all Moore Penrese invertible elements of R.

If $a \in R^{\#} \cap R^{+}$and $a^{\#}=a^{+}$, then a is called an $E P$ element. On the studies of $E P$, the readers can refer to [2, 3, 5, 7, 10-14].

If $a \in R$ and $a=a^{*}$, then a is called Hermitian element. We write $R^{H e r}$ to denote the set of all Hermitian elements of R. Clearly, if $a \in R^{+}$is Hermitian, then $a^{\#}=a^{+}$. [11].

The research hotspots of Hermitian elements are mainly matrix directions, and this paper gives some new portrayals of Hermitian elements from the perspective of ring theory. In [11], many characterizations of Hermitian elements are given. Motivated by these references, this paper mainly study the ways to characterize Hermitian elements.

[^0]
2. Some characterizations of Hermitian elements

Lemma 2.1. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if $a^{*} a^{+} a^{\#}=a^{\#} a a^{+}$.
Proof. " \Rightarrow " Assume that $a \in R^{\text {Her }}$. Then $a=a^{*}$ and $a^{\#}=a^{+}$. It follows that

$$
a^{*} a^{+} a^{\#}=a a^{+} a^{\#}=a^{\#}=a^{\#} a a^{+} .
$$

$" \Leftarrow$ " Since $a^{*} a^{+} a^{\#}=a^{\#} a a^{+}, a^{*} a^{+} a=\left(a^{*} a^{+} a^{\#}\right) a^{2}=\left(a^{\#} a a^{+}\right) a^{2}=a$.
Then, multiplying $a^{*} a^{+} a=a$ by a^{+}from the right, we have

$$
a^{*} a^{+}=a a^{+} .
$$

Hence $a \in R^{\text {Her }}$ by [11, Theorem 1.4.1].
Theorem 2.2. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if $a a^{+} a^{+} a^{\#}=\left(a^{+}\right)^{*} a^{+}$.
Proof. " \Rightarrow " Since $a \in R^{H e r}, a^{*} a^{+} a^{\#}=a^{\#} a a^{+}$by Lemma 2.1. Multiplying the equality on the left by $\left(a^{+}\right)^{*}$, one has

$$
a a^{+} a^{+} a^{\#}=\left(a^{+}\right)^{*} a^{\#} a a^{+} .
$$

Noting that $\left(a^{+}\right)^{*} a^{\#} a=\left(a^{+}\right)^{*}$. Then $a a^{+} a^{+} a^{\#}=\left(a^{+}\right)^{*} a^{+}$.
$" \Leftarrow "$ From the equality $a a^{+} a^{+} a^{\#}=\left(a^{+}\right)^{*} a^{+}$, we obtain

$$
a^{*} a^{+} a^{\#}=a^{*}\left(a a^{+} a^{+} a^{\#}\right)=a^{*}\left(a^{+}\right)^{*} a^{+}=a^{+} .
$$

Hence $a \in R^{\text {Her }}$ by [11, Theorem 1.4.2].
Noting that $a a^{+}\left(a^{+}\right)^{*}=\left(a^{+}\right)^{*}$. Then Theorem 2.2 leads to the following corollary.
Corollary 2.3. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{H e r}$ if and only if $a^{+} a^{+} a^{\#}=a^{+}\left(a^{+}\right)^{*} a^{+}$.
Multiplying the equality of Corollary 2.3 on the left by $\left(a^{\#} a\right)^{*} a$, one has $a^{+} a^{\#}=\left(a^{\#}\right)^{*} a^{+}$, then we have:
Corollary 2.4. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if $a^{+} a^{\#}=\left(a^{\#}\right)^{*} a^{+}$.
Proof. " \Rightarrow " Since $a \in R^{H e r}, a^{*}=a$ and $a^{+}=a^{\#}$. This infers

$$
\left(a^{\#}\right)^{*} a^{+}=\left(a^{*}\right)^{\#} a^{+}=a^{\#} a^{+}=a^{+} a^{\#} .
$$

$" \Leftarrow "$ From the condition $a^{+} a^{\#}=\left(a^{\#}\right)^{*} a^{+}$, one yields

$$
a^{+} a^{\#}=\left(\left(a^{\#}\right)^{*} a^{+}\right) a a^{+}=a^{+} a^{\#} a a^{+} .
$$

Hence $a \in R^{E P}$, this gives

$$
a^{\#}=a^{\#} a^{\#} a=a^{+} a^{\#} a=\left(a^{\#}\right)^{*} a^{+} a=\left(a^{+}\right)^{*} a^{+} a=\left(a^{+}\right)^{*}=\left(a^{\#}\right)^{*} .
$$

Thus $a \in R^{H e r}$.
Noting that $a^{+} a\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*}$ and $a^{\#}=a a^{+} a^{\#}$. Then Corollary 2.4 infers the following corollary.
Corollary 2.5. Let $a \in R^{\#} \cap R^{+}$. Then the followings are equivalent:
(1) $a \in R^{\mathrm{Her}}$;
(2) $a^{\#}=a\left(a^{\#}\right)^{*} a^{+}$;
(3) $a^{+}=a\left(a^{\#}\right)^{*} a^{+}$.

Proof. (1) \Leftrightarrow (2) It follows from Corollary 2.4.
(2) \Rightarrow (3) Since $a^{\#}=a\left(a^{\#}\right)^{*} a^{+}$, we have

$$
a a^{+}=a a^{\#} a a^{+}=a^{2}\left(a^{\#}\right)^{*} a^{+} a a^{+}=a^{2}\left(a^{\#}\right)^{*} a^{+}=a a^{\#} .
$$

Hence $a \in R^{E P}$, this implies $a^{+}=a^{\#}=a\left(a^{\#}\right)^{*} a^{+}$.
(3) \Rightarrow (2) Suppose that $a^{+}=a\left(a^{\#}\right)^{*} a^{+}$. Then we have

$$
a^{+} a=a\left(\left(a^{\#}\right)^{*} a^{+} a\right)=a^{\#} a\left(a\left(a^{\#}\right)^{*} a^{+} a\right)=a^{\#} a a^{+} a=a^{\#} a .
$$

Hence $a \in R^{E P}$. Then $a^{\#}=a^{+}=a\left(a^{\#}\right)^{*} a^{+}$.

3. Construct Moore-Penrose inverses to characterize Hermitian elements

Lemma 2.1 inspires us to give the following lemma.
Lemma 3.1. Let $a \in R^{\#} \cap R^{+}$. Then
(1) $\left(a^{*} a^{+} a^{\#}\right)^{+}=a^{+} a^{3}\left(a^{\#}\right)^{*} a^{+} a$;
(2) $\left(a^{\#} a a^{+}\right)^{+}=a^{2} a^{+}$.

Proof. It is routine.
Theorem 3.2. Let $a \in R^{\#} \cap R^{+}$. Then the followings are equivalent:
(1) $a \in R^{\mathrm{Her}}$;
(2) $a^{+} a^{3}\left(a^{\#}\right)^{*} a^{+} a=a^{2} a^{+}$;
(3) $\left(a^{*} a^{+} a^{\#}\right)^{+}=a\left(a^{\#}\right)^{*} a^{*}$;
(4) $\left(a^{\#} a a^{+}\right)^{+}=a^{*} a a^{\#}$.

Proof. (1) $\Leftrightarrow(2)$ It follows from Lemma 2.1 and Lemma 3.1.
(1) \Rightarrow (3) Assume that $a \in R^{H e r}$. Then $a=a^{*}, a^{+}=a^{\#}$ and

$$
\left(a^{*} a^{+} a^{\#}\right)^{+}=\left(a a^{+} a^{\#}\right)^{+}=\left(a^{\#}\right)^{+}=\left(a^{+}\right)^{+}=a=a a^{\#} a=a\left(a^{\#} a\right)^{*}=a\left(a^{\#}\right)^{*} a^{*} .
$$

$(3) \Rightarrow(1)$ From the assumption, we have

$$
a\left(a^{\#}\right)^{*} a^{*}=\left(a^{*} a^{+} a^{\#}\right)^{+}=a^{+} a^{3}\left(a^{\#}\right)^{*} a^{+} a=a^{+} a\left(a^{+} a^{3}\left(a^{\#}\right)^{*} a^{+} a\right)=a^{+} a^{2}\left(a^{\#}\right)^{*} a^{*} \text {. }
$$

Multiplying the equality on the right by a^{+}, one has $a a^{+}=a^{+} a^{2} a^{+}$. Hence $a \in R^{E P}$, this leads to

$$
a=a\left(a^{\#}\right)^{*} a^{*}=a^{+} a^{3}\left(a^{\#}\right)^{*} a^{+} a=a^{2}\left(a^{\#}\right)^{*}
$$

and

$$
a a^{*}=a^{2}\left(a^{\#}\right)^{*} a^{*}=a^{2} .
$$

Thus $a \in R^{\text {Her }}$ by [11, Theorem 1.4.1].
(1) \Rightarrow (4) Suppose that $a \in R^{H e r}$. Then $a=a^{*}$ and $a^{+}=a^{\#}$. By Lemma 3.1, we have $\left(a^{\#} a a^{+}\right)^{+}=a^{2} a^{+}=a^{*} a a^{\#}$.
$(4) \Rightarrow(1)$ From the assumption and Lemma 3.1, we get

$$
a^{2} a^{+}=a^{*} a a^{\#}=\left(a^{*} a a^{\#}\right) a^{+} a=a^{2} a^{+} a^{+} a .
$$

It follows that $a a^{+}=a^{\#}\left(a^{2} a^{+}\right)=a^{\#}\left(a^{2} a^{+} a^{+} a\right)=a a^{+} a^{+} a$. Hence $a \in R^{E P}$. This induces $a=a^{2} a^{+}=a^{*} a a^{\#}=a^{*} a a^{+}=$ a^{*}. Thus $a \in R^{\text {Her }}$.

Lemma 3.3. Let $a \in R^{\#} \cap R^{+}$. Then
(1) $\left(a\left(a^{\#}\right)^{*} a\right)^{+}=a^{+} a^{*} a^{+}$;
(2) $\left(a\left(a^{\#}\right)^{*} a\right)^{\#}=a^{\#} a a^{+} a^{*} a^{+} a a^{\#}$;
(3) $\left(a^{*} a a^{\#}\right)^{+}=a^{+} a\left(a^{+}\right)^{*}$.

Proof. It is routine.
Theorem 3.4. Let $a \in R^{\#} \cap R^{+}$. Then the followings are equivalent:
(1) $a \in R^{\mathrm{Her}}$;
(2) $a^{*} a^{+} a^{\#}=a^{+} a^{*} a^{+}$;
(3) $a^{*} a^{+} a^{\#}=a^{\#} a a^{+} a^{*} a^{+} a a^{\#}$;
(4) $a^{\#} a a^{+}=a^{+} a\left(a^{+}\right)^{*}$.

Proof. It is an immediate result of Theorem 3.2 and Lemma 3.3.

4. Using EP elements to characterize Hermitian elements

Theorem 4.1. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if $a \in R^{E P}$ and $a^{*} a a^{\#} \in R^{H e r}$.
Proof. " \Rightarrow " Suppose that $a \in R^{H e r}$. Then, certainly, $a \in R^{E P}$ and $a^{*}=a$. This gives

$$
a^{*} a a^{\#}=a^{2} a^{\#}=a \in R^{H e r} .
$$

$" \Leftarrow "$ Since $a^{*} a a^{\#} \in R^{H e r}, a^{*} a a^{\#}=\left(a^{*} a a^{\#}\right)^{*}=a^{*}\left(a^{\#}\right)^{*} a$. Multiplying the equality on the left by $\left(a^{+}\right)^{*}$, one gets

$$
a a^{\#}=a a^{+}\left(a^{\#}\right)^{*} a .
$$

Noting that $a \in R^{E P}$. Then $a a^{+}\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*}$. It follows $a a^{\#}=\left(a^{\#}\right)^{*} a$.
Hence

$$
a^{\#}=a a^{\#} a^{\#}=\left(a^{\#}\right)^{*} a a^{\#}=\left(a^{\#}\right)^{*} a a^{+}=\left(a^{\#}\right)^{*} .
$$

Thus $a \in R^{\text {Her }}$.
It is well known that $a \in R^{H e r}$ if and only if $a^{+} \in R^{H e r}$. From Lemma 3.3 and Theorem 4.1, we have the following corollary.

Corollary 4.2. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{H e r}$ if and only if $a \in R^{E P}$ and $a^{+} a\left(a^{+}\right)^{*} \in R^{H e r}$.
Noting that $a \in R^{H e r}$ if and only if $a^{*} \in R^{H e r}$. Then Theorem 4.1 implies the following corollary.
Corollary 4.3. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{H e r}$ if and only if $a \in R^{E P}$ and $\left(a a^{\#}\right)^{*} a \in R^{H e r}$.
Theorem 4.4. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if $a \in R^{E P}$ and $a a^{+}\left(a^{\#}\right)^{*} \in R^{\text {Her }}$.
Proof. " \Rightarrow " Since $a \in R^{H e r}, a^{*}=a$ and $\left(a^{\#}\right)^{*}=a^{\#}=a^{+}$. It follows that

$$
a a^{+}\left(a^{\#}\right)^{*}=a a^{+} a^{\#}=a^{\#}=a^{\#} a a^{+}=\left(a a^{+}\left(a^{\#}\right)^{*}\right)^{*} .
$$

Hence $a a^{+}\left(a^{\#}\right)^{*} \in R^{\text {Her }}$.
$" \Leftarrow$ " Suppose that $a a^{+}\left(a^{\#}\right)^{*} \in R^{H e r}$ and $a \in R^{E P}$. Then

$$
\left(a^{\#}\right)^{*}=a a^{+}\left(a^{\#}\right)^{*}=a^{\#} a a^{+}=a^{\#} .
$$

Hence $a \in R^{H e r}$.
Noting that $\left(a a^{+}\left(a^{\#}\right)^{*}\right)^{+}=a a^{+} a^{*}$. Then Theorem 4.4 induces the following corollary.
Corollary 4.5. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if $a \in R^{E P}$ and $a a^{+} a^{*} \in R^{\text {Her }}$.

5. Using invertible elements to characterize Hermitian elements

It is well known that if $a \in R^{\#}$, then $a+1-a a^{\#} \in R^{-1}$ and $\left(a+1-a a^{\#}\right)^{-1}=a^{\#}+1-a a^{\#}$. This implies us to give the following lemma by Lemma 3.3.

Lemma 5.1. Let $a \in R^{\#} \cap R^{+}$. Then $a^{*} a a^{\#}+1-a^{+} a \in R^{-1}$ and $\left(a^{*} a a^{\#}+1-a^{+} a\right)^{-1}=a^{+} a\left(a^{+}\right)^{*}+1-a^{+} a$.
From Lemma 5.1 and Theorem 3.4, we have the following theorem.
Theorem 5.2. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if $\left(a^{*} a a^{\#}+1-a^{+} a\right)^{-1}=a^{\#} a a^{+}+1-a^{+} a$.
Theorem 5.3. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if $a a^{*} a a^{\#} a^{+}+1-a a^{+} \in R^{-1}$ and $\left(a a^{*} a a^{\#} a^{+}+1-a a^{+}\right)^{-1}=$ $a^{\#}+1-a a^{+}$.

Proof. " \Rightarrow " Assume that $a \in R^{\text {Her }}$. Then by Theorem 5.2, we have

$$
\left(a^{*} a a^{\#}+1-a^{+} a\right)^{-1}=a^{\#} a a^{+}+1-a^{+} a .
$$

Since

$$
a^{*} a a^{\#}+1-a^{+} a=1-a^{+}\left(a-a a^{*} a a^{\#}\right)
$$

and

$$
\left(1-a^{+}\left(a-a a^{*} a a^{\#}\right)\right)^{-1}=a^{\#} a a^{+}+1-a^{+} a,
$$

it follows that

$$
\begin{aligned}
\left(1-\left(a-a a^{*} a a^{\#}\right) a^{+}\right)^{-1} & =1+\left(a-a a^{*} a a^{\#}\right)\left(1-a^{+}\left(a-a a^{*} a a^{\#}\right)\right)^{-1} a^{+} \\
& =1+\left(a-a a^{*} a a^{\#}\right)\left(a^{\#} a a^{+}+1-a^{+} a\right) a^{+} \\
& =1+\left(a-a a^{*} a a^{\#}\right)\left(a^{\#} a a^{+} a^{+}\right) \\
& =a a^{+} a^{+}+1-a a^{*} a a^{\#} a^{+} a^{+} .
\end{aligned}
$$

That is

$$
\left(a a^{*} a a^{\#} a^{+}+1-a a^{+}\right)^{-1}=a a^{+} a^{+}+1-a a^{*} a a^{\#} a^{+} a^{+}
$$

Since $a^{*}=a$ and $a^{\#}=a^{+}$, one has $a a^{+} a^{+}=a a^{\#} a^{\#}=a^{\#}$ and $a a^{*} a a^{\#} a^{+} a^{+}=a^{3} a^{\#} a^{\#} a^{+}=a a^{+}$. Hence, $\left(a a^{*} a a^{\#} a^{+}+1-\right.$ $\left.a a^{+}\right)^{-1}=a^{\#}+1-a a^{+}$.
$" \Leftarrow$ " From the assumption, we get

$$
\begin{aligned}
1 & =\left(a a^{*} a a^{\#} a^{+}+1-a a^{+}\right)\left(a^{\#}+1-a a^{+}\right) \\
& =a a^{*} a^{\#} a^{\#}+1-a a^{+}
\end{aligned}
$$

This gives $a a^{*} a^{\#} a^{\#}=a a^{+}$. So

$$
a^{+}=a^{+} a a^{+}=a^{+} a a^{*} a^{\#} a^{\#}=a^{*} a^{\#} a^{\#}=\left(a^{*} a^{\#} a^{\#}\right) a^{+} a=a^{+} a^{+} a .
$$

Hence $a \in R^{E P}$ and $a^{+}=a^{*} a^{\#} a^{\#}=a^{*} a^{+} a^{\#}$. By [11, Theorem 1.4.2], $a \in R^{H e r}$.
Noting that $\left(a a^{*} a a^{\#} a^{+}+1-a a^{+}\right)^{-1}=a\left(a^{+}\right)^{*} a^{+}+1-a a^{+}$. Then Theorem 5.3 leads to the following corollary.
Corollary 5.4. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if $a^{\#}=a\left(a^{+}\right)^{*} a^{+}$.
Corollary 5.5. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{H e r}$ if and only if $a^{\#} a^{\#}=\left(a^{+}\right)^{*} a^{+}$.
Proof. It is an immediate result of Corollary 5.4.
Noting that $\left(a a^{*}\right)^{+}=\left(a^{+}\right)^{*} a^{+}$. Then Corollary 5.5 implies the following corollary.
Corollary 5.6. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{H e r}$ if and only if $a^{\#} a^{\#}=\left(a a^{*}\right)^{+}$.
Since $\left(a^{\#} a^{\#}\right)^{+}=a^{+} a^{4} a^{+}$, we have the following corollary by Corollary 5.6.
Corollary 5.7. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{H e r}$ if and only if $a^{+} a^{4} a^{+}=a a^{*}$.
Theorem 5.8. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if $a^{+} a^{*} a^{*} a^{+} a=a^{*}$.

Proof. \Longrightarrow Since $a \in R^{H e r}, a^{+} a^{4} a^{+}=a a^{*}$ by Corollary 5.7. Applying the involution on the equality, one has

$$
a a^{+} a^{*} a^{*} a^{+} a=a a^{*} .
$$

Multiplying the last equality on the left by a^{+}, one yields $a^{+} a^{*} a^{*} a^{+} a=a^{*}$.
\Longleftarrow Assume that $a^{+} a^{*} a^{*} a^{+} a=a^{*}$. Multiplying the equality on the right by $\left(a^{\#}\right)^{*}$, one obtains

$$
a^{+} a^{*}=\left(a a^{\#}\right)^{*},
$$

this gives

$$
a^{+}=a^{+} a^{*}\left(a^{\#}\right)^{*}=\left(a a^{\#}\right)^{*}\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*} .
$$

Hence

$$
a^{*}=a^{+} a^{*} a^{*} a^{+} a=a^{+} a^{*} a^{*}\left(a^{\#}\right)^{*} a=a^{+} a^{*} a=\left(a a^{\#}\right)^{*} a \text {. }
$$

Applying the involution on the last equality, we have

$$
a=a^{*} a a^{\#} .
$$

Thus $a \in R^{\text {Her }}$ by [11, Theorem 1.4.2].
Corollary 5.9. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if $a^{+} a^{3}\left(a^{+}\right)^{*} a^{\#}=a a^{+}$.
Proof. \Longrightarrow Since $a \in R^{H e r}, a^{+} a^{4} a^{+}=a a^{*}$ by Corollary 5.7. Multiplying the equality on the right by $\left(a^{+}\right)^{*} a^{+}$, one has

$$
a^{+} a^{3}\left(a^{+}\right)^{*} a^{+}=a a^{+} .
$$

Noting that $a \in R^{E P}$, Then one yields $a^{+} a^{3}\left(a^{+}\right)^{*} a^{\#}=a a^{+}$.
\Longleftarrow Assume that $a^{+} a^{3}\left(a^{+}\right)^{*} a^{\#}=a a^{+}$. Multiplying the equality on the right by a^{2}, one obtains

$$
a^{+} a^{3}\left(a^{+}\right)^{*} a=a^{2}
$$

Applying the involution on the last equality, one has

$$
a^{*} a^{*}=a^{*} a^{+} a^{*} a^{*} a^{+} a .
$$

This gives

$$
a^{*}=\left(a^{\#}\right)^{*} a^{*} a^{*}=\left(a^{\#}\right)^{*} a^{*} a^{+} a^{*} a^{*} a^{+} a=a^{+} a^{*} a^{*} a^{+} a .
$$

Thus $a \in R^{\text {Her }}$ by Theorem 5.8.

6. Characterizing Hermitian elements by the solution of univariate equations in a given set

Observing Lemma 2.1, we can establish the following equation:

$$
\begin{equation*}
a^{*} x a^{\#}=a^{\#} a x . \tag{1}
\end{equation*}
$$

Theorem 6.1. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{H e r}$ if and only if Eq.(6.1) has at least one solution in $\rho_{a}=$ $\left\{a, a^{\#}, a^{+}, a^{*},\left(a^{+}\right)^{*},\left(a^{\#}\right)^{*},\left(a^{+}\right)^{\#},\left(a^{\#}\right)^{+}\right\}$.

Proof. " \Rightarrow " If $a \in R^{H e r}$, then $x=a^{+}$is a solution by Lemma 2.1.
$" \Leftarrow "(1)$ If $x=a$ is a solution, then $a^{*} a a^{\#}=a^{\#} a a=a$. Multiplying the equality by a from the right side, we have

$$
a^{*} a=a^{2} .
$$

Hence $a \in R^{\text {Her }}$ by [11, Theorem 1.4.1];
(2) If $x=a^{\#}$ is a solution, then $a^{*} a^{\#} a^{\#}=a^{\#} a a^{\#}=a^{\#}$. Multiplying the equality by a from the right side, we have

$$
a^{*} a^{\#}=a^{\#} a
$$

Hence $a \in R^{\text {Her }}$ by [11, Theorem 1.4.2];
(3) If $x=a^{+}$is a solution, then $a^{*} a^{+} a^{\#}=a^{\#} a a^{+}$, it follows from Lemma 2.1 that $a \in R^{\text {Her }}$;
(4) If $x=a^{*}$ is a solution, then $a^{*} a^{*} a^{\#}=a^{\#} a a^{*}$. Multiplying the equality on the left by $\left(a^{+}\right)^{*}$, one yields

$$
\left(a^{2} a^{+}\right)^{*} a^{\#}=a a^{+}
$$

Now,

$$
a a^{\#}=\left(a a^{+}\right) a a^{\#}=\left(a^{2} a^{+}\right)^{*} a^{\#} a a^{\#}=\left(a^{2} a^{+}\right)^{*} a^{\#}=a a^{+} .
$$

Hence $a \in R^{E P}$ and $a^{\#}=a^{+}$.
Therefore

$$
a^{*} a^{*} a^{\#}=a^{\#} a a^{*}=a^{+} a a^{*}=a^{*} .
$$

Thus $a \in R^{\text {Her }}$ by [11, Theorem 1.4.2];
(5) If $x=\left(a^{+}\right)^{*}$ is a solution, then $a^{*}\left(a^{+}\right)^{*} a^{\#}=a^{\#} a\left(a^{+}\right)^{*}=\left(a^{+}\right)^{*}$. Multiplying the equality on the right by a, one gets

$$
a^{+} a=\left(a^{+}\right)^{*} a .
$$

Now,

$$
a^{\#} a=a^{\#} a a^{+} a=a^{\#} a\left(a^{+}\right)^{*} a=\left(a^{+}\right)^{*} a=a^{+} a .
$$

Then $a \in R^{E P}$ and $a^{+}=a^{*}\left(a^{+}\right)^{*} a^{\#}=\left(a^{+}\right)^{*}$. Hence $a \in R^{H e r}$.
(6) If $x=\left(a^{\#}\right)^{*}$ is a solution, then $a^{*}\left(a^{\#}\right)^{*} a^{\#}=a^{\#} a\left(a^{\#}\right)^{*}$. Multiplying the equality on the left by $a^{2} a^{+}$, one yields

$$
a a^{\#}=a\left(a^{\#}\right)^{*} .
$$

Therefore

$$
a a^{+}=a a^{\#} a a^{+}=a\left(a^{\#}\right)^{*} a a^{+}=a\left(a^{\#}\right)^{*}=a a^{\#} .
$$

Then $a \in R^{E P}$ and $a^{+}=a^{\#}$, we have $\left(a^{\#}\right)^{*}=\left(a^{+}\right)^{*}$. Thus $a \in R^{\text {Her }}$ by (5).
(7) If $x=\left(a^{+}\right)^{\#}=\left(a a^{\#}\right)^{*} a\left(a a^{\#}\right)^{*}$ is a solution, then $a^{*}\left(a a^{\#}\right)^{*} a\left(a a^{\#}\right)^{*} a^{\#}=a^{\#} a\left(a a^{\#}\right)^{*} a\left(a a^{\#}\right)^{*}$. Multiplying the equality on the left by $a^{+} a$, one obtains

$$
a^{*} a\left(a a^{\#}\right)^{*} a^{\#}=\left(a a^{\#}\right)^{*} a\left(a a^{\#}\right)^{*} .
$$

It follows that

$$
a^{\#} a\left(a a^{\#}\right)^{*} a\left(a a^{\#}\right)^{*}=\left(a a^{\#}\right)^{*} a\left(a a^{\#}\right)^{*} .
$$

Multiplying the equality on the right by a^{+}, one gets

$$
\left(a^{\#} a\right)\left(a a^{\#}\right)^{*}=\left(a a^{\#}\right)^{*} .
$$

Hence $a a^{\#}$ is Hermitian, this infers $a \in R^{E P}$ by [11, Theorem 1.1.3]. Thus $x=\left(a^{+}\right)^{\#}=\left(a^{\#}\right)^{\#}=a$, one obtains $a \in R^{\text {Her }}$ by (1).
(8) If $x=\left(a^{\#}\right)^{+}=a^{+} a^{3} a^{+}$is a solution, then $a^{*} a^{+} a^{3} a^{+} a^{\#}=a^{\#} a a^{+} a^{3} a^{+}$.
e.g.,

$$
a^{*} a^{+} a=a^{2} a^{+} .
$$

Multiplying the equality on the left by $\left(a^{\#}\right)^{*}$, one has

$$
a^{+} a=\left(a^{\#}\right)^{*} a^{2} a^{+}=\left(\left(a^{\#}\right)^{*} a^{2} a^{+}\right)\left(a a^{\#}\right)^{*}=a^{+} a\left(a a^{\#}\right)^{*}=\left(a a^{\#}\right)^{*} .
$$

It follows that $a a^{+}=a a^{\#}$. Hence $a \in R^{E P}$, this infers $x=\left(a^{\#}\right)^{+}=\left(a^{+}\right)^{+}=a$.
Thus $a \in R^{\text {Her }}$ by (1).

Since $a \in R^{H e r}$ if and only if $a^{*} \in R^{H e r}$. Replacing a in Eq.(6.1) by a^{*}, one gets

$$
\begin{equation*}
a x\left(a^{\#}\right)^{*}=\left(a^{\#}\right)^{*} a^{*} x . \tag{2}
\end{equation*}
$$

Corollary 6.2. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if Eq.(6.2) has at least one solution in ρ_{a}.
Now we construct the following equation

$$
\begin{equation*}
\left(a^{+}\right)^{*} x a=\left(a a^{\#}\right)^{*} x . \tag{3}
\end{equation*}
$$

Theorem 6.3. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if Eq.(6.3) has at least one solution in ρ_{a}.
Proof. " \Rightarrow " If $a \in R^{H e r}$, then $a=a^{*}$. It is easy to check that $x=a^{*}$ is a solution.
$" \Leftarrow "(1)$ If $x=a$, then $\left(a^{+}\right)^{*} a a=\left(a a^{\#}\right)^{*} a$. Multiplying the equality on the left by $a a^{\#}$, we have

$$
\left(a^{+}\right)^{*} a a=\left(a a^{\#}\right)\left(a a^{\#}\right)^{*} a .
$$

It follows that

$$
\left(a a^{\#}\right)^{*} a=\left(a a^{\#}\right)\left(a a^{\#}\right)^{*} a .
$$

Again multiplying the last equality by a^{+}from the right side, we get

$$
\left(a a^{\#}\right)^{*}=\left(a a^{\#}\right)\left(a a^{\#}\right)^{*} .
$$

This gives $a a^{\#}$ is Hermitian. Then $a \in R^{E P}$, one has

$$
\left(a^{\#}\right)^{*} a^{2}=\left(a^{+}\right)^{*} a a=\left(a a^{\#}\right)^{*} a=\left(a a^{+}\right)^{*} a=a .
$$

Applying the involution to the above equality, we obtain $a^{*} a^{*} a^{\#}=a^{*}$. Thus $a \in R^{\text {Her }}$ by [11, Theorem 1.4.2];
(2) If $x=a^{\#}$, then $\left(a^{+}\right)^{*} a^{\#} a=\left(a a^{\#}\right)^{*} a^{\#}$. Multiplying the equality by a^{2} from the right side, one gets

$$
\left(a^{+}\right)^{*} a^{2}=\left(a a^{\#}\right)^{*} a
$$

Then $a \in R^{\text {Her }}$ by (1);
(3) If $x=a^{+}$, then $\left(a^{+}\right)^{*} a^{+} a=\left(a a^{\#}\right)^{*} a^{+}$. Therefore $\left(a^{+}\right)^{*}=a^{+}$. Hence $a \in R^{\mathrm{Her}}$;
(4) If $x=a^{*}$, then $\left(a^{+}\right)^{*} a^{*} a=\left(a a^{\#}\right)^{*} a^{*}$. Therefore $a=a^{*}$. Thus $a \in R^{\text {Her }}$;
(5) If $x=\left(a^{+}\right)^{*}$, then $\left(a^{+}\right)^{*}\left(a^{+}\right)^{*} a=\left(a a^{\#}\right)^{*}\left(a^{+}\right)^{*}$. Applying the involution on the equality, we get

$$
a^{*} a^{+} a^{+}=a^{+} a a^{\#} .
$$

Multiplying the equality on the right by $a a^{+}$, one yields

$$
a^{+} a a^{\#}=a^{+} .
$$

Then $a \in R^{E P}$, it follows that $a^{*} a^{+} a^{+}=a^{\#}$. Thus $a \in R^{\text {Her }}$ by [11, Theorem 1.4.2];
(6) If $x=\left(a^{\#}\right)^{*}$, then $\left(a^{+}\right)^{*}\left(a^{\#}\right)^{*} a=\left(a a^{\#}\right)^{*}\left(a^{\#}\right)^{*}$. Taking involution of the equality, we have

$$
a^{*} a^{\#} a^{+}=a^{\#} .
$$

Multiplying the equality by a from the right side, one gets

$$
a^{*} a^{\#}=a^{\#} a .
$$

Thus $a \in R^{\text {Her }}$ by [11, Theorem 1.4.2];
(7) If $x=\left(a^{+}\right)^{\#}=\left(a a^{\#}\right)^{*} a\left(a a^{\#}\right)^{*}$, then $\left(a^{+}\right)^{*}\left(a a^{\#}\right)^{*} a\left(a a^{\#}\right)^{*} a=\left(a a^{\#}\right)^{*}\left(a a^{\#}\right)^{*} a\left(a a^{\#}\right)^{*}$. Multiplying the equality on the right by $a^{+} a^{+} a^{*}$, we obtain

$$
a a^{+}=a^{+} a^{*} .
$$

Taking the involution of this equality, we get $a a^{+}=a\left(a^{+}\right)^{*}$. Therefore,

$$
a a^{\#}=a a^{+} a a^{\#}=a\left(a^{+}\right)^{*} a a^{\#}=a\left(a^{+}\right)^{*}=a a^{+} .
$$

Then $a \in R^{E P}$, it follows that $x=\left(a^{+}\right)^{\#}=\left(a^{\#}\right)^{\#}=a$. Thus $a \in R^{\text {Her }}$ by (1);
(8) If $x=\left(a^{\#}\right)^{+}=a^{+} a^{3} a^{+}$, then $\left(a^{+}\right)^{*} a^{+} a^{3} a^{+} a=\left(a a^{\#}\right)^{*} a^{+} a^{3} a^{+}$. Multiplying the equality on the right by $a^{\#}$, one has

$$
\left(a^{+}\right)^{*} a=a^{+} a .
$$

Therefore,

$$
a^{\#} a=a^{\#} a a^{+} a=a^{\#} a\left(a^{+}\right)^{*} a=\left(a^{+}\right)^{*} a=a^{+} a .
$$

Then $a \in R^{E P}$, one gets $x=\left(a^{\#}\right)^{+}=\left(a^{+}\right)^{+}=a$. Thus $a \in R^{H e r}$ by (1).
Applying the involution on Eq.(6.3), we get

$$
\begin{equation*}
a^{*} x a^{+}=x a a^{\#} . \tag{4}
\end{equation*}
$$

Corollary 6.4. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if Eq.(6.4) has at least one solution in ρ_{a}.
Multiplying Eq.(6.4) on the right by a, and then revise as follows:

$$
\begin{equation*}
a^{*} x a a^{+}=x a . \tag{5}
\end{equation*}
$$

Theorem 6.5. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if Eq.(6.5) has at least one solution in ρ_{a}.

7. The general solution of bivariate equations

Now we generalize Eq.(6.1) as follows

$$
\begin{equation*}
a^{*} x a^{\#}=a^{\#} a y . \tag{6}
\end{equation*}
$$

Theorem 7.1. Let $a \in R^{\#} \cap R^{+}$. Then the general solution of $E q .(7.1)$ is given by

$$
\left\{\begin{array}{l}
x=\left(a^{\#}\right)^{*} a^{+} p+u-a a^{+} u a a^{+} \tag{7}\\
y=a^{+} p a^{\#}+v-a^{+} a v
\end{array}, \text { where } p, u, v \in R \text { with } a^{+} p=a a^{+} a^{+} p\right.
$$

Proof. First

$$
\begin{aligned}
a^{*}\left(\left(a^{\#}\right)^{*} a^{+} p+u-a a^{+} u a a^{+}\right) a^{\#} & =a^{+} p a^{\#}=a a^{+} a^{+} p a^{\#} \\
& =a^{\#} a a a^{+} a^{+} p a^{\#}=a^{\#} a a^{+} p a^{\#} \\
& =a^{\#} a\left(a^{+} p a^{\#}+v-a^{+} a v\right) .
\end{aligned}
$$

It follows that the formula (7.2) is the solution of Eq.(7.1).
Next, let $\left\{\begin{array}{l}x=x_{0} \\ y=y_{0}\end{array}\right.$ be any solution of Eq.(7.1). Then

$$
a^{*} x_{0} a^{\#}=a^{\#} a y_{0} .
$$

Choose $p=a\left(a a^{\#}\right)^{*} a^{\#} a y_{0} a, u=x_{0}-\left(a^{\#}\right)^{*} a^{+} p$ and $v=y_{0}-a^{+} p a^{\#}$.
Then

$$
\begin{aligned}
a^{+} p & =a^{+} a\left(a a^{\#}\right)^{*} a^{\#} a y_{0} a=\left(a a^{\#}\right)^{*} a^{\#} a y_{0} a \\
& =\left(a a^{\#}\right)^{*}\left(a^{*} x_{0} a^{\#}\right) a=a^{*} x_{0} a^{\#} a=a^{\#} a y_{0} a,
\end{aligned}
$$

and

$$
a a^{+} a^{+} p=a a^{+}\left(a^{\#} a y_{0} a\right)=a^{\#} a y_{0} a=a^{+} p
$$

Since

$$
\begin{aligned}
a a^{+} u a a^{+} & =a a^{+}\left(x_{0}-\left(a^{\#}\right)^{*} a^{+} p\right) a a^{+}=a a^{+} x_{0} a a^{+}-a a^{+}\left(a^{\#}\right)^{*} a^{+} p a a^{+} \\
& =a a^{+} x_{0} a a^{+}-a a^{+}\left(a^{\#}\right)^{*} a^{\#} a y_{0} a^{2} a^{+}=a a^{+} x_{0} a a^{+}-a a^{+}\left(a^{\#}\right)^{*} a^{*} x_{0} a^{\#} a^{2} a^{+} \\
& =a a^{+} x_{0} a a^{+}-a a^{+} x_{0} a a^{+}=0 .
\end{aligned}
$$

It follows that

$$
x_{0}=\left(a^{\#}\right)^{*} a^{+} p+u-a a^{+} u a a^{+},
$$

and

$$
\begin{aligned}
a^{+} a v & =a^{+} a\left(y_{0}-a^{+} p a^{\#}\right)=a^{+} a y_{0}-a^{+} p a^{\#} \\
& =a^{+} a y_{0}-a^{\#} a y_{0} a a^{\#}=a^{+} a y_{0}-a^{*} x_{0} a^{\#} a a^{\#} \\
& =a^{+} a y_{0}-a^{+} a\left(a^{*} x_{0} a^{\#}\right)=a^{+} a y_{0}-a^{+} a\left(a^{\#} a y_{0}\right) \\
& =a^{+} a y_{0}-a^{+} a y_{0}=0 .
\end{aligned}
$$

Then

$$
y_{0}=a^{+} p a^{\#}+v-a^{+} a v .
$$

Hence the general solution of Eq.(7.1) is given by the formula (7.2).
Theorem 7.2. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if the general solution of Eq.(7.1) is given by

$$
\left\{\begin{array}{l}
x=\left(a^{\#}\right)^{*} a^{+} p+u-a a^{+} u a a^{+} \tag{8}\\
y=a^{+} p\left(a^{\#}\right)^{*}+v-a^{+} a v
\end{array}, \text { where } p, u, v \in R .\right.
$$

Proof. " \Rightarrow " Since $a \in R^{H e r}, a \in R^{E P}$ and $a^{\#}=\left(a^{\#}\right)^{*}$. It follows that $a^{+}=a a^{+} a^{+}$. Hence the formula (7.3) is the same as the formula (7.2). By Theorem 7.1, we are done.
$" \Leftarrow$ " From the assumption, we have

$$
a^{*}\left(\left(a^{\#}\right)^{*} a^{+} p+u-a a^{+} u a a^{+}\right) a^{\#}=a^{\#} a\left(a^{+} p\left(a^{\#}\right)^{*}+v-a^{+} a v\right),
$$

e.g.

$$
a^{+} p a^{\#}=a^{\#} a a^{+} p\left(a^{\#}\right)^{*} \text { forall } \mathrm{p} \in \mathrm{R} .
$$

Especially, choose $p=a^{2}$, one yields

$$
a^{+} a=a\left(a^{\#}\right)^{*} .
$$

So $a^{+}=a\left(a^{\#}\right)^{*} a^{+}$. By Corollary 2.5, $a \in R^{\mathrm{Her}}$.
We establish the following equation

$$
\begin{equation*}
a a^{+} x a a^{+}\left(a^{\#}\right)^{*}=\left(a^{+}\right)^{*} y . \tag{9}
\end{equation*}
$$

Theorem 7.3. Let $a \in R^{\#} \cap R^{+}$. Then the general solution of $E q .(7.4)$ is given by

$$
\left\{\begin{array}{l}
x=\left(a^{\#}\right)^{*} a^{+} p+u-a a^{+} u a a^{+} \tag{10}\\
y=a^{+} p\left(a^{\#}\right)^{*}+v-a^{+} a v
\end{array}, \text { where } p, u, v \in R \text { with } p a^{+}=p a a^{+} a^{+} .\right.
$$

Proof. First, we have

$$
\begin{gathered}
a a^{+}\left(\left(a^{\#}\right)^{*} a^{+} p+u-a a^{+} u a a^{+}\right) a a^{+}\left(a^{\#}\right)^{*}=a a^{+}\left(a^{\#}\right)^{*} a^{+} p a a^{+}\left(a^{\#}\right)^{*} \\
=\left(a a^{+}\left(a^{\#}\right)^{*} a^{+} a\right) a^{+} p a a^{+}\left(a^{\#}\right)^{*}=\left(a^{+}\right)^{*} a^{+} p a a^{+}\left(a^{\#}\right)^{*}=\left(a^{+}\right)^{*} a^{+} p a a^{+} a^{+} a\left(a^{\#}\right)^{*} \\
=\left(a^{+}\right)^{*} a^{+} p a^{+} a\left(a^{\#}\right)^{*}=\left(a^{+}\right)^{*} a^{+} p\left(a^{\#}\right)^{*}=\left(a^{+}\right)^{*}\left(a^{+} p\left(a^{\#}\right)^{*}+v-a^{+} a v\right) .
\end{gathered}
$$

Hence the formula (7.5) is the solution of Eq.(7.4).
Next, let $\left\{\begin{array}{l}x=x_{0} \\ y=y_{0}\end{array}\right.$ be any solution of Eq.(7.4). Then we have

$$
a a^{+} x_{0} a a^{+}\left(a^{\#}\right)^{*}=\left(a^{+}\right)^{*} y_{0} .
$$

Choose $p=a y_{0} a^{*}, u=x_{0}-\left(a^{\#}\right)^{*} a^{+} p, v=y_{0}$. Then

$$
p a a^{+} a^{+}=a y_{0} a^{*} a a^{+} a^{+}=a y_{0} a^{*} a^{+}=p a^{+},
$$

and

$$
\begin{aligned}
a a^{+} u a a^{+} & =a a^{+}\left(x_{0}-\left(a^{\#}\right)^{*} a^{+} p\right) a a^{+}=a a^{+} x_{0} a a^{+}-a a^{+}\left(a^{\#}\right)^{*} a^{+} p a a^{+} \\
& =a a^{+} x_{0} a a^{+}-a a^{+}\left(a^{\#}\right)^{*} a^{+} a y_{0} a^{*} a a^{+}=a a^{+} x_{0} a a^{+}-\left(a^{+}\right)^{*} y_{0} a^{*} \\
& =a a^{+} x_{0} a a^{+}-a a^{+} x_{0} a a^{+}\left(a^{\#}\right)^{*} a^{*}=a a^{+} x_{0} a a^{+}-a a^{+} x_{0} a a^{+}=0 .
\end{aligned}
$$

One gets

$$
x_{0}=\left(a^{\#}\right)^{*} a^{+} p+u-a a^{+} u a a^{+} .
$$

Also,

$$
\begin{aligned}
a^{+} p\left(a^{\#}\right)^{*} & =a^{+} a y_{0}\left(a^{\#} a\right)^{*}=a^{*}\left(\left(a^{+}\right)^{*} y_{0}\right)\left(a a^{\#}\right)^{*} \\
& =a^{*}\left(a a^{+} x_{0} a a^{+}\left(a^{\#}\right)^{*}\right)\left(a a^{\#}\right)^{*}=a^{*}\left(a a^{+} x_{0} a a^{+}\left(a^{\#}\right)^{*}\right) \\
& =a^{*}\left(a^{+}\right)^{*} y_{0}=a^{+} a y_{0}=a^{+} a v .
\end{aligned}
$$

This infers

$$
y_{0}=a^{+} p\left(a^{\#}\right)^{*}+v-a^{+} a v .
$$

Hence every solution of Eq.(7.4) has the form of the formula (7.5). Thus the general solution of Eq.(7.4) is given by formula (7.5).
Theorem 7.4. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if Eq.(7.1) has the same solution as Eq.(7.4).
Proof. " \Rightarrow " If $a \in R^{H e r}$, then $a \in R^{E P}$ and so $a^{+}=a a^{+} a^{+}$. It follows that the formula (7.3) is the same as the formula (7.5). Hence by Theorem 7.2 and Theorem 7.3, we are done.
$" \Leftarrow "$ From the assumption, we know that the general solution of Eq.(7.1) is given by formula (7.5).
Hence

$$
a^{*}\left(\left(a^{\#}\right)^{*} a^{+} p+u-a a^{+} u a a^{+}\right) a^{\#}=a^{\#} a\left(a^{+} p\left(a^{\#}\right)^{*}+v-a^{+} a v\right) .
$$

That is, $a^{+} p a^{\#}=a^{\#} a a^{+} p\left(a^{\#}\right)^{*}$ for $p \in R$ satisfying $p a^{+}=p a a^{+} a^{+}$. Choose $p=a^{*}$. Then

$$
a^{+} a^{*} a^{\#}=a^{\#} a a^{+} a^{*}\left(a^{\#}\right)^{*}=a^{\#} a a^{+} .
$$

Multiplying the equality on the right by $a^{2} a^{+}$, one has

$$
a^{+} a^{*}=a a^{+} .
$$

It follows

$$
a^{\#}=a a^{+} a^{\#}=a^{+} a^{*} a^{\#}=a^{\#} a a^{+} .
$$

Hence $a \in R^{E P}$, this implies

$$
a a^{\#}=a a^{+}=a^{+} a^{*} .
$$

Thus $a \in R^{H e r}$ by [11, Theorem 1.4.2].

8. Constructions of group invertible elements and Moore Penrose invertible elements

Theorem 8.1. Let $a \in R^{\#} \cap R^{+}$. Then
(1) $\left(a^{*} x a^{\#}\right)^{+}=\left(a^{*} x a^{\#}\right)^{\#}=a^{+} a^{3} a^{+} x^{\#}\left(a^{+}\right)^{*}$, where $x \in \rho_{a}$;
(2) $\left(a^{\#} a x\right)^{+}=x^{+} a a^{+}$, where $x \in \rho_{a}$;
(3) $\left(a^{\#} a x\right)^{\#}=x^{\#} a^{+} a$, where $x \in\left\{a, a^{\#},\left(a^{+}\right)^{*}\right\}=\tau_{a}$;
(4) $\left(a^{\#} a x\right)^{\#}=x^{+} a a^{+}$, where $x \in\left\{a^{+}, a^{*},\left(a^{\#}\right)^{*},\left(a^{+}\right)^{\#},\left(a^{\#}\right)^{+}\right\}=\gamma_{a}$.

Proof. Noting that

$$
\begin{gathered}
x x^{\#}=x^{\#} x=x^{\#} a a^{+} x=x a a^{+} x^{\#}=\left\{\begin{array}{r}
a a^{\#}, x \in \tau_{a} \\
\left(a a^{\#}\right)^{*}, x \in \gamma_{a}
\end{array}=x^{\#} a^{+} a x .\right. \\
x x^{+}=\left\{\begin{array}{l}
a a^{+}, x \in \tau_{a} \\
a^{+} a, x \in \gamma_{a}
\end{array} .\right. \\
x^{+} a a^{\#} x=\left\{\begin{array}{l}
a^{+} a, x \in \tau_{a} \\
a a^{+}, x \in \gamma_{a}
\end{array} .\right.
\end{gathered}
$$

Then we can complete the proof by a routine vertification.
The following theorem is a direct corollary of Theorem 6.1.
Theorem 8.2. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{H e r}$ if and only if $a^{+} a^{3} a^{+} x^{\#}\left(a^{+}\right)^{*}=x^{+}$a a^{+}for some $x \in \rho_{a}$.
Also, we have:
Theorem 8.3. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if $a^{+} a^{3} a^{+} x^{\#}\left(a^{+}\right)^{*}=x^{\#} a^{+}$a for some $x \in \tau_{a}$.
Theorem 8.4. Let $a \in R^{\#} \cap R^{+}$. Then $a \in R^{\text {Her }}$ if and only if $\left(a^{\#} a x\right)^{+}=x^{+}\left(a^{\#}\right)^{*} a$ for some $x \in \rho_{a}$.
Proof. " \Rightarrow " Assume that $a \in R^{\text {Her }}$. Then $a^{+}=a^{\#}=\left(a^{\#}\right)^{*}$. Hence

$$
a a^{+}=a a^{\#}=a^{\#} a=\left(a^{\#}\right)^{*} a .
$$

By Theorem 8.1, we have

$$
\left(a^{\#} a x\right)^{+}=x^{+}\left(a^{\#}\right)^{*} a,
$$

for all $x \in \rho_{a}$.
$" \Leftarrow "$ By the hypothesis and Theorem 8.1, we have $x^{+} a a^{+}=x^{+}\left(a^{\#}\right)^{*} a$, for all $x \in \rho_{a}$. This gives

$$
x x^{+} a a^{+}=x x^{+}\left(a^{\#}\right)^{*} a .
$$

Noting that

$$
x x^{+}=\left\{\begin{array}{l}
a a^{+}, x \in \tau_{a} \\
a^{+} a, x \in \gamma_{a}
\end{array} .\right.
$$

Thus we have $a a^{+} a a^{+}=a a^{+}\left(a^{\#}\right)^{*} a$ or $a^{+} a a a^{+}=a^{+} a\left(a^{\#}\right)^{*} a$.
If $a a^{+} a a^{+}=a a^{+}\left(a^{\#}\right)^{*} a$, then $a^{+}=a^{+}\left(a^{\#}\right)^{*} a$. Hence $a \in R^{\text {Her }}$ by Corollary 2.5;
If $a^{+} a a a^{+}=a^{+} a\left(a^{\#}\right)^{*} a$, then $a^{2} a^{+}=a\left(a^{\#}\right)^{*} a=\left(a\left(a^{\#}\right)^{*} a\right) a^{+} a=a^{2} a^{+} a^{+} a$, it follows that

$$
a a^{+}=a a^{+} a^{+} a
$$

Hence $a \in R^{E P}$, one gets

$$
a=a^{2} a^{+}=a\left(a^{\#}\right)^{*} a
$$

and

$$
a^{\#}=a a^{\#} a^{\#}=a\left(a^{\#}\right)^{*} a a^{\#} a^{\#}=a\left(a^{\#}\right)^{*} a^{\#}=a\left(a^{\#}\right)^{*} a^{+} .
$$

Thus $a \in R^{\text {Her }}$ by Corollary 2.5.

References

[1] W. X. Chen. On EP elements, normal elements and paritial isometries in rings with involution. Electron. J. Linear Algebra. 23(2012) 553-561.(DOI: https://doi.org/10.13001/1081-3810.1540)
[2] D. Drivaliaris, S. Karanasios, D. Pappas. Factorizations of $E P$ operators. Linear Algebra Appl. 429(2008) 1555-1567. (DOI: 10.1016/j.laa.2008.04.026)
[3] R. E. Hartwig. Block generalized inverses. Arch. Retion. Mech. Anal. 61(1976) 197-251. (DOI: 10.1007/BF00281485)
[4] R. E. Hartwig. Generalized inverses, EP elements and associates. Rev. Roumaine Math. Pures Appl. 23(1978) 57-60.
[5] R. E. Hartwig, I. J. Katz. Products of EP elements in reflexive semigroups. Linear Algebra and Appl. 14(1976) 11-19. (DOI: 10.1016/0024-3795(76)90058-6)
[6] R. E. Harte, M. Mbekhta. On generalized inverses in C*-algebras. Studia Math. 103(1992) 71-77.
[7] S. Karanasios. EP elements in rings and semigroup with involution and C*-algebras. Serdica Math. J. 41(2015) 83-116.
[8] J. J. Koliha. The Drazin and Moore-Penrose inverse in C*-algebras. Math. Proc. R. Ir. Acad. 99A(1999) 17-27.
[9] J. J. Koliha, D. Cvetković, D. S. Djordjević. Moore-Penrose inverse in rings with involution. Linear Algebra Appl. 426(2007) 371-381. (DOI: 10.1016/j.laa.2007.05.012)
[10] J. J. Koliha, P. Patrílcio. Elements of rings with equal spectral idempotents. J. Aust. Math. Soc. 72(2002) 137-152. (DOI: 10.1017/S1446788700003657)
[11] D. Mosić, Generalized inverses, Faculty of Sciences and Mathematics, University of Niš, Niš 2018.
[12] D. Mosić, D. S. Djordjević, J. J. Koliha. EP elements in rings. Linear Algebra Appl. 431(2009) 527-535. (DOI: 10.1016/j.laa.2009.02.032)
[13] D. Mosić, D. S. Djordjević. New characterizations of $E P$, generalized normal and generalized Hermitian elements in rings. Appl. Math. Comput. 218(2012) 6702-6710. (DOI: 10.1016/j.amc.2011.12.030)
[14] D. Mosić, Dragan S. Djordjević. Further results on partial isometries and $E P$ elements in rings with involution. Math. Comput. Model. 54(2011) 460-465. (DOI: 10.1016/j.mcm.2011.02.035)
[15] D. Mosić, Dragan S. Djordjević. Partial isometries and EP elements in rings with involution. Electron. J. Linear Algebra. 18(2009) 761-722.
[16] Z. C. Xu, R. J. Chen, J. C. Wei, Strongly EP elements in a ring with involution. Filomat, 34(6)(2020) 2101-2107.
[17] D. D. Zhao, J. C. Wei, Strongly $E P$ elements in rings with involution. J. Algebra Appl., (2022), 2250088, 10pages, DOI: 10.1142/S0219498822500888.
[18] D. D. Zhao, J. C. Wei, Some new characterizations of partial isometries in rings with involution. Intern. Eletron. J. Algebra, 30(2021) 304-311.
[19] R. J. Zhao, H. Yao, J. C. Wei, Characterizations of partial isometries and two special kinds of EP elements. Czecho. Math. J, 70(2)(2020) 539-551.

[^0]: 2020 Mathematics Subject Classification. 16B99, 16W10, 46L05
 Keywords. EP element, Hermitian element, solutions of equation, invertible elements.
 Received: 06 April 2022; Revised: 11 November 2023; Accepted: 14 November 2023
 Communicated by Dijana Mosić
 Email addresses: 2530374647@qq.com (Mengge Guan), angellee_yz@126.com (Anqi Li), jcwei@yzu.edu.cn (Junchao Wei)

