Filomat 38:12 (2024), 4291–4301 https://doi.org/10.2298/FIL2412291T

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Generalized metric properties at a subset on the Vietoris hyperspace $\mathcal{F}(X)$

Luong Quoc Tuyen^a, Ong Van Tuyen^b

^aDepartment of Mathematics, Da Nang University of Education, 459 Ton Duc Thang Street, Da Nang City, Vietnam ^bHoa Vang High School, 101 Ong Ich Duong Street, Da Nang City, Vietnam

Abstract. In this paper, we study generalized metric properties at a subset on the hyperspace $\mathcal{F}(X)$ of finite subsets of a space *X* endowed with the Vietoris topology. We prove that *X* has the covering property γ at *A* if and only if $\mathcal{F}(X)$ has the covering property γ at $\langle A \rangle_{\mathcal{F}(X)}$ for each $A \subset X$ and some γ . By these results, we obtain some results related to the images of metric spaces under some kinds of continuous mappings at a subset on the Vietoris hyperspace $\mathcal{F}(X)$.

1. Introduction and preliminaries

Recently, the generalized metric properties on hyperspaces with the Vietoris topology have been studied by many authors ([3, 4, 9–11, 13–18]).

In 2020 and 2022, covering concepts such as external bases, *so*-networks, *sn*-networks, *cs*-networks, *cs*-networks, *point-regular covers*, point-finite covers, point-countable covers at a subset *A* for a space *X* were introduced and studied by S. Lin, X.W. Ling, Y. Ge and W. He ([5, 6]). They obtained some good results. In this paper, we also introduce some more covering concepts like *cn*-networks, *ck*-networks, compact-finite covers, locally finite covers, locally countable covers at a subset *A* for a space *X* and study them on the Vietoris hyperspace $\mathcal{F}(X)$ at a subset $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$. Throughout this paper, (*P*) is assumed to be one of the following properties: point-finite, point-countable, compact-finite, locally countable. Moreover, all spaces are assumed to be T_1 and regular, \mathbb{N} denotes the set of all positive integers. For $A \subset X$, we prove that

- 1. X has a sequence of open covers (resp., *so*-covers, *cs*-covers, *cs*^{*}-covers) at A which is a point-star network at A for X if and only if $\mathcal{F}(X)$ has a sequence of open covers (resp., *so*-covers, *cs*-covers, *cs*^{*}-covers) at $\langle A \rangle_{\mathcal{F}(X)}$ which is a point-star network at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$;
- 2. *X* has a sequence of open covers (resp., *so*-covers, *cs*-covers) with property (*P*) at *A* which is a point-star network at *A* for *X* if and only if $\mathcal{F}(X)$ has a sequence of open covers (resp., *so*-covers, *cs*-covers, *cs*-covers) with property (*P*) at $\langle A \rangle_{\mathcal{F}(X)}$ which is a point-star network at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$;
- 3. X has an external base (resp., an *so*-network, an *sn*-network, a *cs*-network, a *cs*^{*}-network, a *cn*-network, a *ck*-network) with property σ -(*P*) at *A* for X if and only if $\mathcal{F}(X)$ has an external base (resp., an *so*-network, an *sn*-network, a *cs*-network, a *cs*^{*}-network, a *cn*-network, a *ck*-network) with property σ -(*P*) at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

²⁰²⁰ Mathematics Subject Classification. Primary 54B20; Secondary 54C10, 54D20, 54E40, 54E99

Keywords. Hyperspaces, point-regular covers, *so*-networks, *sn*-networks, *cs*-networks, *cs**-networks, *cn*-networks, *ck*-networks Received: 15 September 2023; Revised: 30 October 2023; Accepted: 08 November 2023

Communicated by Ljubiša D. R. Kočinac

Email addresses: tuyendhdn@gmail.com (Luong Quoc Tuyen), tuyenvan612dn@gmail.com (Ong Van Tuyen)

By these results, we obtain that

- X has a point-regular external base (resp., *so*-network, *sn*-network, *cs*-network, *cs**-network) at A for X if and only if F(X) has a point-regular external base (resp., *so*-network, *sn*-network, *cs**-network) at ⟨A⟩_{F(X)} for F(X);
- 2. X has a point-countable external base (resp., *so*-network, *sn*-network, *cs*-network, *cs*^{*}-network, *cn*-network, *ck*-network) at A for X if and only if $\mathcal{F}(X)$ has a point-countable external base (resp., *so*-network, *sn*-network, *cs*-network, *cn*-network, *ck*-network) at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

On the other hand, we also get some results about the images of metric spaces under some kinds of continuous mappings at a subset on the Vietoris hyperspace $\mathcal{F}(X)$. Moreover, if A = X, then $\langle A \rangle_{\mathcal{F}(X)} = \mathcal{F}(X)$, we get some new results and get back some known results (for example, [4, Theorem 4.7], [14, Theorems 37, 41], [18, Theorem 2.6], [18, Corollaries 2.7, 2.8]) on the Vietoris hyperspace $\mathcal{F}(X)$.

For a sequence $\{x_n\}_{n \in \mathbb{N}}$ converging to x, we say that $\{x_n\}_{n \in \mathbb{N}}$ is *eventually* in P if $\{x\} \cup \{x_n : n \ge m\} \subset P$ for some $m \in \mathbb{N}$, and $\{x_n\}_{n \in \mathbb{N}}$ is *frequently* in P if some subsequence of $\{x_n\}_{n \in \mathbb{N}}$ is eventually in P. Furthermore, if \mathcal{P} is a family of subsets of a space X and $A \subset X$, then

$$\mathsf{St}(A,\mathcal{P}) = \bigcup \{ P \in \mathcal{P} : P \cap A \neq \emptyset \}; \\ (\mathcal{P})_A = \{ P \in \mathcal{P} : P \cap A \neq \emptyset \}.$$

For $x \in X$, we use the notation $St(x, \mathcal{P})$ instead of $St(\{x\}, \mathcal{P})$.

Given a space *X*, we define its *hyperspaces* as the following sets:

- 1. $CL(X) = \{A \subset X : A \text{ is closed and nonempty}\};$
- 2. $\mathbb{K}(X) = \{A \in CL(X) : A \text{ is compact}\};$
- 3. $\mathcal{F}_n(X) = \{A \in CL(X) : |A| \le n\}, \text{ where } n \in \mathbb{N};$
- 4. $\mathcal{F}(X) = \{A \in CL(X) : A \text{ is finite}\}.$

The set CL(X) is topologized by the *Vietoris topology* defined as the topology generated by

 $\mathcal{B} = \{ \langle U_1, \dots, U_k \rangle : U_1, \dots, U_k \text{ are open subsets of } X, k \in \mathbb{N} \},\$

where

$$\langle U_1, \ldots, U_k \rangle = \{ A \in CL(X) : A \subset \bigcup_{i \le k} U_i, A \cap U_i \neq \emptyset \text{ for each } i \le k \}.$$

Note that, by definition, $\mathbb{K}(X)$, $\mathcal{F}_n(X)$ and $\mathcal{F}(X)$ are subspaces of CL(X). Hence, they are topologized with the appropriate restriction of the Vietoris topology. Moreover,

- 1. *CL*(*X*) is called the *hyperspace of nonempty closed subsets of X*;
- 2. $\mathbb{K}(X)$ is called the *hyperspace of nonempty compact subsets of X*;
- 3. $\mathcal{F}_n(X)$ is called the *n*-fold symmetric product of X;
- 4. $\mathcal{F}(X)$ is called the *hyperspace of finite subsets of* X.

On the other hand, it is obvious that $\mathcal{F}(X) = \bigcup_{n=1}^{\infty} \mathcal{F}_n(X)$ and $\mathcal{F}_n(X) \subset \mathcal{F}_{n+1}(X)$ for each $n \in \mathbb{N}$.

Remark 1.1. ([15]) Let *X* be a space and let $n \in \mathbb{N}$.

- 1. $\mathcal{F}_n(X)$ is closed in $\mathcal{F}(X)$.
- 2. $f_1 : X \rightarrow \mathcal{F}_1(X)$ given by $f_1(x) = \{x\}$ is a homeomorphism.
- 3. Every $\mathcal{F}_m(X)$ is a closed subset of $\mathcal{F}_n(X)$ for each $m, n \in \mathbb{N}$, m < n.

Notation 1.2. ([14]) If U_1, \ldots, U_s are open subsets of a space X, then $\langle U_1, \ldots, U_s \rangle_{\mathcal{F}(X)}$ denotes the intersection of the open set $\langle U_1, \ldots, U_s \rangle$ of the Vietoris topology, with $\mathcal{F}(X)$.

Notation 1.3. ([17]) Let X be a space. If $\{x_1, \ldots, x_r\}$ is a point of $\mathcal{F}(X)$ and $\{x_1, \ldots, x_r\} \in \langle U_1, \ldots, U_s \rangle_{\mathcal{F}(X)}$, then for each $j \leq r$, we let

$$U_{x_i} = \bigcap \{ U \in \{U_1, \ldots, U_s\} : x_j \in U \}.$$

Observe that $\langle U_{x_1}, \ldots, U_{x_r} \rangle_{\mathcal{F}(X)} \subset \langle U_1, \ldots, U_s \rangle_{\mathcal{F}(X)}$.

Definition 1.4. Let $A \subset X$ and \mathcal{P} be a family of subsets of a space *X*.

- 1. *A* is called a *sequential neighborhood* of $x \in X$ [5], if each sequence *L* converging to *x* is eventually in *A*.
- 2. *A* is called *sequentially open* [5], if *A* is a sequential neighborhood of each point in *A*.
- 3. \mathcal{P} is called a *network* at $x \in X$ [5], if $x \in \bigcap \mathcal{P}$, and for each neighborhood U of x in X, there is $P \in \mathcal{P}$ such that $P \subset U$.
- 4. \mathcal{P} is called a *cs-cover* [5] (resp., *cs*^{*}-*cover* [6]) at *A* for *X*, if every sequence *L* converging to $x \in A$ in *X* is eventually (resp., frequently) in some $P \in \mathcal{P}$.
- 5. \mathcal{P} is called an *open cover* (resp., *so-cover*) at *A* for *X* [5], if each element of \mathcal{P} is an open (resp., a sequentially open) set in *X* and $A \subset \bigcup \mathcal{P}$.
- 6. \mathcal{P} is called a *cs-network* (resp., *cs*-network*) at *A* for *X* [5], if for each $x \in A$, any sequence *L* converging to $x \in U$ with *U* open in *X*, then *L* is eventually (resp., frequently) in $P \subset U$ for some $P \in \mathcal{P}$.
- 7. \mathcal{P} is called an *sn-network* at a point $x \in X$ [5], if the following are satisfied: (i) \mathcal{P} is a network at x in X; (ii) if $U, V \in \mathcal{P}$, then $W \subset U \cap V$ for some $W \in \mathcal{P}$; (iii) each element of \mathcal{P} is a sequential neighborhood of x in X.
- 8. $\mathcal{P} = \bigcup_{x \in A} \mathcal{P}_x$ is called an *external base* (resp., *sn-network*, *so-network*) at *A* for X [5], if \mathcal{P}_x is a local base (resp., an *sn*-network, an *sn*-network consisting of sequentially open sets) at *x* in X for each $x \in A$.
- 9. \mathcal{P} is called a *cn-network* at $x \in X$ [2], if for each neighborhood O_x of x, the set $\bigcup \{P \in \mathcal{P} : x \in P \subset O_x\}$ is a neighborhood of x; \mathcal{P} is a *cn-network* at A for X, if \mathcal{P} is a *cn*-network at each point $x \in A$.
- 10. \mathcal{P} is called a *ck-network* at $x \in X$ [2], if for any neighborhood O_x of x, there is a neighborhood $U_x \subset O_x$ of x such that for each compact subset $K \subset U_x$, there exists a finite subfamily $\mathcal{F} \subset \mathcal{P}$ satisfying $x \in \bigcap \mathcal{F}$ and $K \subset \bigcup \mathcal{F} \subset O_x$; \mathcal{P} is a *ck-network* at A for X, if \mathcal{P} is a *ck*-network at each point $x \in A$.
- **Remark 1.5.** 1. External base (at *A*) \Rightarrow *so*-network (at *A*) \Rightarrow *sn*-network (at *A*) \Rightarrow *cs*^{*}-network (at *A*).
 - 2. External base (at A) \Rightarrow *ck*-network (at A) \Rightarrow *cn*-network (at A).

Definition 1.6. Let $A \subset X$ and \mathcal{P} be a family of subsets of a space X.

- 1. \mathcal{P} is said to be *point-finite* (resp., *point-countable*) at *A* [5], if the family $(\mathcal{P})_x$ is finite (resp., countable) for each $x \in A$.
- 2. \mathcal{P} is said to be *compact-finite* (resp., *compact-countable*) at *A*, if for each compact subset *K* in the subspace *A* of *X*, the family $(\mathcal{P})_K$ is finite (resp., countable).
- 3. \mathcal{P} is said to be *locally finite* (resp., *locally countable*) at A, if for each $x \in A$, there exists an open neighborhood V of x such that the family $(\mathcal{P})_V$ is finite (resp., countable).
- 4. \mathcal{P} is said to be *point-regular* at A [5], if for each $x \in A$ and $x \in U$ with U open in X, $\{P \in (\mathcal{P})_x : P \notin U\}$ is finite.

Definition 1.7. For a cover \mathcal{P} of a subset A of a space X. We say that \mathcal{P} has *property* σ -(P) at A, if \mathcal{P} can be expressed as $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$, where each \mathcal{P}_n has property (P) at A, and $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for each $n \in \mathbb{N}$.

Definition 1.8. ([5]) Let X be a space and $A \subset X$. A sequence $\{\mathcal{P}_n\}_{n \in \mathbb{N}}$ of families of subsets in X is called a *point-star network* at A for X, if $\{\operatorname{St}(x, \mathcal{P}_n)\}_{n \in \mathbb{N}}$ is a network at x in X for each $x \in A$.

Remark 1.9. ([5]) Point-star networks for a space are also called σ -strong networks.

For some undefined or related concepts, we refer the reader to [2, 5-8, 18].

4293

2. Main results

Let *X* be a space. We say that a sequence $\{A_n\}_{n \in \mathbb{N}}$ consisting of subsets of *X* converges to a subset $A \subset X$, if for each open set *U* in *X* with $A \subset U$, there exists $k \in \mathbb{N}$ such that $A_n \subset U$ for each n > k.

Notation 2.1. Let P_1, \ldots, P_s be subsets of a space X. Then, we denote

$$\langle P_1, \ldots, P_s \rangle_{\mathcal{F}(X)} = \langle P_1, \ldots, P_s \rangle \cap \mathcal{F}(X) \text{ and } \langle P_1, \ldots, P_s \rangle_{\mathbb{K}(X)} = \langle P_1, \ldots, P_s \rangle \cap \mathbb{K}(X)$$

where

$$\langle P_1, \dots, P_s \rangle = \{ A \in CL(X) : A \subset \bigcup_{i \le s} P_i, A \cap P_i \neq \emptyset \text{ for each } i \le s \}.$$

Lemma 2.2. ([18, Lemma 2.1]) Let X be a space and $\{F_m\}_{m \in \mathbb{N}}$ be a sequence of points of $\mathcal{F}(X)$. If $\{F_m\}_{m \in \mathbb{N}}$ converges to $F = \{x_1, \ldots, x_r\}$ in $\mathcal{F}(X)$ and $\{U_1, \ldots, U_r\}$ is a family of pairwise disjoint open subsets of X such that $x_j \in U_j$ for each $j \leq r$, then $\{F_m \cap U_j\}_{m \in \mathbb{N}}$ converges to $\{x_j\}$ in X for each $j \leq r$.

Lemma 2.3. ([16, Lemma 2.1]) Let $\langle U_1, \ldots, U_s \rangle$, $\langle V_1, \ldots, V_r \rangle \subset CL(X)$. If there exists $i_0 \leq s$ such that $U_{i_0} \cap (\bigcup_{j \leq r} V_j) = \emptyset$, then $\langle U_1, \ldots, U_s \rangle \cap \langle V_1, \ldots, V_r \rangle = \emptyset$.

Lemma 2.4. Let X be a space and $A \subset X$. If \mathcal{K} is compact in the subspace $\langle A \rangle_{\mathbb{K}(X)}$ of $\mathbb{K}(X)$, then $\bigcup \mathcal{K}$ is compact in the subspace A of X.

Proof. Let \mathcal{U} be an open cover of $\bigcup \mathcal{K}$ in the subspace A of X. Then, for each $U \in \mathcal{U}$, there exists an open subset V_U in X such that $U = V_U \cap A$. Take any $E \in \mathcal{K}$, we have that $E \subset \bigcup \mathcal{K} \subset \bigcup_{U \in \mathcal{U}} V_U$. Since E is a compact subset of X, there exists a finite subcover $\{V_{U_1}, \ldots, V_{U_{n(E)}}\}$ of E such that $E \cap V_{U_i} \neq \emptyset$ for each $i \leq n(E)$. Thus, $E \in \langle V_{U_1}, \ldots, V_{U_{n(E)}} \rangle_{\mathbb{K}(X)}$. Now, if we put

$$\mathfrak{U} = \left\{ \langle V_{U_1}, \dots, V_{U_{n(E)}} \rangle_{\mathbb{K}(X)} : E \in \mathcal{K} \right\}$$

then \mathfrak{U} is an open cover of \mathcal{K} in $\mathbb{K}(X)$. Hence, $\{\mathcal{H} \cap \langle A \rangle_{\mathbb{K}(X)} : \mathcal{H} \in \mathfrak{U}\}$ is an open cover of \mathcal{K} in the subspace $\langle A \rangle_{\mathbb{K}(X)}$ of $\mathbb{K}(X)$. Since \mathcal{K} is compact in the subspace $\langle A \rangle_{\mathbb{K}(X)}$ of $\mathbb{K}(X)$, there exists a finite subfamily \mathfrak{U}_0 of \mathfrak{U} such that $\mathcal{K} \subset \bigcup_{\mathcal{H} \in \mathfrak{U}_0} (\mathcal{H} \cap \langle A \rangle_{\mathbb{K}(X)})$. Put

$$\mathfrak{U}_0 = \{ O_{E_j} = \langle V_{U_{1(E_j)}}, \dots, V_{U_{n(E_j)}} \rangle_{\mathbb{K}(X)} : j \le m \},$$

$$\mathcal{V} = \{ U_{1(E_j)}, \dots, U_{n(E_j)} : j \le m \}.$$

Then, \mathcal{V} is a finite subfamily of \mathcal{U} . Moreover, $\bigcup \mathcal{K} \subset \bigcup \mathcal{V}$. Indeed, let $z \in \bigcup \mathcal{K}$. Then, there exists $E \in \mathcal{K}$ such that $z \in E$. Since $E \in \mathcal{K}$, there exists $j \leq m$ such that

$$E \in O_{E_j} \cap \langle A \rangle_{\mathbb{K}(X)} = \langle V_{U_{1(E_j)}}, \dots, V_{U_{n(E_j)}} \rangle_{\mathbb{K}(X)} \cap \langle A \rangle_{\mathbb{K}(X)}.$$

This implies that there exists $1 \le i \le n$ such that

$$z \in V_{U_{i(E_i)}} \cap A = U_{i(E_i)} \subset \bigcup \mathcal{V}.$$

Therefore, $\bigcup \mathcal{K}$ is compact in the subspace *A* of *X*. \Box

Lemma 2.5. Let X be a space, $A \subset X$ and $\{\mathcal{P}_n\}_{n \in \mathbb{N}}$ be a sequence of families of subsets in X. For each $n \in \mathbb{N}$, put

$$\mathfrak{P}_{n} = \{ \langle P_{1}^{(n)}, \dots, P_{s}^{(n)} \rangle_{\mathcal{F}(X)} : P_{1}^{(n)}, \dots, P_{s}^{(n)} \in \mathcal{P}_{n}, s \in \mathbb{N} \}.$$

- 1. If $\{\mathcal{P}_n\}_{n\in\mathbb{N}}$ is a point-star network at A for X, then $\{\mathfrak{P}_n\}_{n\in\mathbb{N}}$ is a point-star network at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.
- 2. For each $n \in \mathbb{N}$, if \mathcal{P}_n is an open cover (resp., an so-cover, a cs-cover, a cs^{*}-cover) at A for X, then \mathfrak{P}_n is an open cover (resp., an so-cover, a cs^{*}-cover) at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

Proof. We can assume that \mathcal{P}_{n+1} refines \mathcal{P}_n for each $n \in \mathbb{N}$. Let $F = \{x_1, \ldots, x_r\} \in \langle A \rangle_{\mathcal{F}(X)}$ and \mathcal{U} be an open neighborhood of F in $\mathcal{F}(X)$. Then, $F \subset A$ and there exist open subsets U_1, \ldots, U_s of X such that

$$F \in \langle U_1, \ldots, U_s \rangle_{\mathcal{F}(X)} \subset \mathcal{U}_s$$

Because *X* is Hausdorff, it follows from Notation 1.3 that we can find pairwise disjoint open subsets U_{x_1}, \ldots, U_{x_r} of *X* such that $x_j \in U_{x_j}$ for each $j \le r$ and

$$F \in \langle U_{x_1}, \ldots, U_{x_r} \rangle_{\mathcal{F}(X)} \subset \langle U_1, \ldots, U_s \rangle_{\mathcal{F}(X)} \subset \mathcal{U}.$$

(1) For each $j \leq r$, since $\{\mathcal{P}_n\}_{n \in \mathbb{N}}$ is a point-star network at A for X, $\{\operatorname{St}(x_j, \mathcal{P}_n)\}_{n \in \mathbb{N}}$ is a network at x_j in X for each $x_j \in A$. Thus, there exists $m_j \in \mathbb{N}$ such that $x_j \in \operatorname{St}(x_j, \mathcal{P}_n) \subset U_{x_j}$ whenever $n \geq m_j$. If we put $m = \max\{m_j : j \leq r\}$, then

$$F \in \langle \mathsf{St}(x_1, \mathcal{P}_n), \dots, \mathsf{St}(x_r, \mathcal{P}_n) \rangle_{\mathcal{F}(X)} \subset \langle U_{x_1}, \dots, U_{x_r} \rangle_{\mathcal{F}(X)}$$

for every $n \ge m$. Moreover, it is easy to see that

$$\mathsf{St}(F,\mathfrak{P}_n)\subset \langle \mathsf{St}(x_1,\mathcal{P}_n),\ldots,\mathsf{St}(x_r,\mathcal{P}_n)\rangle_{\mathcal{F}(X)}.$$

Hence, $F \in St(F, \mathfrak{P}_n) \subset \mathcal{U}$ for every $n \ge m$. Therefore, $\{St(F, \mathfrak{P}_n)\}_{n \in \mathbb{N}}$ is a network at F in $\mathcal{F}(X)$ for each $F \in \langle A \rangle_{\mathcal{F}(X)}$. This shows that $\{\mathfrak{P}_n\}_{n \in \mathbb{N}}$ is a point-star network at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

(2) *Case 1.* \mathcal{P}_n is an open cover (resp., *so*-cover) at *A* for *X*. Let $A \subset \bigcup \mathcal{P}_n$. Then, for each $j \leq r$, since $x_j \in A$, there exists $P_j^{(n)} \in \mathcal{P}_n$ such that $x_j \in P_j^{(n)}$. This implies that $F \in \langle P_1^{(n)}, \ldots, P_r^{(n)} \rangle_{\mathcal{F}(X)}$. Thus, $\langle A \rangle_{\mathcal{F}(X)} \subset \bigcup \mathfrak{P}_n$. If each element of \mathcal{P}_n is open in *X*, then it is obvious that each element of \mathfrak{P}_n is open in $\mathcal{F}(X)$. Therefore,

If each element of \mathcal{P}_n is open in X, then it is obvious that each element of \mathfrak{P}_n is open in $\mathcal{F}(X)$. Therefore, \mathfrak{P}_n is an open cover at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

If each element of \mathcal{P}_n is a sequentially open set in X, then each element of \mathfrak{P}_n is a sequentially open set in $\mathcal{F}(X)$. Indeed, take any $\mathcal{W} = \langle P_1^{(n)}, \dots, P_s^{(n)} \rangle_{\mathcal{F}(X)} \in \mathfrak{P}_n$, we only need to prove that \mathcal{W} is a sequentially open set in $\mathcal{F}(X)$. Assume that $B = \{y_1, \dots, y_m\} \in \mathcal{W}$ and the sequence $\{B_k\}_{k \in \mathbb{N}}$ converges to B in $\mathcal{F}(X)$.

Claim. There exists $N \in \mathbb{N}$ such that $B_k \subset \bigcup_{i \leq s} P_i^{(n)}$ for each k > N.

Otherwise, then there exists a subsequence $\{B_{k_l}\}_{l \in \mathbb{N}}$ such that $B_{k_l} \not\subset \bigcup_{i \leq s} P_i^{(n)}$ for each $l \in \mathbb{N}$ and $\{k_l\}_{l \in \mathbb{N}}$ is strictly increasing. For each $l \in \mathbb{N}$, take $z_l \in B_{k_l} \setminus \bigcup_{i \leq s} P_i^{(n)}$. Since the sequence $\{B_k\}_{k \in \mathbb{N}}$ converges to B in $\mathcal{F}(X)$, it is obvious that $\{B\} \cup \{B_k : k \in \mathbb{N}\}$ is a compact subset in $\mathcal{F}(X) = \langle X \rangle_{\mathcal{F}(X)}$. This implies that $\{B\} \cup \{B_k : k \in \mathbb{N}\}$ is a compact subset in $\mathcal{F}(X) = \langle X \rangle_{\mathcal{F}(X)}$. This implies that $\{B\} \cup \{B_k : k \in \mathbb{N}\}$ is a compact subset in \mathcal{X} . Moreover, since $B \cup \bigcup_{k \in \mathbb{N}} B_k$ is countable, $B \cup \bigcup_{k \in \mathbb{N}} B_k$ has a countable network. This implies that $B \cup \bigcup_{k \in \mathbb{N}} B_k$ is metrizable since a Hausdorff compact space (i.e., compactum) with a countable network is metrizable [1]. Thus, $B \cup \bigcup_{k \in \mathbb{N}} B_k$ is a compact metrizable subspace of X. Therefore, $\{z_l\}_{l \in \mathbb{N}}$ must have a subsequence $\{z_{l_p}\}_{p \in \mathbb{N}}$ converges to z. Then, $z_{l_p} \in B_{k_{l_p}}$ for each $p \in \mathbb{N}$. Now, we prove that $z \in B$. If not, since X is Hausdorff, there exist an open neighborhood U of z and an open neighborhood V of B in X such that $U \cap V = \emptyset$. Because the sequence $\{B_k\}_{k \in \mathbb{N}}$ converges to B in $\mathcal{F}(X)$, there exist $p_0, p_1 \in \mathbb{N}$ such that $z_{l_p} \in U$ for each $p > p_0$ and $B_{k_{l_p}} \subset V$ for each $p > p_1$. If we put $p_2 = \max\{p_0, p_1\}$, then $z_{l_p} \in U$ and $z_{l_p} \in B_{k_{l_p}} \subset V$ for each $p > p_2$. This implies that $U \cap V \neq \emptyset$, which is a contradiction. Since $z \in B$, there exist $q \leq m$ and $i \leq s$ such that $z = y_q \in P_i^{(n)}$. Since $P_i^{(n)}$ is a sequentially open set in X, there exists $N \in \mathbb{N}$ such that $z_{l_p} \in P_i^{(n)}$ for each p > N. This is a contradiction.

By Claim, without loss of generality, we may assume that $B_k \subset \bigcup_{i \leq s} P_i^{(n)}$ for each $k \in \mathbb{N}$. Next, we prove that there exists $p \in \mathbb{N}$ such that $B_k \in \mathcal{W}$ for each k > p. Suppose not, there exist a subsequence $\{B_{k_l}\}_{l \in \mathbb{N}}$ and $i \leq s$ such that $B_{k_l} \notin \mathcal{W}$ and $B_{k_l} \cap P_i^{(n)} = \emptyset$ for each $l \in \mathbb{N}$. Moreover, since $B \in \mathcal{W}$, there exists $t \leq m$ such that $y_t \in P_i^{(n)}$. Since the sequence $\{B_k\}_{k \in \mathbb{N}}$ converges to B in $\mathcal{F}(X)$, the subsequence $\{B_{k_l}\}_{l \in \mathbb{N}}$ converges to B in $\mathcal{F}(X)$. Let O be an open neighborhood of B in $\mathcal{F}(X)$. Similar to the above proof, there exist pairwise disjoint open subsets U_{y_1}, \ldots, U_{y_m} of X such that $y_t \in U_{y_t}$ for each $t \leq m$, and

$$B \in \langle U_{y_1}, \ldots, U_{y_m} \rangle_{\mathcal{F}(X)} \subset O.$$

By Lemma 2.2, the sequence $\{B_{k_l} \cap U_{y_l}\}_{l \in \mathbb{N}}$ converges to $\{y_t\}$ in *X*. Moreover, since $P_i^{(n)}$ is a sequentially open set in *X* and $y_t \in P_i^{(n)}$, there exists $N \in \mathbb{N}$ such that $B_{k_l} \cap U_{y_t} \subset P_i^{(n)}$ for each l > N, which is a contradiction. Hence, *W* is a sequentially open set in $\mathcal{F}(X)$. This implies that \mathfrak{P}_n is an *so*-cover at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

Case 2. \mathcal{P}_n is a *cs*-cover (resp., *cs*^{*}-cover) at *A* for *X*. Let $\{F_m\}_{m \in \mathbb{N}}$ be a sequence converging to *F* in $\mathcal{F}(X)$. Then, for each $j \leq r$, the sequence $\{F_m \cap U_{x_j}\}_{m \in \mathbb{N}}$ converges to $\{x_j\}$ in *X* by Lemma 2.2.

If \mathcal{P}_n is a *cs*-cover at *A* for *X*, then there exist $P_i^{(n)} \in \mathcal{P}_n$ and $k_j \in \mathbb{N}$ such that

$$\{x_j\} \cup \left(\bigcup \{F_m \cap U_j : m \ge k_j\} \right) \subset P_j^{(n)}.$$

If we put $k = \max\{k_j : j \le r\}$, then $\langle P_1^{(n)}, \dots, P_r^{(n)} \rangle_{\mathcal{F}(X)} \in \mathfrak{P}_n$ and

$$\{F\} \cup \{F_m : m > k\} \subset \langle P_1^{(n)}, \dots, P_r^{(n)} \rangle_{\mathcal{F}(X)}.$$

This shows that \mathfrak{P}_n is a *cs*-cover at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

If \mathcal{P}_n is a cs^* -cover at A for X, by induction on r, then there exist $P_j^{(n)} \in \mathcal{P}_n$ and a subsequence $\{m_k\}_{k \in \mathbb{N}}$ of \mathbb{N} such that

$$\{x_j\} \cup \left(\bigcup \{F_{m_k} \cap U_j : k \in \mathbb{N}\} \right) \subset P_j^{(n)}$$

This implies that $\langle P_1^{(n)}, \ldots, P_r^{(n)} \rangle_{\mathcal{F}(X)} \in \mathfrak{P}_n$ and

$$\{F\} \cup \{F_{m_k} : k \in \mathbb{N}\} \subset \langle P_1^{(n)}, \dots, P_r^{(n)} \rangle_{\mathcal{F}(X)}$$

Therefore, \mathfrak{P}_n is a *cs*^{*}-cover at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$. \Box

Let \mathcal{P} be a family of subsets of a space *X*. If we put

$$\mathfrak{P} = \{ \langle P_1, \dots, P_s \rangle_{\mathcal{F}(X)} : P_1, \dots, P_s \in \mathcal{P}, s \in \mathbb{N} \},\$$

then observe that \mathfrak{P} is a family of subsets of $\mathcal{F}(X)$.

Lemma 2.6. Let X be a space and $A \subset X$. If \mathcal{P} has property (P) at A for X, then \mathfrak{P} has property (P) at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

Proof. Let $F = \{x_1, \ldots, x_r\} \in \langle A \rangle_{\mathcal{F}(X)}$. Then, $F \subset A$.

Case 1. (*P*) is point-finite (resp., point-countable). Then, for each $j \leq r$, since \mathcal{P} is point-finite (resp., point-countable) at *A* for *X*, $\mathcal{P}_j = \{P \in \mathcal{P} : x_j \in P\}$ is finite (resp., countable). If we put $\mathcal{P}_0 = \bigcup_{j \leq r} \mathcal{P}_j$, then \mathcal{P}_0 is finite (resp., countable). Therefore, to prove that \mathfrak{P} is point-finite (resp., point-countable) at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$, we only need to show that

$$\{\mathcal{W}\in\mathfrak{P}:F\in\mathcal{W}\}\subset\{\langle P_1,\ldots,P_s\rangle_{\mathcal{F}(X)}:P_1,\ldots,P_s\in\mathcal{P}_0,s\in\mathbb{N}\}.$$

In fact, take any $\langle E_1, \ldots, E_k \rangle_{\mathcal{F}(X)} \notin \{ \langle P_1, \ldots, P_s \rangle_{\mathcal{F}(X)} : P_1, \ldots, P_s \in \mathcal{P}_0, s \in \mathbb{N} \}$ with $k \in \mathbb{N}$. Then, $E_{i_0} \notin \mathcal{P}_0$ for some $i_0 \leq k$. This implies that $x_j \notin E_{i_0}$ for every $j \leq r$. Thus, $F \notin \langle E_1, \ldots, E_k \rangle_{\mathcal{F}(X)}$. Hence, $\langle E_1, \ldots, E_k \rangle_{\mathcal{F}(X)} \notin \{\mathcal{W} \in \mathfrak{P} : F \in \mathcal{W}\}$.

Case 2. (*P*) is compact-finite (resp., compact-countable). Let \mathcal{K} be compact in the subspace $\langle A \rangle_{\mathcal{F}(X)}$ of $\mathcal{F}(X)$. Then, \mathcal{K} is compact in the subspace $\langle A \rangle_{\mathbb{K}(X)}$ of $\mathbb{K}(X)$. It follows from Lemma 2.4 that $K = \bigcup \mathcal{K}$ is compact in the subspace A of X. Moreover, since $\mathcal{K} \subset \langle K \rangle_{\mathcal{F}(X)}$, we claim that

$$\{\mathcal{W}\in\mathfrak{P}:\mathcal{W}\cap\mathcal{K}\neq\emptyset\}\subset\{\mathcal{W}\in\mathfrak{P}:\mathcal{W}\cap\langle K\rangle_{\mathcal{F}(X)}\neq\emptyset\}.$$

Since \mathcal{P} is compact-finite (resp., compact-countable) at A for X, $\mathcal{P}_0 = \{P \in \mathcal{P} : P \cap K \neq \emptyset\}$ is finite (resp., countable). On the other hand,

$$\{\mathcal{W}\in\mathfrak{P}:\mathcal{W}\cap\langle K\rangle_{\mathcal{F}(X)}\neq\emptyset\}\subset\{\langle P_1,\ldots,P_s\rangle_{\mathcal{F}(X)}:P_1,\ldots,P_s\in\mathcal{P}_0,\ s\in\mathbb{N}\}.$$

In fact, let $k \in \mathbb{N}$ and $\langle E_1, \ldots, E_k \rangle_{\mathcal{F}(X)} \notin \{\langle P_1, \ldots, P_s \rangle_{\mathcal{F}(X)} : P_1, \ldots, P_s \in \mathcal{P}_0, s \in \mathbb{N}\}$. Then, there exists $i_0 \leq k$ such that $E_{i_0} \notin \mathcal{P}_0$. This implies that $E_{i_0} \cap K = \emptyset$. By Lemma 2.3, $\langle E_1, \ldots, E_k \rangle_{\mathcal{F}(X)} \cap \langle K \rangle_{\mathcal{F}(X)} = \emptyset$. Thus, $\langle E_1, \ldots, E_k \rangle_{\mathcal{F}(X)} \notin \{\mathcal{W} \in \mathfrak{P} : \mathcal{W} \cap \langle K \rangle_{\mathcal{F}(X)} \neq \emptyset\}$.

Hence, $\{W \in \mathfrak{P} : W \cap \mathcal{K} \neq \emptyset\}$ is finite (resp., countable). This shows that \mathfrak{P} is compact-finite (resp., compact-countable) at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

Case 3. (*P*) is locally finite (resp., locally countable). Then, for each $i \le r$, there exists an open neighborhood W_i of x_i such that $(\mathcal{P})_{W_i}$ is finite (resp., countable). If we put

$$V_i = W_i \setminus \{x_j : j \le r, j \ne i\},\$$

then V_i is open in X for every $i \leq r$, and $\langle V_1, \ldots, V_r \rangle_{\mathcal{F}(X)}$ is an open neighborhood of F in $\mathcal{F}(X)$. On the other hand, $\{\mathcal{W} \in \mathfrak{P} : \mathcal{W} \cap \langle V_1, \ldots, V_r \rangle_{\mathcal{F}(X)} \neq \emptyset\}$ is finite (resp., countable). In fact, for each $i \leq r$, since \mathcal{P} is locally finite (resp., locally countable) at A in X, $\mathcal{P}_i = \{P \in \mathcal{P} : P \cap V_i \neq \emptyset\}$ is finite (resp., countable). If we put $\mathcal{P}_0 = \bigcup_{i \leq r} \mathcal{P}_i$, then \mathcal{P}_0 is finite (resp., countable). Now, take any $\langle E_1, \ldots, E_k \rangle_{\mathcal{F}(X)} \notin$ $\{\langle P_1, \ldots, P_s \rangle_{\mathcal{F}(X)} : P_1, \ldots, P_s \in \mathcal{P}_0, s \in \mathbb{N}\}$ with $k \in \mathbb{N}$. Then, there exists $i_0 \leq k$ such that $E_{i_0} \notin \mathcal{P}_0$. Thus, $E_{i_0} \cap V_i = \emptyset$ for every $i \leq r$. It follows from Lemma 2.3 that $\langle E_1, \ldots, E_k \rangle_{\mathcal{F}(X)} \cap \langle V_1, \ldots, V_r \rangle_{\mathcal{F}(X)} = \emptyset$. Hence, $\langle E_1, \ldots, E_k \rangle_{\mathcal{F}(X)} \notin \{W \in \mathfrak{P} : \mathcal{W} \cap \langle V_1, \ldots, V_r \rangle_{\mathcal{F}(X)} \neq \emptyset\}$. This implies that

$$\{\mathcal{W}\in\mathfrak{P}:\mathcal{W}\cap\langle V_1,\ldots,V_r\rangle_{\mathcal{F}(X)}\neq\emptyset\}\subset\{\langle P_1,\ldots,P_s\rangle_{\mathcal{F}(X)}:P_1,\ldots,P_s\in\mathcal{P}_0,\ s\in\mathbb{N}\}$$

Therefore, we claim that $\{W \in \mathfrak{P} : W \cap \langle V_1, \dots, V_r \rangle_{\mathcal{F}(X)} \neq \emptyset\}$ is finite (resp., countable). Hence, \mathfrak{P} is locally finite (resp., locally countable) at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$. \Box

Theorem 2.7. *Let* X *be a space and* $A \subset X$ *.*

- 1. X has a sequence of open covers (resp., so-covers, cs-covers, cs^{*}-covers) at A which is a point-star network at A for X if and only if $\mathcal{F}(X)$ has a sequence of open covers (resp., so-covers, cs-covers, cs^{*}-covers) at $\langle A \rangle_{\mathcal{F}(X)}$ which is a point-star network at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.
- 2. X has a sequence of open covers (resp., so-covers, cs-covers, cs*-covers) with property (P) at A which is a point-star network at A for X if and only if $\mathcal{F}(X)$ has a sequence of open covers (resp., so-covers, cs*-covers) with property (P) at $\langle A \rangle_{\mathcal{F}(X)}$ which is a point-star network at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

Proof. Necessity. By Lemmas 2.5 and 2.6.

Sufficiency. Assume that $\{\mathfrak{P}_n\}_{n\in\mathbb{N}}$ is a sequence of open covers (resp., *so*-covers, *cs*-covers, *cs*^{*}-covers) at $\langle A \rangle_{\mathcal{F}(X)}$, and a point-star network at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$. For each $n \in \mathbb{N}$, we put

$$\mathfrak{Q}_n = \{ \mathcal{W} \cap \mathcal{F}_1(X) : \mathcal{W} \in \mathfrak{P}_n \}.$$

Then, $\{\mathfrak{Q}_n\}_{n\in\mathbb{N}}$ is a sequence of open covers (resp., *so*-covers, *cs*-covers, *cs*^{*}-covers) at $\langle A \rangle_{\mathcal{F}_1(X)} = \langle A \rangle \cap \mathcal{F}_1(X)$, and a point-star network at $\langle A \rangle_{\mathcal{F}_1(X)} = \langle A \rangle \cap \mathcal{F}_1(X)$ for $\mathcal{F}_1(X)$. On the other hand, for each $n \in \mathbb{N}$, if \mathfrak{P}_n has property (*P*) at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$, then \mathfrak{Q}_n has property (*P*) at $\langle A \rangle_{\mathcal{F}_1(X)} = \langle A \rangle \cap \mathcal{F}_1(X)$ for $\mathcal{F}_1(X)$. By Remark 1.1, the proof of sufficiency is completed. \Box

In Theorem 2.7, if (*P*) is point-finite, then by [5, Theorems 3.3, 3.4] and [6, Theorem 3.4], we obtain the following corollary.

Corollary 2.8. Let X be a space and $A \subset X$. Then, X has a point-regular external base (resp., so-network, sn-network, cs-network) at A for X if and only if $\mathcal{F}(X)$ has a point-regular external base (resp., so-network, sn-network, cs-network, cs^{*}-network) at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

By Corollary 2.8, [6, Theorems 3.4, 3.10] and [8, Theorem 5.3], we obtain the following corollary.

Corollary 2.9. Let X be a space and $A \subset X$. Then, X is the image of a metric space under an almost-open (resp., a strictly countably bi-quotient, a sequence-covering, a 1-sequence-covering, sequentially quotient) and compact mapping at A for X if and only if $\mathcal{F}(X)$ is the image of a metric space under an almost-open (resp., a strictly countably bi-quotient, a sequence-covering, sequentially quotient) and compact mapping at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

Lemma 2.10. Let X be a space and $A \subset X$. Then, \mathcal{P} is an external base (resp., an so-network, an sn-network, a cs-network, a cs^{*}-network, a ch-network) at A for X, then \mathfrak{P} is an external base (resp., an so-network, an sn-network, a cs^{*}-network, a cs^{*}-network, a ch-network, a ck-network) at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

Proof. Suppose that $F = \{x_1, ..., x_r\} \in \langle A \rangle_{\mathcal{F}(X)}$ and \mathcal{U} is an open neighborhood of F in $\mathcal{F}(X)$. Then, $F \subset A$ and by the proof of Lemma 2.5, there exist pairwise disjoint open subsets $U_{x_1}, ..., U_{x_r}$ of X such that $x_j \in U_{x_j}$ for each $j \leq r$, and

$$F \in \langle U_{x_1}, \ldots, U_{x_r} \rangle_{\mathcal{F}(X)} \subset \mathcal{U}.$$

Case 1. Assume that $\mathcal{P} = \bigcup_{x \in A} \mathcal{P}_x$ is an external base (resp., *so*-network, *sn*-network) at *A* for *X*, where each \mathcal{P}_x is a local base (resp., an *sn*-network consisting of sequentially open sets, an *sn*-network) at *x* in *X* for each $x \in A$. Put

$$\mathfrak{P}_F = \{ \langle P_{x_1}, \ldots, P_{x_r} \rangle_{\mathcal{F}(X)} : P_{x_j} \in \mathcal{P}_{x_j}, P_{x_i} \cap P_{x_j} \neq \emptyset, i \neq j, i, j \leq r \}.$$

If P_x is a local base at x in X for each $x \in A$, then it is easy to check that \mathfrak{P}_F is a local base at F in $\mathcal{F}(X)$.

If \mathcal{P}_x is an *sn*-network (resp., an *sn*-network consisting of sequentially open sets) at x in X for each $x \in A$, then it is obvious that \mathfrak{P}_F is a network at F in $\mathcal{F}(X)$ and if $\mathcal{W}_1, \mathcal{W}_2 \in \mathfrak{P}_F$, then $\mathcal{W} \subset \mathcal{W}_1 \cap \mathcal{W}_2$ for some $\mathcal{W} \in \mathfrak{P}_F$. Now, take any $\mathcal{W} \in \mathfrak{P}_F$. Then, $\mathcal{W} = \langle P_{x_1}, \ldots, P_{x_r} \rangle_{\mathcal{F}(X)}$, where each $P_{x_j} \in \mathcal{P}_{x_j}$ and $P_{x_i} \cap P_{x_j} \neq \emptyset$ if $i \neq j$.

If each element of \mathcal{P}_x is a sequentially open set in X, then by the proof of Case 1 of Lemma 2.5(2), we claim that \mathcal{W} is a sequentially open set in $\mathcal{F}(X)$. This implies that each element of \mathfrak{P}_F is a sequentially open set in $\mathcal{F}(X)$.

If each element of \mathcal{P}_x is a sequential neighborhood of x in X, then \mathcal{W} is a sequential neighborhood of F in $\mathcal{F}(X)$. In fact, let $\{F_n\}_{n \in \mathbb{N}}$ be a sequence converging to F in $\mathcal{F}(X)$. By the proof of Case 1 of Lemma 2.5(2), we claim that there exists $m \in \mathbb{N}$ such that $F_n \in \mathcal{W}$ for each n > m. This shows that \mathcal{W} is a sequential neighborhood of F in $\mathcal{F}(X)$. Therefore, each element of \mathfrak{P}_F is a sequential neighborhood of F in $\mathcal{F}(X)$.

Finally, since $\mathfrak{P} = \bigcup_{F \in \langle A \rangle_{\mathcal{F}(X)}} \mathfrak{P}_F$, \mathfrak{P} is an external base (resp., *so*-network, *sn*-network) at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$. *Case 2.* \mathcal{P} is a *cs*-network (resp., *cs*^{*}-network) at *A* for *X*. Suppose that $\{F_m\}_{m \in \mathbb{N}}$ is a sequence converging to *F* in $\mathcal{F}(X)$. For each $j \leq r$, it follows from Lemma 2.2 that the sequence $\{F_m \cap U_{x_j}\}_{m \in \mathbb{N}}$ converges to $\{x_j\}$ in *X*.

If \mathcal{P} is a *cs*-network at *A* for *X*, then there exist $P_i \in \mathcal{P}$ and $k_i \in \mathbb{N}$ such that

$$\{x_j\} \cup \left(\bigcup \{F_m \cap U_{x_j} : m \ge k_j\} \right) \subset P_j \subset U_{x_j}.$$

Put $k = \max\{k_j : j \le r\}$. Then, $\langle P_1, \ldots, P_r \rangle_{\mathcal{F}(X)} \in \mathfrak{P}$ and

$$\{F\} \cup \{F_m : m > k\} \subset \langle P_1, \dots, P_r \rangle_{\mathcal{F}(X)} \subset \langle U_{x_1}, \dots, U_{x_r} \rangle_{\mathcal{F}(X)} \subset \mathcal{U}.$$

Therefore, \mathfrak{P} is a *cs*-network at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

If \mathcal{P} is a *cs*^{*}-network at *A* for *X*, by induction on *r*, then there exist $P_j \in \mathcal{P}$ and a subsequence $\{m_k\}_{k \in \mathbb{N}}$ of \mathbb{N} such that

$$\{x_j\} \cup \left(\bigcup \{F_{m_k} \cap U_{x_j} : k \in \mathbb{N}\} \right) \subset P_j \subset U_{x_j}.$$

This implies that $\langle P_1, \ldots, P_r \rangle_{\mathcal{F}(X)} \in \mathfrak{P}$ and

$$\{F\} \cup \{F_{m_k} : k \in \mathbb{N}\} \subset \langle P_1, \dots, P_r \rangle_{\mathcal{F}(X)} \subset \langle U_{x_1}, \dots, U_{x_r} \rangle_{\mathcal{F}(X)} \subset \mathcal{U}.$$

Hence, \mathfrak{P} is a *cs*^{*}-network at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

Case 3. \mathcal{P} is a *cn*-network at *A* for *X*. For each $j \leq r$, if we put $\mathcal{P}_j = \{P \in \mathcal{P} : x_j \in P \subset U_{x_j}\}$, then $\bigcup \mathcal{P}_j$ is a neighborhood of x_j in *X* for each $j \leq r$. This implies that for each $j \leq r$, there exists an open subset V_j in *X* such that $x_j \in V_j \subset \bigcup \mathcal{P}_j$. Moreover, if we put $\mathcal{R} = \bigcup_{j \leq r} \mathcal{P}_j$, then

$$F \in \langle V_1, \dots, V_r \rangle_{\mathcal{F}(X)} \subset \left\langle \bigcup \mathcal{P}_1, \dots, \bigcup \mathcal{P}_r \right\rangle_{\mathcal{F}(X)}$$
$$\subset \bigcup \{ \langle P_1, \dots, P_s \rangle_{\mathcal{F}(X)} : F \in \langle P_1, \dots, P_s \rangle_{\mathcal{F}(X)}, P_1, \dots, P_s \in \mathcal{R}, s \in \mathbb{N} \}$$
$$\subset \bigcup \{ \mathcal{W} \in \mathfrak{P} : F \in \mathcal{W} \subset \mathcal{U} \}.$$

On the other hand, since $\langle V_1, \ldots, V_r \rangle_{\mathcal{F}(X)}$ is open in $\mathcal{F}(X)$, we claim that $\bigcup \{ \mathcal{W} \in \mathfrak{P} : F \in \mathcal{W} \subset \mathcal{U} \}$ is a neighborhood of *F* in $\mathcal{F}(X)$. This shows that \mathfrak{P} is a *cn*-network at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

Case 4. \mathcal{P} is a *ck*-network at *A* for *X*. For each $j \leq r$, there is a neighborhood V_{x_j} of x_j in *X* such that $V_{x_j} \subset U_{x_j}$ and for each compact subset $A_j \subset V_{x_j}$, there exists a finite subfamily \mathcal{A}_j of \mathcal{P} satisfying $x_j \in \bigcap \mathcal{A}_j$ and $A_j \subset \bigcup \mathcal{A}_j \subset U_{x_j}$. Next, for each $j \leq r$, since *X* is regular, there exists an open subset W_{x_j} in *X* such that $x_j \in W_{x_j} \subset \overline{W}_{x_j} \subset V_{x_j}$. Now, if we put $\mathcal{V}_F = \langle W_{x_1}, \ldots, W_{x_r} \rangle_{\mathcal{F}(X)}$, then for each compact subset $\mathcal{K} \subset \mathcal{V}_F$, $\bigcup \mathcal{K} \subset \bigcup_{j \leq r} \overline{W}_{x_j}$. Since \mathcal{K} is compact in $\mathcal{F}(X)$, \mathcal{K} is compact in $\langle X \rangle_{\mathbb{K}(X)} = \mathbb{K}(X)$. It follow from Lemma 2.4 that $\bigcup \mathcal{K}$ is compact in *X*. Hence, we claim that $K_j = (\bigcup \mathcal{K}) \cap \overline{W}_{x_j}$ is compact in *X* and $K_j \subset V_{x_j}$. Thus, there exists a finite subfamily $\mathcal{F}_j \subset \mathcal{P}$ such that $x_j \in \bigcap \mathcal{F}_j$ and $K_j \subset \bigcup \mathcal{F}_j \subset U_{x_j}$. Lastly, if we put $\mathcal{R} = \bigcup_{j \leq r} \mathcal{F}_j$ and

$$\mathcal{F} = \{ \langle P_1, \dots, P_s \rangle_{\mathcal{F}(X)} : F \in \langle P_1, \dots, P_s \rangle_{\mathcal{F}(X)}, P_1, \dots, P_s \in \mathcal{R}, s \in \mathbb{N} \},\$$

then \mathcal{F} is finite, $F \in \bigcap \mathcal{F}$ and $\bigcup \mathcal{F} \subset \langle U_{x_1}, \dots, U_{x_r} \rangle_{\mathcal{F}(X)}$. Furthermore, $\mathcal{K} \subset \bigcup \mathcal{F}$. In fact, take any $\{y_1, \dots, y_p\} \in \mathcal{K}$. Then, $\{y_1, \dots, y_p\} \subset \bigcup \mathcal{K}$. For each $k \leq p$, since $\bigcup \mathcal{K} = \bigcup_{j \leq r} K_j$, there exists $j_0 \leq r$ such that $y_k \in K_{j_0} \subset \bigcup \mathcal{F}_{j_0}$. This implies that $\{y_1, \dots, y_p\} \in \bigcup \mathcal{F}$. Thus, $\mathcal{K} \subset \bigcup \mathcal{F} \subset \langle U_{x_1}, \dots, U_{x_r} \rangle_{\mathcal{F}(X)}$. Therefore, \mathfrak{P} is a *ck*-network at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$. \Box

Theorem 2.11. Let X be a space and $A \subset X$. Then, X has an external base (resp., an so-network, an sn-network, a cs-network, a cs-network, a cs-network) with property σ -(P) at A for X if and only if $\mathcal{F}(X)$ has an external base (resp., an so-network, an sn-network, a cs-network, a cs'-network, a cn-network, a ck-network) with property σ -(P) at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

Proof. Necessity. Assume that $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ is an external base (resp., an *so*-network, an *sn*-network, a *cs*-network, a *cs*^{*}-network, a *ck*-network) at *A* for *X*, where each \mathcal{P}_n has property (*P*) at *A* for *X* and $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for each $n \in \mathbb{N}$. It follows from Lemma 2.6 that

$$\mathfrak{P}_n = \{ \langle P_1, \dots, P_s \rangle_{\mathcal{F}(X)} : P_1, \dots, P_s \in \mathcal{P}_n, \ s \in \mathbb{N} \}$$

has property (*P*) at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$, and $\mathfrak{P}_n \subset \mathfrak{P}_{n+1}$ for each $n \in \mathbb{N}$. If we put $\mathfrak{P} = \bigcup_{n \in \mathbb{N}} \mathfrak{P}_n$ then it is easy to see that

$$\mathfrak{P} \subset \{ \langle P_1, \ldots, P_s \rangle_{\mathcal{F}(X)} : P_1, \ldots, P_s \in \mathcal{P}, s \in \mathbb{N} \}.$$

Now, let $\mathcal{W} \in \{\langle P_1, \ldots, P_s \rangle_{\mathcal{F}(X)} : P_1, \ldots, P_s \in \mathcal{P}, s \in \mathbb{N}\}$. Then, there exist $P_1, \ldots, P_s \in \mathcal{P}$ such that $\mathcal{W} = \langle P_1, \ldots, P_s \rangle_{\mathcal{F}(X)}$. Since $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$, there exists $n_i \in \mathbb{N}$ such that $P_i \in \mathcal{P}_{n_i}$ for each $i \leq s$. If we put $m = \max\{n_i : i \leq s\}$, then $P_1, \ldots, P_s \in \mathcal{P}_m$ and $m \in \mathbb{N}$. This implies that $\mathcal{W} \in \mathfrak{P}_m \subset \mathfrak{P}$. Thus, we claim that

$$\mathfrak{P} = \{ \langle P_1, \ldots, P_s \rangle_{\mathcal{F}(X)} : P_1, \ldots, P_s \in \mathcal{P}, s \in \mathbb{N} \}.$$

It follows from Lemma 2.10 that \mathfrak{P} is an external base (resp., an *so*-network, an *sn*-network, a *cs*-network, a *cs*-network, a *cs*-network) at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

Sufficiency. Let $\mathfrak{P} = \bigcup_{n \in \mathbb{N}} \mathfrak{P}_n$ be an external base (resp., an *so*-network, an *sn*-network, a *cs*-network, a *cs*-network, a *cs*-network, a *cs*-network) with property σ -(*P*) at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$. For each $n \in \mathbb{N}$, we put

$$\mathfrak{Q}_n = \{ \mathcal{W} \cap \mathcal{F}_1(X) : \mathcal{W} \in \mathfrak{P}_n \}.$$

Then, $\mathfrak{Q} = \bigcup_{n \in \mathbb{N}} \mathfrak{Q}_n$ is an external base (resp., an *so*-network, an *sn*-network, a *cs*-network, a *cs*^{*}-network, a *cn*-network, a *ck*-network) with property σ -(*P*) at $\langle A \rangle_{\mathcal{F}_1(X)} = \langle A \rangle \cap \mathcal{F}_1(X)$ for $\mathcal{F}_1(X)$. Thus, *X* has an external base (resp., an *so*-network, an *sn*-network, a *cs*-network, a *cs*^{*}-network, a *cn*-network, a *ck*-network) with property σ -(*P*) at *A* for *X* by Remark 1.1. \Box

In Theorem 2.11, if (*P*) is point-countable, then we obtain the following corollary.

Corollary 2.12. Let X be a space and $A \subset X$. Then, X has a point-countable external base (resp., so-network, sn-network, cs-network, cs-network, ck-network) at A for X if and only if $\mathcal{F}(X)$ has a point-countable external base (resp., so-network, sn-network, cs-network, cs'-network, cn-network, ck-network) at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

By Corollary 2.12, [6, Theorem 4.6] and [8, Theorems 3.2, 3.6, 3.9], we obtain the following corollary.

Corollary 2.13. Let X be a space and $A \subset X$. Then, X is the image of a metric space under an open (resp., a strictly countably bi-quotient, a pseudo-sequence-covering, a sequentially quotient, a sequence-covering, a 1-sequence-covering) and s-mapping at A for X if and only if $\mathcal{F}(X)$ is the image of a metric space under an open (resp., a strictly countably bi-quotient, a pseudo-sequence-covering, a sequentially quotient, a sequence-covering, a 1-sequence-covering) and s-mapping at $\langle A \rangle_{\mathcal{F}(X)}$ for $\mathcal{F}(X)$.

In Theorems 2.7, 2.11 and Corollaries 2.8, 2.12, if A = X, then $\langle A \rangle_{\mathcal{F}(X)} = \mathcal{F}(X)$, we obtain the following corollary.

Corollary 2.14. *Let X be a space.*

- 1. X has a sequence of open covers (resp., so-covers, cs-covers, cs*-covers) which is a point-star network for X if and only if so does $\mathcal{F}(X)$;
- 2. X has a sequence of open covers (resp., so-covers, cs-covers, cs^{*}-covers) with property (P) which is a point-star network for X if and only if so does $\mathcal{F}(X)$;
- 3. X has a point-regular base (resp., so-network, sn-network, cs-network, cs*-network) if and only if so does $\mathcal{F}(X)$;
- 4. X has a base (resp., an so-network, an sn-network, a cs-network, a cs^{*}-network, a cn-network, a ck-network) with property σ -(P) if and only if so does $\mathcal{F}(X)$;
- 5. X has a point-countable base (resp., so-network, sn-network, cs-network, cs*-network, cn-network, ck-network) if and only if so does $\mathcal{F}(X)$.

In Corollary 2.14(2), if (*P*) is locally finite, then we get the following corollary.

Corollary 2.15. Let X be a space. Then, X is so-metrizable (resp., strict σ -space, strict \aleph -space) if and only if so does $\mathcal{F}(X)$.

Remark 2.16. By Corollary 2.14 and Remark 1.9, we get back the following known results in [4, Theorem 4.7], [14, Theorems 37, 41], [18, Theorem 2.6] and [18, Corollaries 2.7, 2.8].

- 1. *X* has a σ -strong network consisting of cs^* -covers (*cs*-covers) if and only if so does $\mathcal{F}(X)$;
- 2. X has a σ -(*P*)-strong network consisting of *cs*^{*}-covers (*cs*-covers) if and only if so does $\mathcal{F}(X)$;
- 3. X has a point-regular base (resp., *sn*-network, *cs*-network, *cs**-network) if and only if so does $\mathcal{F}(X)$;
- 4. *X* has a point-countable base (resp., *cs*-network) if and only if so does $\mathcal{F}(X)$;
- 5. X is an *sn*-metrizable space (resp., an *sn*-developable space, a strongly *sn*-developable space) if and only if so is $\mathcal{F}(X)$;
- 6. X is a weak Cauchy *sn*-symmetric space (resp., Cauchy *sn*-symmetric space) if and only if so is $\mathcal{F}(X)$;
- 7. X is a Cauchy *sn*-symmetric space with a σ -(*P*)-property *cs*^{*}-network (resp., *cs*-network, *sn*-network) if and only if so is $\mathcal{F}(X)$;
- 8. X has property γ if and only if so does $\mathcal{F}(X)$, where property γ is one of the images of metric spaces under some kinds of continuous mappings, which is determined in [18, Corollary 2.8].

References

- A. V. Arhangelskii, General Topology II, Compactness, homologies of general spaces, Encyclopaedia of Math. Sci. 50 Springer-Verlag, Berlin, 1996.
- [2] S. S. Gabriyelyan, J. Kakol, On P-spaces and related concepts, Topology Appl. 191 (2015), 178–198.
- [3] C. Good, S. Macías, Symmetric products of generalized metric spaces, Topology Appl. 206 (2016), 93–114.

- [4] F. Lin, R. Shen, C. Liu, Generalized metric properties on hyperspaces with the Vietoris topology, Rocky Mt. J. Math. 51 (2021), 1761–1779.
- [5] S. Lin, X. W. Ling, Y. Ge, Point-regular covers and sequence-covering compact mappings, Topology Appl. 271 (2020), 106987.
- [6] S. Lin, X. W. Ling, W. He, Compact mappings and s-mappings at subsets, Open Math. 20 (2022), 1567–1580.
- [7] S. Lin, Z. Yun, Generalized Metric Spaces and Mappings, Atlantis Studies in Mathematics, vol. 6, Atlantis Press, Paris, 2016.
- [8] X. W. Ling, S. Lin, W. He, Point-countable covers and sequence-covering s-mappings at subsets, Topology Appl. 290 (2021), 107572.
- [9] C. Liu, F. Lin, A note on hyperspaces by closed sets with Vietoris topology, Bull. Malays. Math. Sci. Soc. 45 (2022), 1955–1974.
 [10] C. Liu, F. Lin, Hyperspaces with a countable character of closed subset, Topology Appl. 328 (2023), 108461.
- [11] C. Liu, F. Lin, The quasi-metrizability of hyperspaces, Topology Appl. 338 (2023), 108665.
- [12] E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 91–138.
- [13] L. Mou, P. Li, S. Lin, Regular G_{δ} -diagonals and hyperspaces, Topology Appl. 301 (2021), 107530.
- [14] L.-X. Peng, Y. Sun, A study on symmetric products of generalized metric spaces, Topology Appl. 231 (2017), 411-429.
- [15] Z. Tang, S. Lin, F. Lin, Symmetric products and closed finite-to-one mappings, Topology Appl. 234 (2018), 26–45.
- [16] L. Q. Tuyen, O. V. Tuyen, On the n-fold symmetric product of a space with a σ -(P)-property cn-network (ck-network), Comment. Math. Univ. Carolin. 61 (2020), 257-263.
- [17] L. Q. Tuyen, O. V. Tuyen, A note on the hyperspace of finite subsets, Fasc. Math. 65 (2021), 67–73.
- [18] L. Q. Tuyen, O. V. Tuyen, Lj. D. R. Kočinac, The Vietoris hyperspace $\mathcal{F}(X)$ and certain generalized metric properties, Hacet. J. Math. Stat. 53 (2) (2024), 356-366.