On the A_{α} spectral radius of generalized weighted digraphs

Weige $\mathrm{Xi}^{\mathrm{a},{ }^{*}}$, Heshun Song ${ }^{\text {a }}$, Feifan Lei ${ }^{\text {a }}$, Jingyu Chen ${ }^{\text {a }}$
${ }^{a}$ College of Science, Northwest A\&F University, Yangling, Shaanxi 712100, China

Abstract

Let $G=(V(G), E(G))$ be a generalized weighted digraph without loops and multiple arcs, where the weight of each arc is a nonnegative and symmetric matrix of same order p. For $v_{i} \in V(G)$, let $w_{i}^{+}=\sum_{v_{i} \in N^{+}} w_{i j}$, where $w_{i j}$ is the weight of the arc $\left(v_{i}, v_{j}\right)$, and N_{i}^{+}is the set of out-neighbors of the vertex v_{i}. Let $A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)$, where $0 \leq \alpha \leq 1, A(G)$ is the adjacency matrix of the generalized weighted digraph G, and $D(G)=\operatorname{diag}\left(w_{1}^{+}, w_{2}^{+}, \ldots, w_{n}^{+}\right)$. The spectral radius of $A_{\alpha}(G)$ is called the A_{α} spectral radius of G. In this paper, we give some upper bounds on the A_{α} spectral radius of generalized weighted digraphs, and characterize the digraphs achieving the upper bounds. As application, we obtain some upper bounds on the A_{α} spectral radius of weighted digraphs and unweighted digraphs.

1. Introduction

Let $G=(V(G), E(G))$ be a digraph with vertex set $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and arc set $E(G)$. If $\left(v_{i}, v_{j}\right) \in E(G)$, then v_{i} is called the tail and v_{j} is called the head of the arc $\left(v_{i}, v_{j}\right)$. A digraph G is strongly connected if for every order pair of vertices $v_{i}, v_{j} \in V(G)$, there exists a directed path from v_{i} to v_{j} and a directed path from v_{j} to v_{i}. For any vertex $v_{i} \in V(G)$, let $N_{i}^{+}=N_{v_{i}}^{+}(G)=\left\{v_{j}:\left(v_{i}, v_{j}\right) \in E(G)\right\}$ denote the set of out-neighbors of the vertex v_{i}. Throughout this paper, we only consider the digraphs without loops and multiple arcs.

A generalized weighted digraph is a digraph in which each arc is assigned a square matrix, called the weight of the arc. All the weight matrices will be assumed to be nonnegative and symmetric matrices with the same order. A generalized weighted digraph can be view as weighted digraph if the weight of each arc is a positive number, and an unweighted digraph if each arc bearing weight 1.

Let G be a generalized weighted digraph with n vertices, denote by $w_{i j}$ the weight of the $\operatorname{arc}\left(v_{i}, v_{j}\right)$, which is a nonnegative and symmetric matrix of order p. For $v_{i} \in V(G)$, let $w_{i}^{+}=\sum_{v_{j} \in N_{i}^{+}} w_{i j}$. Clearly, w_{i}^{+} is a nonnegative and symmetric matrix, we use $\rho\left(w_{i}^{+}\right)$to denote the spectral radius of w_{i}^{+}. A generalized weighted digraph G is a generalized weight-semiregular bipartite digraph if it is a strongly connected digraph whose vertex set can be partitioned into two disjoint nonempty subsets V_{1} and V_{2} such that $\rho\left(w_{i}^{+}\right)$

[^0]is a constant for every vertex v_{i} in V_{1}, and $\rho\left(w_{j}^{+}\right)$is a constant for every vertex v_{j} in V_{2}. If $\rho\left(w_{k}^{+}\right)$is a constant for every vertex v_{k} in G, then G is called a generalized weight-regular digraph.

The adjacency matrix $A(G)$ of a generalized weighted digraph G is a block matrix, where the matrix block $a_{i j}$ of order p is defined by

$$
a_{i j}= \begin{cases}w_{i j}\left(\text { or } w_{i, j}\right), & \text { if }\left(v_{i}, v_{j}\right) \in E(G), \\ 0, & \text { otherwise }\end{cases}
$$

The signless Laplacian matrix of a generalized weighted digraph G is $Q(G)=A(G)+D(G)$, where $D(G)=$ $\operatorname{diag}\left(w_{1}^{+}, w_{2}^{+}, \ldots, w_{n}^{+}\right)$. For any real number $\alpha \in[0,1]$, the convex combinations $A_{\alpha}(G)$ of $D(G)$ and $A(G)$ defined by

$$
A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)
$$

Clearly,

$$
A_{0}(G)=A(G), \quad A_{1}(G)=D(G), \quad \text { and } \quad 2 A_{\frac{1}{2}}(G)=Q(G)
$$

In general, $A_{\alpha}(G)$ is not symmetric and its eigenvalues can be complex numbers. The spectral radius of $A_{\alpha}(G)$ is called the A_{α} spectral radius of G, denoted by $\mu_{\alpha}(G)$. Since $A_{\alpha}(G)$ is a nonnegative matrix, it follows from Perron Frobenius Theorem that $\mu_{\alpha}(G)$ is an eigenvalue of $A_{\alpha}(G)$ and there is a nonnegative eigenvector corresponding to $\mu_{\alpha}(G)$. There has been some results on the A_{α} spectral radius of unweighted digraphs, see [3, 9, 16, 17].

Since graphs in the design of networks and electronic circuits are usually weighted, the spectra of weighted graphs are often used to solve problems. Fiedler [2] had introduced the following question: What is the optimal distribution of nonnegative weights (with total sum 1) among the edges of a given graph, so that the spectral radius of the resulting matrix is minimum? He himself proved that the optimum solution is achieved. It is natural for us to consider the Fiedler's problem on the largest spectral radius of matrices associated with weighted graphs. In fact, the spectral radius, Laplacian spectral radius and signless Laplacian spectral radius of weighted undirected graphs have been well treated in the literature [$4,5,8,10-14,18]$. However, there are a few of results for the generalized weighted digraphs. Recently, S..B. Bozkurt and D. Bozkurt [1] obtained some upper bounds for the spectral radius of generalized weighted digraphs and characterized the digraphs achieving the upper bounds. P. Li and Q.X. Huang [7] gave a sharp upper bound for the spectral radius of generalized weighted digraphs, and if the digraph is strongly connected, they also characterized the digraphs achieving the upper bound. W.G. Xi and L.G. Wang [15] obtained an upper bound for the signless Laplacian spectral radius of generalized weighted digraphs, and if the digraph is strongly connected, they also characterized the digraphs achieving the upper bound. In this paper, we will give some upper bounds on the A_{α} spectral radius of generalized weighted digraphs. As application, we also obtain some upper bounds on the A_{α} spectral radius of weighted digraphs and unweighted digraphs.

2. Lemmas and Results

Lemma 2.1. ([6]) Let B be an $n \times n$ real nonnegative symmetric matrix, $\rho(B)$ be the largest eigenvalue. Then for any $x \in R^{n}(x \neq 0), y \in R^{n}(y \neq 0)$,

$$
\begin{equation*}
\left|x^{T} B y\right| \leq \rho(B) \sqrt{x^{T} x} \sqrt{y^{T} y} \tag{1}
\end{equation*}
$$

The equality holds in (1) if and only if x is an eigenvector of B corresponding to $\rho(B)$ and $y=\alpha x$ for some $\alpha \in R$.
Lemma 2.2. ([6]) Let M be an $n \times n$ real symmetric matrix with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Then for any $x \in R^{n}(x \neq 0)$,

$$
\begin{equation*}
x^{T} M x \geq \lambda_{n} x^{T} x \tag{2}
\end{equation*}
$$

The equality holds if and only if x is an eigenvector of M corresponding to the eigenvalue λ_{n}.

Lemma 2.3. ([7]) Let $G=(V(G), E(G))$ be a generalized weighted digraph and $w_{i j}$ be a nonnegative symmetric matrix of order p of the $\operatorname{arc}\left(v_{i}, v_{j}\right) \in E(G)$ and $w_{i}^{+}=\sum_{v_{j} \in N_{i}^{+}} w_{i j}$. Also let x be an eigenvector of $w_{i j}$ corresponding to the largest eigenvalue $\rho\left(w_{i j}\right)$ for all i, j. Then x is also an eigenvector of w_{i}^{+}corresponding to the largest eigenvalue $\rho\left(w_{i}^{+}\right)$ for all i, and $\rho\left(w_{i}^{+}\right)=\sum_{v_{j} \in N_{i}^{+}} \rho\left(w_{i j}\right)$.

In the following, we give some upper bounds for the A_{α} spectral radius of generalized weighted digraphs.
Theorem 2.4. Let $G=(V(G), E(G))$ be a strongly connected generalized weighted digraph with vertex set $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and arc set $E(G)$. Then

$$
\begin{equation*}
\mu_{\alpha}(G) \leq \max _{\left(v_{i}, v_{j}\right) \in E(G)}\left\{\frac{\alpha\left(\rho\left(w_{i}^{+}\right)+\rho\left(w_{j}^{+}\right)\right)+\sqrt{\alpha^{2}\left(\rho\left(w_{i}^{+}\right)-\rho\left(w_{j}^{+}\right)\right)^{2}+4(1-\alpha)^{2} \sum_{v_{k} \in N_{i}^{+}} \rho\left(w_{i k}\right) \sum_{v_{k} \in N_{j}^{+}} \rho\left(w_{j k}\right)}}{2}\right\} \tag{3}
\end{equation*}
$$

where $w_{i j}$ is the nonzero nonnegative symmetric matrix of order p of the $\operatorname{arc}\left(v_{i}, v_{j}\right) \in E(G)$. Moreover, the equality holds in (3) if and only if the following two conditions hold:
(i) $w_{i j}$ has a common eigenvector corresponding to the largest eigenvalue $\rho\left(w_{i j}\right)$ for all v_{i}, v_{j};
(ii) G is an weight-regular digraph or G is an weight-semiregular bipartite digraph.

Proof. Let $\mathbf{X}=\left(x_{1}^{T}, x_{2}^{T}, \cdots, x_{n}^{T}\right)^{T}$ be a nonnegative eigenvector of $A_{\alpha}(G)$ corresponding to the eigenvalue $\mu_{\alpha}(G)>0$, where $x_{i} \geq 0$ is a column vector in R^{p} corresponding to the vertex v_{i} of G. Since $A_{\alpha}(G) \mathbf{X}=\mu_{\alpha}(G) \mathbf{X}$,

$$
\mu_{\alpha}(G) x_{i}=\alpha w_{i}^{+} x_{i}+(1-\alpha) \sum_{v_{k} \in N_{i}^{+}} w_{i k} x_{k},
$$

that is

$$
\begin{equation*}
\left(\mu_{\alpha}(G) I_{p}-\alpha w_{i}^{+}\right) x_{i}=(1-\alpha) \sum_{v_{k} \in N_{i}^{+}} w_{i k} x_{k} . \tag{4}
\end{equation*}
$$

By multiplying x_{i}^{T} to (4), we get

$$
\begin{aligned}
x_{i}^{T}\left(\mu_{\alpha}(G) I_{p}-\alpha w_{i}^{+}\right) x_{i} & =(1-\alpha) \sum_{v_{k} \in N_{i}^{+}} x_{i}^{T} w_{i k} x_{k} \\
& \leq(1-\alpha) \sum_{v_{k} \in N_{i}^{+}}\left|x_{i}^{T} w_{i k} x_{k}\right| \\
& \leq(1-\alpha) \sum_{v_{k} \in N_{i}^{+}} \rho\left(w_{i k}\right) \sqrt{x_{i}^{T} x_{i}} \sqrt{x_{k}^{T} x_{k}} \text { (using (1)). }
\end{aligned}
$$

From (2), we have

$$
\left(\mu_{\alpha}(G)-\alpha \rho\left(w_{i}^{+}\right)\right) x_{i}^{T} x_{i} \leq x_{i}^{T}\left(\mu_{\alpha}(G) I_{p}-\alpha w_{i}^{+}\right) x_{i}
$$

Therefore

$$
\begin{align*}
\left(\mu_{\alpha}(G)-\alpha \rho\left(w_{i}^{+}\right)\right) x_{i}^{T} x_{i} & \leq x_{i}^{T}\left(\mu_{\alpha}(G) I_{p}-\alpha w_{i}^{+}\right) x_{i} \\
& =(1-\alpha) \sum_{v_{k} \in N_{i}^{+}} x_{i}^{T} w_{i k} x_{k} \\
& \leq(1-\alpha) \sum_{v_{k} \in N_{i}^{+}}\left|x_{i}^{T} w_{i k} x_{k}\right| \\
& \leq(1-\alpha) \sum_{v_{k} \in N_{i}^{+}} \rho\left(w_{i k}\right) \sqrt{x_{i}^{T} x_{i}} \sqrt{x_{k}^{T} x_{k}} . \tag{5}
\end{align*}
$$

Let $\left(v_{i}, v_{j}\right) \in E(G)$. Similarly, we have

$$
\begin{equation*}
\left(\mu_{\alpha}(G)-\alpha \rho\left(w_{j}^{+}\right)\right) x_{j}^{T} x_{j} \leq x_{j}^{T}\left(\mu_{\alpha}(G) I_{p}-\alpha w_{j}^{+}\right) x_{j} \leq(1-\alpha) \sum_{v_{t} \in N_{j}^{+}} \rho\left(w_{j t}\right) \sqrt{x_{j}^{T} x_{j}} \sqrt{x_{t}^{T} x_{t}} \tag{6}
\end{equation*}
$$

Let $a=\max _{1 \leq k \leq n}\left\{x_{k}^{T} x_{k}\right\}>0$. We now choose $x_{i_{0}}$, the vector component of \mathbf{X} such that $x_{i_{0}}^{T} x_{i_{0}}=a$ and there exists $v_{j_{0}} \in N_{i_{0}}^{+}$satisfying $x_{j_{0}}^{T} x_{j_{0}}=\max _{v_{k} \in N_{i_{0}}}\left\{x_{k}^{T} x_{k}\right\} \geq \max _{v_{t} \in N_{i}^{+}}\left\{x_{t}^{T} x_{t}\right\}$ whenever $x_{i}^{T} x_{i}=a$. Clearly, $\left(v_{i_{0}}, v_{j_{0}}\right) \in E(G)$.

Taking $i=i_{0}$ in (5), we get

$$
\begin{align*}
\left(\mu_{\alpha}(G)-\alpha \rho\left(w_{i_{0}}^{+}\right)\right) x_{i_{0}}^{T} x_{i_{0}} & \leq x_{i_{0}}^{T}\left(\mu_{\alpha}(G) I_{p}-\alpha w_{i_{0}}^{+}\right) x_{i_{0}} \tag{7}\\
& =(1-\alpha) \sum_{v_{k} \in N_{i_{0}}^{+}} x_{i_{0}}^{T} w_{i_{0} k} x_{k} \tag{8}\\
& \leq(1-\alpha) \sum_{v_{k} \in N_{i_{0}}^{+}}\left|x_{i_{0}}^{T} w_{i_{0} k} x_{k}\right| \tag{9}\\
& \leq(1-\alpha) \sum_{v_{k} \in N_{i_{0}}^{+}} \rho\left(w_{i_{0} k}\right) \sqrt{x_{i_{0}}^{T} x_{i_{0}}} \sqrt{x_{k}^{T} x_{k}} \tag{10}\\
& \leq(1-\alpha) \sqrt{x_{i_{0}}^{T} x_{i_{0}}} \sqrt{x_{j_{0}}^{T} x_{j_{0}}} \sum_{v_{k} \in N_{i_{0}}} \rho\left(w_{i_{0} k}\right) . \tag{11}
\end{align*}
$$

Taking $j=j_{0}$ in (6), we get

$$
\begin{align*}
\left(\mu_{\alpha}(G)-\alpha \rho\left(w_{j_{0}}^{+}\right)\right) x_{j_{0}}^{T} x_{j_{0}} & \leq x_{j_{0}}^{T}\left(\mu_{\alpha}(G) I_{p}-\alpha w_{j_{0}}^{+}\right) x_{j_{0}} \\
& =(1-\alpha) \sum_{v_{k} \in N_{j_{0}}^{+}} x_{j_{0}}^{T} w_{j_{0} k} x_{k} \\
& \leq(1-\alpha) \sum_{v_{k} \in N_{j_{0}}^{+}}\left|x_{j_{0}}^{T} w_{j_{0} k} x_{k}\right| \tag{12}\\
& \leq(1-\alpha) \sum_{v_{k} \in N_{j_{0}}^{+}} \rho\left(w_{j_{0} k}\right) \sqrt{x_{j_{0}}^{T} x_{j_{0}}} \sqrt{x_{k}^{T} x_{k}} \tag{13}\\
& \leq(1-\alpha) \sqrt{x_{i_{0}}^{T} x_{i_{0}}} \sqrt{x_{j_{0}}^{T} x_{j_{0}}} \sum_{v_{k} \in N_{j_{0}}^{+}} \rho\left(w_{j_{0} k}\right) . \tag{14}
\end{align*}
$$

We now claim that $x_{j_{0}} \neq 0$. Indeed, by contradiction, we can suppose that $x_{j_{0}}=0$. Then $x_{k}=0$ for all k with $v_{k} \in N_{i_{0}}^{+}$. Furthermore, by the (8), $0 \leq\left(\mu_{\alpha}(G)-\alpha \rho\left(w_{i_{0}}^{+}\right)\right) x_{i_{0}}^{T} x_{i_{0}} \leq 0$. That is $\left(\mu_{\alpha}(G)-\alpha \rho\left(w_{i_{0}}^{+}\right)\right) x_{i_{0}}^{T} x_{i_{0}}=0$, and so $\left(\mu_{\alpha}(G)-\alpha \rho\left(w_{i_{0}}^{+}\right)\right)=0$ since $x_{i_{0}}^{T} x_{i_{0}} \neq 0$, which is impossible. Thus by multiplying the two sides of (11) and (14), we have

$$
\left(\mu_{\alpha}(G)-\alpha \rho\left(w_{i_{0}}^{+}\right)\right)\left(\mu_{\alpha}(G)-\alpha \rho\left(w_{j_{0}}^{+}\right)\right) \leq(1-\alpha)^{2} \sum_{v_{k} \in N_{i_{0}}^{+}} \rho\left(w_{i_{0} k}\right) \sum_{v_{k} \in N_{j_{0}}^{+}} \rho\left(w_{j_{0} k}\right) .
$$

Therefore,

$$
\mu_{\alpha}(G) \leq \frac{\alpha\left(\rho\left(w_{i_{0}}^{+}\right)+\rho\left(w_{j_{0}}^{+}\right)\right)+\sqrt{\alpha^{2}\left(\rho\left(w_{i_{0}}^{+}\right)-\rho\left(w_{j_{0}}^{+}\right)\right)^{2}+4(1-\alpha)^{2} \sum_{v_{k} \in N_{i_{0}}^{+}} \rho\left(w_{i_{0} k}\right) \sum_{v_{k} \in N_{j_{0}}^{+}} \rho\left(w_{j_{0} k}\right)}}{2}
$$

which leads to the result since $\left(v_{i_{0}}, v_{j_{0}}\right) \in E(G)$.

Now, we suppose that the equality holds in (3). Then all inequalities in the above argument must be equalities. Then by the equality (7), $x_{i_{0}}$ is an eigenvector of matrix $w_{i_{0}}^{+}$corresponding to the eigenvalue $\rho\left(w_{i_{0}}^{+}\right)$. By the equalities (10) and (11), for any $v_{k} \in N_{i_{0}}^{+}, x_{i_{0}}$ is a common eigenvector of $w_{i_{0} k}$ corresponding to the eigenvalue $\rho\left(w_{i_{0} k}\right), x_{k}=b_{i_{0} k} x_{i_{0}}$ and $x_{k}^{T} x_{k}=x_{j_{0}}^{T} x_{j_{0}}$. Hence, for $\left(v_{i_{0}}, v_{z}\right) \in E(G)$ and $\left(v_{i_{0}}, v_{s}\right) \in E(G)$, $b_{i_{0} z}^{2} x_{i_{0}}^{T} x_{i_{0}}=x_{z}^{T} x_{z}=x_{s}^{T} x_{s}=b_{i_{0} s}^{2} x_{i_{0}}^{T} x_{i_{0}}$, which implies $b_{i_{0} z}^{2}=b_{i_{0}}^{2}$. Moreover, for any $v_{k} \in N_{i_{0}}^{+}, x_{i_{0}}^{T} w_{i_{0} k} x_{i_{0}}>0$ since $\rho\left(w_{i_{0} k}\right)>0$. Furthermore, by the equality (9), $b_{i_{0} k} x_{i_{0}}^{T} w_{i_{0} k} x_{i_{0}}=x_{i_{0}}^{T} w_{i_{0} k} x_{k}=\left|x_{i_{0}}^{T} w_{i_{0} k} x_{k}\right|>0$. Hence $b_{i_{0} k}>0$ for any $v_{k} \in N_{i_{0}}^{+}$. So $b_{i_{0} z}=b_{i_{0} s}=b$. Thus, for any $v_{k} \in N_{i_{0}}^{+}, x_{k}=b x_{i_{0}}$, and $x_{i_{0}}$ is a common eigenvector of $w_{i_{0} k}$ corresponding to the eigenvalue $\rho\left(w_{i 0}\right)$.

For any $v_{j} \in N_{i_{0}}^{+}, x_{j}=b x_{i_{0}}=x_{j_{0}}$. By replacing j_{0} with j in the equality (14), for any x_{l} with $v_{l} \in N_{j}^{+}$,

$$
\begin{aligned}
\left(\mu_{\alpha}(G)-\alpha \rho\left(w_{j}^{+}\right)\right) x_{j}^{T} x_{j} & =x_{j}^{T}\left(\mu_{\alpha}(G) I_{p}-\alpha w_{j}^{+}\right) x_{j} \\
& =(1-\alpha) \sum_{v_{l} \in N_{j}^{+}}\left|x_{j}^{T} w_{j l} x_{l}\right| \\
& =(1-\alpha) \sum_{v_{l} \in N_{j}^{+}} \rho\left(w_{j l}\right) \sqrt{x_{j}^{T} x_{j}} \sqrt{x_{l}^{T} x_{l}} \\
& =(1-\alpha) \sqrt{x_{i_{0}}^{T} x_{i_{0}}} \sqrt{x_{j}^{T} x_{j}} \sum_{v_{l} \in N_{j}^{+}} \rho\left(w_{j l}\right) .
\end{aligned}
$$

Hence, we have x_{j} is an eigenvector of matrix w_{j}^{+}corresponding to the eigenvalue $\rho\left(w_{j}^{+}\right)$, and for any $v_{l} \in N_{j}^{+}, x_{j}$ is a common eigenvector of $w_{j l}$ corresponding to the eigenvalue $\rho\left(w_{j l}\right), x_{l}=c_{j l} x_{j}$ and $x_{l}^{T} x_{l}=x_{i_{0}}^{T} x_{i_{0}}$. Then $\left(c_{j l} b\right)^{2} x_{i_{0}}^{T} x_{i_{0}}=x_{i_{0}}^{T} x_{i_{0}}$, which implies $\left(c_{j l} b\right)^{2}=1$. Moreover, $c_{j l} x_{j}^{T} w_{j l} x_{j}=x_{j}^{T} w_{j l} x_{l}=\left|x_{j}^{T} w_{j l}\right| x_{l} \mid>0$. Noting that $x_{j}^{T} w_{j l} x_{j}>0$ since $\rho\left(w_{j l}\right)>0$, we have $c_{j l}>0$ and thus $c_{j l}=\frac{1}{b}$. Therefore, for any $v_{l} \in N_{j}^{+}, x_{l}=\frac{1}{b} x_{j}=\frac{1}{b} b x_{i_{0}}=x_{i_{0}}$.

Now let $p=v_{i_{0}} v_{i_{1}} \ldots v_{i_{r}}$ be a directed path in G. We have the following claim.
Claim: If $0 \leq t \leq r$ is even, then $x_{i_{t}}=x_{i_{0}}$, if $1 \leq t \leq r$ is odd, then $x_{i_{t}}=b x_{i_{0}}$.
Firstly, we know that $v_{i_{0}}$ corresponding to $x_{i_{0}}$. Then the claim holds for $t=0,1,2$ by the above proof. Now let $t=2$, we know that $x_{i_{2}}=x_{i_{0}}$. Let $x_{h}^{T} x_{h}=\max _{v_{q} \in N_{i_{2}}}\left\{x_{q}^{T} x_{q}\right\} \leq x_{j_{0}}^{T} x_{j_{0}}$. Since $\left(v_{i_{2}}, v_{h}\right) \in E(G)$ and $x_{i_{2}}=x_{i_{0}}$. As similar as the inequality (11), we have

$$
\begin{align*}
\left(\mu_{\alpha}(G)-\alpha \rho\left(w_{i_{2}}^{+}\right)\right) x_{i_{2}}^{T} x_{i_{2}} & \leq x_{i_{2}}^{T}\left(\mu_{\alpha}(G) I_{p}-\alpha w_{i_{2}}^{+}\right) x_{i_{2}} \\
& =(1-\alpha) \sum_{v_{q} \in N_{i_{2}}^{+}} x_{i_{2}}^{T} w_{i_{2} q} x_{q} \\
& \leq(1-\alpha) \sum_{v_{q} \in N_{i_{2}}^{+}}\left|x_{i_{2}}^{T} w_{i_{2} q} x_{q}\right| \\
& \leq(1-\alpha) \sum_{v_{q} \in N_{i_{2}}^{+}} \rho\left(w_{i_{2} q}\right) \sqrt{x_{i_{2}}^{T} x_{i_{2}}} \sqrt{x_{q}^{T} x_{q}} \text { (using (1)) } \\
& \leq(1-\alpha) \sum_{v_{q} \in N_{i_{2}}^{+}} \rho\left(w_{i_{2} q}\right) \sqrt{x_{i_{2}}^{T} x_{i_{2}}} \sqrt{x_{h}^{T} x_{h}} \\
& \leq(1-\alpha) \sum_{v_{q} \in N_{i_{2}}^{+}} \rho\left(w_{i_{2} q}\right) \sqrt{x_{i_{2}}^{T} x_{i_{2}}} \sqrt{x_{j_{0}}^{T} x_{j_{0}}} . \tag{15}
\end{align*}
$$

Noting that $x_{i_{1}}=x_{j_{0}}=b x_{i_{0}}$, then we have

$$
\left(\mu_{\alpha}(G)-\alpha \rho\left(w_{i_{1}}^{+}\right)\right) x_{i_{1}}^{T} x_{i_{1}} \leq(1-\alpha) \sum_{v_{k} \in N_{i_{1}}^{+}} \rho\left(w_{i_{1} k}\right) \sqrt{x_{i_{1}}^{T} x_{i_{1}}} \sqrt{x_{i_{0}}^{T} x_{i_{0}}} .
$$

Therefore,

$$
\begin{aligned}
\mu_{\alpha}(G) & \leq \frac{\alpha\left(\rho\left(w_{i_{1}}^{+}\right)+\rho\left(w_{i_{2}}^{+}\right)\right)+\sqrt{\alpha^{2}\left(\rho\left(w_{i_{1}}^{+}\right)-\rho\left(w_{i_{2}}^{+}\right)\right)^{2}+4(1-\alpha)^{2} \sum_{v_{k} \in N_{i_{1}}^{+}} \rho\left(w_{i_{1} k}\right) \sum_{v_{k} \in N_{i_{2}}^{+}} \rho\left(w_{i_{2} k}\right)}}{2} \\
& \leq \max _{\left(v_{i}, v_{j}\right) \in E(G)}\left\{\frac{\alpha\left(\rho\left(w_{i}^{+}\right)+\rho\left(w_{j}^{+}\right)\right)+\sqrt{\alpha^{2}\left(\rho\left(w_{i}^{+}\right)-\rho\left(w_{j}^{+}\right)\right)^{2}+4(1-\alpha)^{2} \sum_{v_{k} \in N_{i}^{+}} \rho\left(w_{i k}\right) \sum_{v_{k} \in N_{j}^{+}} \rho\left(w_{j k}\right)}}{2}\right. \\
& =\mu_{\alpha}(G),
\end{aligned}
$$

which means

$$
\mu_{\alpha}(G)=\frac{\alpha\left(\rho\left(w_{i_{1}}^{+}\right)+\rho\left(w_{i_{2}}^{+}\right)\right)+\sqrt{\alpha^{2}\left(\rho\left(w_{i_{1}}^{+}\right)-\rho\left(w_{i_{2}}^{+}\right)\right)^{2}+4(1-\alpha)^{2} \sum_{v_{k} \in N_{i_{1}}^{+}} \rho\left(w_{i_{1} k}\right) \sum_{v_{k} \in N_{i_{2}}^{+}} \rho\left(w_{i_{2} k}\right)}}{2} .
$$

Furthermore, we have (15) must be equality. Thus, we get $x_{i_{2}}=x_{i_{0}}$ is an eigenvector of matrix $w_{i_{2}}^{+}$ corresponding to the eigenvalue $\rho\left(w_{i_{2}}^{+}\right)$, and for any $v_{q} \in N_{i_{2}}^{+}, x_{q}^{T} x_{q}=x_{j_{0}}^{T} x_{j_{0}}=x_{i_{1}}^{T} x_{i_{1}}$. Again the equality (15) means $x_{i_{2}}=x_{i_{0}}$ is a common eigenvector of $w_{i_{2 q}}$ corresponding to the eigenvalue $\rho\left(w_{i_{2} q}\right), x_{q}=b_{q} x_{i_{2}}=b_{q} x_{i_{0}}$ where $b_{q}>0$ similar as the proof of $b_{i_{0} k}>0$. Thus $b_{q}^{2} x_{i_{0}}^{T} x_{i_{0}}=x_{j_{0}}^{T} x_{j_{0}}=b^{2} x_{i_{0}}^{T} x_{i_{0}}$, and so $b_{q}=b$. Hence, $x_{i_{3}}=b x_{i_{0}}=x_{j_{0}}$. Noting that $x_{i_{2}}=x_{i_{0}}$ and $x_{i_{3}}=x_{j_{0}}$. Regarding $v_{i_{2}}$ as $v_{i_{0}}$ and repeating the above process, we will get the claim by induction since G is strongly connected. At last, $x_{i_{0}}$ is a common eigenvector of $w_{i j}$ corresponding to the eigenvalue $\rho\left(w_{i j}\right)$ for every arc $\left(v_{i}, v_{j}\right)$ of G.

Now let $V_{1}=\left\{v_{i} \mid x_{i}=x_{i_{0}}\right\}$ and $V_{2}=\left\{v_{i} \mid x_{i}=b x_{i_{0}}\right\}$. Since G is strongly connected digraph, then $V(G)=V_{1} \cup V_{2}$ and the subdigraphs induced by V_{1} and V_{2} respectively are empty digraphs if $b \neq 1$, and $V(G)=V_{1}$ if $b=1$. In the following, we consider the following two cases.

Case 1: $b=1$.

In this case, for any $1 \leq k \leq n, x_{k}=x_{i_{0}}$, and $x_{i_{0}}$ is a common eigenvector of $w_{i j}$ corresponding to the eigenvalue $\rho\left(w_{i j}\right)$ for every $\operatorname{arc}\left(v_{i}, v_{j}\right)$ of G. By Lemma 2.3, $x_{i_{0}}$ is also an eigenvector of w_{k}^{+}corresponding to the largest eigenvalue $\rho\left(w_{k}^{+}\right)$for all k, and $\rho\left(w_{k}^{+}\right)=\sum_{v_{j} \in N_{k}^{+}} \rho\left(w_{k j}\right)$. Then, for any $v_{k} \in V(G)$,

$$
\mu_{\alpha}(G) x_{i_{0}}=\alpha w_{k}^{+} x_{i_{0}}+(1-\alpha) \sum_{v_{i} \in N_{k}^{+}} w_{k i} x_{i_{0}}=\alpha \rho\left(w_{k}^{+}\right) x_{i_{0}}+(1-\alpha) \rho\left(w_{k}^{+}\right) x_{i_{0}}=\rho\left(w_{k}^{+}\right) x_{i_{0}},
$$

which implies that $\rho\left(w_{k}^{+}\right)=\mu_{\alpha}(G)$. Therefore, G is a generalized weight-regular digraph.
Case 2: $b \neq 1$.
Therefore, G is a bipartite digraph. For any $v_{s} \in V_{1}, x_{s}=x_{i_{0}}$, and for any $v_{t} \in V_{2}, x_{t}=b x_{i_{0}}$. And $x_{i_{0}}$ is a common eigenvector of $w_{i j}$ corresponding to the eigenvalue $\rho\left(w_{i j}\right)$ for every arc $\left(v_{i}, v_{j}\right)$ of G. By Lemma 2.3, $x_{i_{0}}$ is also an eigenvector of w_{k}^{+}corresponding to the largest eigenvalue $\rho\left(w_{k}^{+}\right)$for all k, and $\rho\left(w_{k}^{+}\right)=\sum_{v_{j} \in N_{k}^{+}} \rho\left(w_{k j}\right)$.

If $v_{s} \in V_{1}$,

$$
\mu_{\alpha}(G) x_{i_{0}}=\alpha w_{s}^{+} x_{i_{0}}+(1-\alpha) \sum_{v_{k} \in N_{s}^{+}} w_{s k} b x_{i_{0}}=\alpha \rho\left(w_{s}^{+}\right) x_{i_{0}}+(1-\alpha) \rho\left(w_{s}^{+}\right) b x_{i_{0}}
$$

which implies that $\mu_{\alpha}(G)=\alpha \rho\left(w_{s}^{+}\right)+(1-\alpha) \rho\left(w_{s}^{+}\right) b$, that is $\rho\left(w_{s}^{+}\right)=\frac{\mu_{\alpha}(G)}{\alpha+(1-\alpha) b}$.
If $v_{t} \in V_{2}$,

$$
\mu_{\alpha}(G) b x_{i_{0}}=\alpha w_{t}^{+} b x_{i_{0}}+(1-\alpha) \sum_{v_{k} \in N_{t}^{+}} w_{t k} x_{i_{0}}=\alpha \rho\left(w_{t}^{+}\right) b x_{i_{0}}+(1-\alpha) \rho\left(w_{t}^{+}\right) x_{i_{0}}
$$

which implies that $\mu_{\alpha}(G) b=\alpha \rho\left(w_{t}^{+}\right) b+(1-\alpha) \rho\left(w_{t}^{+}\right)$, that is $\rho\left(w_{t}^{+}\right)=\frac{\mu_{\alpha}(G) b}{\alpha b+(1-\alpha)}$. Therefore, G is a generalized weight-semiregular bipartite digraph.

For converse, suppose that the conditions (i) - (ii) shown in the second part of the theorem hold for the digraph G. Then we must prove that

$$
\mu_{\alpha}(G)=\max _{\left(v_{i}, v_{j}\right) \in E(G)}\left\{\frac{\alpha\left(\rho\left(w_{i}^{+}\right)+\rho\left(w_{j}^{+}\right)\right)+\sqrt{\alpha^{2}\left(\rho\left(w_{i}^{+}\right)-\rho\left(w_{j}^{+}\right)\right)^{2}+4(1-\alpha)^{2} \sum_{v_{k} \in N_{i}^{+}} \rho\left(w_{i k}\right) \sum_{v_{k} \in N_{j}^{+}} \rho\left(w_{j k}\right)}}{2}\right\}
$$

Let x be a common eigenvector of $w_{i j}$ corresponding to the largest eigenvalue $\rho\left(w_{i j}\right)$ for all v_{i}, v_{j}. By Lemma 2.3, x is also an eigenvector of w_{i}^{+}corresponding to the largest eigenvalue $\rho\left(w_{i}^{+}\right)$for all i, and $\rho\left(w_{i}^{+}\right)=\sum_{v_{j} \in N_{i}^{+}} \rho\left(w_{i j}\right)$. Firstly, we suppose that G is an weight regular digraph. Let $\rho\left(w_{i}^{+}\right)=\gamma$ for all $v_{i} \in V(G)$. Let $\mathbf{X}=\left\{x^{T}, x^{T}, \ldots, x^{T}\right\}^{T}$. Then the following equation can be easily seen $A_{\alpha}(G) X=\gamma X$. Therefore γ is an eigenvalue of $A_{\alpha}(G)$. So $\gamma \leq \mu_{\alpha}(G)$. On the other hand,

$$
\max _{\left(v_{i}, v_{j}\right) \in E(G)}\left\{\frac{\alpha\left(\rho\left(w_{i}^{+}\right)+\rho\left(w_{j}^{+}\right)\right)+\sqrt{\alpha^{2}\left(\rho\left(w_{i}^{+}\right)-\rho\left(w_{j}^{+}\right)\right)^{2}+4(1-\alpha)^{2} \sum_{v_{k} \in N_{i}^{+}} \rho\left(w_{i k}\right) \sum_{v_{k} \in N_{j}^{+}} \rho\left(w_{j k}\right)}}{2}\right\}=\gamma
$$

Thus

$$
\mu_{\alpha}(G) \leq \max _{\left(v_{i}, v_{j}\right) \in E(G)}\left\{\frac{\alpha\left(\rho\left(w_{i}^{+}\right)+\rho\left(w_{j}^{+}\right)\right)+\sqrt{\alpha^{2}\left(\rho\left(w_{i}^{+}\right)-\rho\left(w_{j}^{+}\right)\right)^{2}+4(1-\alpha)^{2} \sum_{v_{k} \in N_{i}^{+}} \rho\left(w_{i k}\right) \sum_{v_{k} \in N_{j}^{+}} \rho\left(w_{j k}\right)}}{2}\right\}=\gamma
$$

Hence,

$$
\mu_{\alpha}(G)=\gamma=\max _{\left(v_{i}, v_{j}\right) \in E(G)}\left\{\frac{\alpha\left(\rho\left(w_{i}^{+}\right)+\rho\left(w_{j}^{+}\right)\right)+\sqrt{\alpha^{2}\left(\rho\left(w_{i}^{+}\right)-\rho\left(w_{j}^{+}\right)\right)^{2}+4(1-\alpha)^{2} \sum_{v_{k} \in N_{i}^{+}} \rho\left(w_{i k}\right) \sum_{v_{k} \in N_{j}^{+}} \rho\left(w_{j k}\right)}}{2}\right\}
$$

In the following, suppose G is an weight-semiregular bipartite digraph. Let U, W be the partite sets of G. Let $\rho\left(w_{i}^{+}\right)=\gamma$ for any $v_{i} \in U$, and $\rho\left(w_{j}^{+}\right)=\beta$ for any $v_{j} \in W$. Without loss of generality, let $U=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ and $W=\left\{v_{k+1}, v_{k+2}, \ldots, v_{n}\right\}$. Therefore,

$$
A_{\alpha}(G)=\left(\begin{array}{ccc|ccc}
\alpha w_{1}^{+} & \cdots & 0 & (1-\alpha) w_{1, k+1} & \cdots & (1-\alpha) w_{1, n} \\
\vdots & & \vdots & \vdots & & \vdots \\
0 & \cdots & \alpha w_{k}^{+} & (1-\alpha) w_{k, k+1} & \cdots & (1-\alpha) w_{k, n} \\
\hline(1-\alpha) w_{k+1,1} & \cdots & (1-\alpha) w_{k+1, k} & \alpha w_{k+1}^{+} & \cdots & 0 \\
\vdots & & \vdots & \vdots & & \vdots \\
(1-\alpha) w_{n, 1} & \cdots & (1-\alpha) w_{n, k} & 0 & \cdots & \alpha w_{n}^{+}
\end{array}\right) .
$$

Let $\mathbf{X}=(\underbrace{x^{T}, x^{T}, \ldots, x^{T}}_{k}, \underbrace{\theta x^{T}, \theta x^{T}, \ldots, \theta x^{T}}_{n-k})^{T}$, where

$$
\theta=\frac{\alpha(\beta-\gamma)+\sqrt{\alpha^{2}(\gamma-\beta)^{2}+4(1-\alpha)^{2} \gamma \beta}}{2(1-\alpha) \gamma}
$$

Let

$$
T=\frac{\alpha(\gamma+\beta)+\sqrt{\alpha^{2}(\gamma-\beta)^{2}+4(1-\alpha)^{2} \gamma \beta}}{2} .
$$

Since

$$
\begin{aligned}
A_{\alpha}(G) \mathbf{X} & =\left(\begin{array}{c}
\alpha w_{1}^{+} x+(1-\alpha) \sum_{v_{t} \in N_{1}^{+}} w_{1, t} \theta x \\
\vdots \\
\alpha w_{k}^{+} x+(1-\alpha) \sum_{v_{t} \in N_{k}^{+}} w_{k, t} \theta x \\
\alpha w_{k+1}^{+} \theta x+(1-\alpha) \sum_{v_{t} \in N_{k+1}^{+}} w_{k+1, t} x \\
\vdots \\
\alpha w_{n}^{+} \theta x+(1-\alpha) \sum_{v_{t} \in N_{n}^{+}} w_{n, t} x
\end{array}\right) \\
& =\left(\begin{array}{c}
\alpha \rho\left(w_{1}^{+}\right) x+(1-\alpha) \sum_{v_{t} \in N_{1}^{+}} \rho\left(w_{1, t}\right) \theta x \\
\vdots \\
\alpha \rho\left(w_{k}^{+}\right) x+(1-\alpha) \sum_{v_{t} \in N_{k}^{+}} \rho\left(w_{k, t}\right) \theta x \\
\alpha \rho\left(w_{k+1}^{+}\right) \theta x+(1-\alpha) \sum_{v_{t} \in N_{k+1}^{+}} \rho\left(w_{k+1, t}\right) x \\
\vdots \\
\alpha \rho\left(w_{n}^{+}\right) \theta x+(1-\alpha) \sum_{v_{t} \in N_{n}^{+}} \rho\left(w_{n, t}\right) x
\end{array}\right)
\end{aligned}
$$

$$
=\left(\begin{array}{c}
\alpha \rho\left(w_{1}^{+}\right) x+(1-\alpha) \rho\left(w_{1}^{+}\right) \theta x \\
\vdots \\
\alpha \rho\left(w_{k}^{+}\right) x+(1-\alpha) \rho\left(w_{k}^{+}\right) \theta x \\
\alpha \rho\left(w_{k+1}^{+}\right) \theta x+(1-\alpha) \rho\left(w_{k+1}^{+}\right) x \\
\vdots \\
\alpha \rho\left(w_{n}^{+}\right) \theta x+(1-\alpha) \rho\left(w_{n}^{+}\right) x
\end{array}\right)
$$

$$
=\left(\begin{array}{c}
\alpha \gamma x+(1-\alpha) \gamma \theta x \\
\vdots \\
\alpha \gamma x+(1-\alpha) \gamma \theta x \\
\alpha \beta \theta x+(1-\alpha) \beta x \\
\vdots \\
\alpha \beta \theta x+(1-\alpha) \beta x
\end{array}\right),
$$

$$
\begin{aligned}
& \alpha \gamma+(1-\alpha) \gamma \theta \\
= & \alpha \gamma+(1-\alpha) \gamma \frac{\alpha(\beta-\gamma)+\sqrt{\alpha^{2}(\gamma-\beta)^{2}+4(1-\alpha)^{2} \gamma \beta}}{2(1-\alpha) \gamma} \\
= & \alpha \gamma+\frac{\alpha(\beta-\gamma)+\sqrt{\alpha^{2}(\gamma-\beta)^{2}+4\left(1-\alpha^{2}\right) \gamma \beta}}{2} \\
= & \frac{\alpha(\gamma+\beta)+\sqrt{\alpha^{2}(\gamma-\beta)^{2}+4(1-\alpha)^{2} \gamma \beta}}{2}=T,
\end{aligned}
$$

and

$$
\begin{aligned}
& T \theta-\alpha \beta \theta=(T-\alpha \beta) \theta \\
= & {\left[\frac{\alpha(\gamma-\beta)+\sqrt{\alpha^{2}(\gamma-\beta)^{2}+4(1-\alpha)^{2} \gamma \beta}}{2}\right]\left[\frac{\alpha(\beta-\gamma)+\sqrt{\alpha^{2}(\gamma-\beta)^{2}+4(1-\alpha)^{2} \gamma \beta}}{2(1-\alpha) \gamma}\right] } \\
= & \frac{\alpha^{2}(\gamma-\beta)^{2}+4(1-\alpha)^{2} \gamma \beta-\alpha^{2}(\gamma-\beta)^{2}}{4(1-\alpha) \gamma} \\
= & (1-\alpha) \beta,
\end{aligned}
$$

then

$$
(1-\alpha) \beta+\alpha \beta \theta=T \theta
$$

Therefore, $A_{\alpha}(G) \mathbf{X}=T \mathbf{X}$. Hence, T is an eigenvalue of $A_{\alpha}(G)$. Thus $T \leq \mu_{\alpha}(G)$. On the other hand, because

$$
\max _{\left(v_{i}, v_{j}\right) \in E(G)}=\left\{\frac{\alpha\left(\rho\left(w_{i}^{+}\right)+\rho\left(w_{j}^{+}\right)\right)+\sqrt{\alpha^{2}\left(\rho\left(w_{i}^{+}\right)-\rho\left(w_{j}^{+}\right)\right)^{2}+4(1-\alpha)^{2} \sum_{v_{k} \in N_{i}^{+}} \rho\left(w_{i k}\right) \sum_{v_{k} \in N_{j}^{+}} \rho\left(w_{j k}\right)}}{2}\right\}=T,
$$

hence

$$
\mu_{\alpha}(G) \leq \max _{\left(v_{i}, v_{j}\right) \in E(G)}\left\{\frac{\alpha\left(\rho\left(w_{i}^{+}\right)+\rho\left(w_{j}^{+}\right)\right)+\sqrt{\alpha^{2}\left(\rho\left(w_{i}^{+}\right)-\rho\left(w_{j}^{+}\right)\right)^{2}+4(1-\alpha)^{2} \sum_{v_{k} \in N_{i}^{+}} \rho\left(w_{i k}\right) \sum_{v_{k} \in N_{j}^{+}} \rho\left(w_{j k}\right)}}{2}\right\}=T .
$$

Thus

$$
\mu_{\alpha}(G)=T=\max _{\left(v_{i}, v_{j}\right) \in E(G)}\left\{\frac{\alpha\left(\rho\left(w_{i}^{+}\right)+\rho\left(w_{j}^{+}\right)\right)+\sqrt{\alpha^{2}\left(\rho\left(w_{i}^{+}\right)-\rho\left(w_{j}^{+}\right)\right)^{2}+4(1-\alpha)^{2} \sum_{v_{k} \in N_{i}^{+}} \rho\left(w_{i k}\right) \sum_{v_{k} \in N_{j}^{+}} \rho\left(w_{j k}\right)}}{2}\right\}
$$

This completes the proof.
From Theorem 2.4, we have the following two corollaries.
Corollary 2.5. Let $G=(V(G), E(G))$ be a strongly connected weighted digraph, where the weight $w_{i j}$ of each arc $\left(v_{i}, v_{j}\right) \in E(G)$ is a positive number. Then

$$
\mu_{\alpha}(G) \leq \max _{\left(v_{i}, v_{j}\right) \in E(G)}\left\{\frac{\alpha\left(w_{i}^{+}+w_{j}^{+}\right)+\sqrt{\alpha^{2}\left(w_{i}^{+}+w_{j}^{+}\right)^{2}+4(1-2 \alpha) w_{i}^{+} w_{j}^{+}}}{2}\right\}
$$

where $w_{i}^{+}=\sum_{v_{k} \in N_{i}^{+}} w_{i k}$.

Proof. For weighted digraph where the weight $w_{i j}$ of each arc is a positive number, we have $\rho\left(w_{i}^{+}\right)=w_{i}^{+}$, $\rho\left(w_{i j}\right)=w_{i j}$ for all v_{i}, v_{j}. Then by Theorem 2.4, we get the required result.

Corollary 2.6. Let $G=(V(G), E(G))$ be a strongly connected unweighted digraph. Then

$$
\mu_{\alpha}(G) \leq \max _{\left(v_{i}, v_{j}\right) \in E(G)}\left\{\frac{\alpha\left(d_{i}^{+}+d_{j}^{+}\right)+\sqrt{\alpha^{2}\left(d_{i}^{+}+d_{j}^{+}\right)^{2}+4(1-2 \alpha) d_{i}^{+} d_{j}^{+}}}{2}\right\}
$$

where d_{i}^{+}is the outdegree of vertex v_{i} in the unweighted digraph G.
Proof. For an unweighted digraph, we have $w_{i j}=1$ for $\left(v_{i}, v_{j}\right) \in E(G), w_{i}^{+}=d_{i}^{+}$. By Corollary 2.5 , the result follows.

Theorem 2.7. Let $G=(V(G), E(G))$ be a strongly connected generalized weighted digraph with vertex set $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and arc set $E(G)$. Then

$$
\begin{equation*}
\mu_{\alpha}(G) \leq \max _{\left(v_{i}, v_{j}\right) \in E(G)}\left\{\alpha \rho\left(\sum_{v_{k} \in N_{i}^{+}} w_{i k}\right)+(1-\alpha) \sum_{v_{k} \in N_{j}^{+}} \rho\left(w_{j k}\right)\right\} \tag{16}
\end{equation*}
$$

where $w_{i j}$ is the nonzero nonnegative symmetric matrix of order p of the $\operatorname{arc}\left(v_{i}, v_{j}\right) \in E(G)$. Moreover, if G is an weight-regular digraph and $w_{i j}$ has a common eigenvector corresponding to the largest eigenvalue $\rho\left(w_{i j}\right)$ for all v_{i}, v_{j}, then the equality holds.

Proof. Let M be a block diagonal matrix $\operatorname{diag}\left(\beta_{1} I_{p}, \beta_{2} I_{p}, \ldots, \beta_{n} I_{p}\right)$, where I_{p} is the $p \times p$ identity matrix, $\beta_{i}=\sum_{v_{k} \in N_{i}^{+}} \rho\left(w_{i k}\right)$. Let $\mathbf{X}=\left(x_{1}^{T}, x_{2}^{T}, \cdots, x_{n}^{T}\right)^{T}$ be a nonnegative eigenvector of $M^{-1} A_{\alpha}(G) M$ corresponding to the eigenvalue $\mu_{\alpha}(G)>0$, where $x_{i} \geq 0$ is a column vector in R^{p} corresponding to the vertex v_{i} of G. Let x_{s} is the vector component of \mathbf{X} such that $x_{s}^{T} x_{s}=\max _{1 \leq k \leq n}\left\{x_{k}^{T} x_{k}\right\}>0$. Since \mathbf{X} is nonzero, so is x_{s}. The (i, j)-th block of $M^{-1} A_{\alpha}(G) M$ is

$$
\begin{cases}\alpha w_{i}^{+}, & \text {if } i=j \\ (1-\alpha) \frac{\beta_{j}}{\beta_{i}} w_{i j}, & \text { if }\left(v_{i}, v_{j}\right) \in E(G) \\ 0, & \text { otherwise }\end{cases}
$$

Then we have $M^{-1} A_{\alpha}(G) M \mathbf{X}=\mu_{\alpha}(G) \mathbf{X}$. Furthermore, we get

$$
\mu_{\alpha}(G) x_{s}=\alpha w_{s}^{+} x_{s}+(1-\alpha) \sum_{v_{k} \in N_{s}^{+}} w_{s k} \frac{\beta_{k}}{\beta_{s}} x_{k}
$$

i.e.,

$$
\left(\mu_{\alpha}(G) I_{p}-\alpha w_{s}^{+}\right) x_{s}=(1-\alpha) \sum_{v_{k} \in N_{s}^{+}} w_{s k} \frac{\beta_{k}}{\beta_{s}} x_{k}
$$

i.e.,

$$
\begin{align*}
x_{s}^{T}\left(\mu_{\alpha}(G) I_{p}-\alpha w_{s}^{+}\right) x_{s} & =(1-\alpha) \sum_{v_{k} \in N_{s}^{+}} \frac{\beta_{k}}{\beta_{s}} x_{s}^{T} w_{s k} x_{k} \\
& \leq(1-\alpha) \sum_{v_{k} \in N_{s}^{+}}\left|\frac{\beta_{k}}{\beta_{s}} x_{s}^{T} w_{s k} x_{k}\right| \\
& \leq(1-\alpha) \sum_{v_{k} \in N_{s}^{+}} \frac{\beta_{k}}{\beta_{s}} \rho\left(w_{s k}\right) \sqrt{x_{s}^{T} x_{s}} \sqrt{x_{k}^{T} x_{k}}(\operatorname{using}(1)) \\
& \leq(1-\alpha) x_{s}^{T} x_{s} \sum_{v_{k} \in N_{s}^{+}} \frac{\beta_{k}}{\beta_{s}} \rho\left(w_{s k}\right) . \tag{17}
\end{align*}
$$

From the inequality (17) and (2), we have

$$
\mu_{\alpha}(G)-\alpha \rho\left(w_{s}^{+}\right) \leq \frac{x_{s}^{T}\left(\mu_{\alpha}(G) I_{p}-\alpha w_{s}^{+}\right) x_{s}}{x_{s}^{T} x_{s}} \leq(1-\alpha) \sum_{v_{k} \in N_{s}^{+}} \frac{\beta_{k}}{\beta_{s}} \rho\left(w_{s k}\right) .\left(\text { as } x_{s}^{T} x_{s}>0\right)
$$

Thus

$$
\begin{aligned}
\mu_{\alpha}(G) & \leq \alpha \rho\left(w_{s}^{+}\right)+(1-\alpha) \sum_{v_{k} \in N_{s}^{+}} \frac{\beta_{k}}{\beta_{s}} \rho\left(w_{s k}\right) \\
& \leq \alpha \rho\left(w_{s}^{+}\right)+(1-\alpha) \frac{\max _{v_{k} \in N_{s}^{+}}\left\{\beta_{k}\right\}}{\beta_{s}} \sum_{v_{k} \in N_{s}^{+}} \rho\left(w_{s k}\right) \\
& =\alpha \rho\left(w_{s}^{+}\right)+(1-\alpha) \max _{v_{k} \in N_{s}^{+}}\left\{\beta_{k}\right\} \\
& \left.=\alpha \rho\left(w_{s}^{+}\right)+(1-\alpha) \max _{v_{k} \in N_{s}^{+}} \sum_{v_{t} \in N_{k}^{+}} \rho\left(w_{k t}\right)\right\} \\
& \leq \max _{\left(v_{i}, v_{j}\right) \in E(G)}\left\{\alpha \rho\left(\sum_{v_{k} \in N_{i}^{+}} w_{i k}\right)+(1-\alpha) \sum_{v_{k} \in N_{j}^{+}} \rho\left(w_{j k}\right)\right\} .
\end{aligned}
$$

Then we complete the first part of the theorem.
Next, suppose that G is an weight-regular digraph and $w_{i j}$ has a common eigenvector corresponding to the largest eigenvalue $\rho\left(w_{i j}\right)$ for all v_{i}, v_{j}. Let $\rho\left(w_{i}^{+}\right)=\gamma$ for any $v_{i} \in V(G)$, and x be a common eigenvector of $w_{i j}$ corresponding to the largest eigenvalue $\rho\left(w_{i j}\right)$ for all v_{i}, v_{j}. Then by Lemma 2.3, x is also an eigenvector of w_{i}^{+}corresponding to the largest eigenvalue $\rho\left(w_{i}^{+}\right)$for all i, and $\rho\left(w_{i}^{+}\right)=\sum_{v_{j} \in N_{i}^{+}} \rho\left(w_{i j}\right)$.
Hence, we can easily verified $A_{\alpha}(G) \mathbf{X}=\gamma \mathbf{X}$, where $\mathbf{X}=\left\{x^{T}, x^{T}, \ldots, x^{T}\right\}^{T}$. So $\gamma \leq \mu_{\alpha}(G)$. On the other hand, $\alpha \rho\left(\sum_{v_{k} \in N_{i}^{+}} w_{i k}\right)+(1-\alpha) \sum_{v_{k} \in N_{j}^{+}} \rho\left(w_{j k}\right)=\gamma$. Since

$$
\mu_{\alpha}(G) \leq \max _{\left(v_{i}, v_{j}\right) \in E(G)}\left\{\alpha \rho\left(\sum_{v_{k} \in N_{i}^{+}} w_{i k}\right)+(1-\alpha) \sum_{v_{k} \in N_{j}^{+}} \rho\left(w_{j k}\right)\right\}=\gamma .
$$

Then

$$
\mu_{\alpha}(G)=\gamma=\max _{\left(v_{i}, v_{j}\right) \in E(G)}\left\{\alpha \rho\left(\sum_{v_{k} \in N_{i}^{+}} w_{i k}\right)+(1-\alpha) \sum_{v_{k} \in N_{j}^{+}} \rho\left(w_{j k}\right)\right\} .
$$

Hence the theorem is proved.
From Theorem 2.7, we have the following two corollaries.

Corollary 2.8. Let $G=(V(G), E(G))$ be a strongly connected weighted digraph, where the weight $w_{i j}$ of each arc $\left(v_{i}, v_{j}\right) \in E(G)$ is a positive number. Then

$$
\mu_{\alpha}(G) \leq \max _{\left(v_{i}, v_{j}\right) \in E(G)}\left\{\alpha w_{i}^{+}+(1-\alpha) w_{j}^{+}\right\}
$$

where $w_{i}^{+}=\sum_{v_{k} \in N_{i}^{+}} w_{i k}$.
Corollary 2.9. Let $G=(V(G), E(G))$ be a strongly connected unweighted digraph. Then

$$
\mu_{\alpha}(G) \leq \max _{\left(v_{i}, v_{j}\right) \in E(G)}\left\{\alpha d_{i}^{+}+(1-\alpha) d_{j}^{+}\right\}
$$

where d_{i}^{+}is the outdegree of vertex v_{i} in the digraph G.

Acknowledgements

The authors would like to thank the referee for his/her valuable comments and suggestions, which are helpful for improving the presentation of the manuscript.

References

[1] Ş.B. Bozkurt, D. Bozkurt, On the spectral radius of weighted digraphs, Proyecciones., 31(3) (2012), 247-259.
[2] M. Fiedler, An extremal problem for the spectral radius of a graph, Discrete Math., 108 (1992), 149-158.
[3] H.A. Ganie, M. Baghipur, On the generalized adjacency spectral radius of digraphs, Linear Multilinear Algebra, 70 (2022), 3497-3510.
[4] K.C. Das, Extremal graph characterization from the bounds of the spectral radius of weighted graphs, Appl. Math. Comput., 217 (2011), 7420-7426.
[5] K.C. Das, R.B. Bapat, A sharp upper bound on the spectral radius of weighted graphs, Discrete Math., 308 (2008), 3180-3186.
[6] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
[7] P. Li, Q.X. Huang, A sharp upper bound on the spectral radius of generalized weighted digraphs, Ars Combin., 128 (2016), 403-414.
[8] S.C. Li, Y. Tian, On the spectral radius of weighted unicyclic graphs with a positive weight set, Linear Multilinear Algebra, 59 (2011), 1399-1407.
[9] J.P. Liu, X.Z. Wu, J.S. Chen, B.L. Liu, The A_{α} spectral radius characterization of some digraphs, Linear Algebra Appl., 563 (2019), 63-74.
[10] L. Lu, Q.X. Huang, The spectral radius of maximum weighted cycle, Discrete Math. Algorithms Appl., 8(2) (2016), 1650021.
[11] S. Sorgun, Ş. Büyükköse, The new upper bounds on the spectral radius of weighted graphs, Appl. Math. Comput., 218 (2012), $5231-5238$.
[12] S. Sorgun, Ş. Büyükköse, On the bounds for the largest Laplacian eigenvalues of weighted graphs, Discrete Optim., 9 (2012), 122-129.
[13] S.W. Tan, J.J. Jang, On the Laplacian spectral radius of weighted trees with fixed diameter and weight set, Linear Multilinear Algebra, 59 (2011), 173-192.
[14] G.X. Tian, T.Z. Huang, A note on upper bounds for the spectral radius of weighted graphs, Appl. Math. Comput., 243 (2014), 392-397.
[15] W.G. Xi, L.G. Wang, On the signless Laplacian spectral radius of weighted digraphs, Discrete Optim., 32 (2019), 63-72.
[16] W.G. Xi, L.G. Wang, The A_{α} spectral radius and maximum outdegree of irregular digraphs, Discrete Optim., 38 (2020), 100592.
[17] W.G. Xi, W. So, L.G. Wang, On the A_{α} spectral radius of digraphs with given parameters, Linear Multilinear Algebra, 70 (2022), 2248-2263.
[18] S.Q. Xie, X.D. Chen, X.Y. Li, X.Q. Liu, Upper bounds on the (signless Laplacian) spectral radius of irregular weighted graphs, Bull. Malays. Math. Sci. Soc., 44 (2021), 2063-2080.

[^0]: 2020 Mathematics Subject Classification. Primary 05C50; Secondary 15A18.
 Keywords. weighted digraph, A_{α} spectral radius, upper bounds.
 Received: 17 August 2022; Accepted: 04 December 2023
 Communicated by Paola Bonacini
 Research supported by the National Natural Science Foundation of China (Nos. 12001434 and 12271439), the Natural Science Basic Research Program of Shaanxi Province (No. 2022JM-006) and Chinese Universities Scientific Fund (No. 2452020021).

 * Corresponding author: Weige Xi

 Email addresses: xiyanxwg@163.com (Weige Xi), shs15275297159@163.com (Heshun Song), feifan20001227@nwafu.edu.cn (Feifan Lei), cjy1137368725@163.com (Jingyu Chen)

