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Abstract. In this article, using the reproducing kernel and Berezin symbol techniques we prove that a
sequence is Cesàro convergent, then it is Abel convergent. We prove criteria for Borel convergence of some
sequences and series of complex numbers. Also, we answer if the Berezin transform of a bounded operator
on the Dirichlet space D and the Fock space F (C) have radial limits almost everywhere. Moreover, we
give an approximation problem for inner function by Berezin number of operators.

1. Introduction and background

By a reproducing kernel Hilbert space (RKHS) we mean a Hilbert spaceH = H(Θ) of complex-valued
functions on a (nonempty) setΘ,which has the property that point evaluations f → f

(
µ
)

are continuous in
H for all µ ∈ Θ. Then the Riesz representation theorem guarantees that there is a unique element kH ,µ ∈ H
for every µ ∈ Θ such that f (µ) =

〈
f , kH ,µ

〉
for all f ∈ H . The function kH ,µ is called the reproducing kernel

ofH .
Let the sequence (en)n≥1 be an orthonormal basis (en)n≥1 ofH . Then, the reproducing kernel kH ,µ ofH is

given by (see Aronzajn [1])

kH ,µ =
∑

n

en
(
µ
)
en (z) . (1)

The Berezin symbol Ã of a bounded linear operator on H (shortly, A ∈ B(H)) is defined by (see Zhu
[22])

Ã(µ) :=
〈
ÂkH ,µ, k̂H ,µ

〉
(µ ∈ Θ),

where k̂H ,µ =
kH ,µ
∥kH ,µ∥

be the normalized reproducing kernel ofH . Important applications related with Berezin

symbols can be found in [13, 14].
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The RKHSH is standard if the underlying set Θ is a subset of a topological space and the boundary of
Θ is non-empty and has the property that

{̂
kµn

}
is weakly convergent to 0 whenever

{
µn

}
is a sequence in

Θ that is convergent to a point in boundary of Θ (see Nordgren and Rosenthal [16]). For example, Hardy,
Bergman and Fock spaces are standard RKHS.

It is obvious that lim
n→∞

K̃(µn) = 0 for a compact operator K on the standard RKHS H , whenever
{
µn

}
is convergent to a point of ∂Θ (since compact operators send weakly convergent sequences into strongly
convergent ones). So, the Berezin symbol of a compact operator on a standard RKHS vanishes on the
boundary.

The Berezin set and the Berezin number of operator A are defined by (see Karaev [10])

Ber (A) :=
{
Ã

(
µ
)

: µ ∈ Θ
}

and

ber (A) := sup
{∣∣∣∣Ã (
µ
)∣∣∣∣ : µ ∈ Θ

}
,

respectively.
Recently, remarkable results for Berezin number of operators have been obtained by authors [2, 3, 6, 8, 21].
Let (an)n≥0 be any sequence of complex numbers. The diagonal operator D(an) on H for any bounded

sequence (an)n≥0 is defined by the formula D(an)en (z) := anen (z) , n ≥ 0,with respect to the orthonormal basis
(en (z))n≥0 ofH . A simple calculus shows [12] that the Berezin symbol of diagonal operator is

D̃(an)
(
µ
)
=

1∑
∞

n=0

∣∣∣en
(
µ
)∣∣∣2

∞∑
n=0

an

∣∣∣en
(
µ
)∣∣∣2 , µ ∈ Θ. (2)

Recall that [15] the Dirichlet space D is the Hilbert space of analytic functions f =
∞∑

n=0
anzn on the unit

disk D with
∫
D

∣∣∣ f ′ (z)
∣∣∣2 dA/π =

∞∑
n=0

(n + 1) |an|
2 < ∞, where dA denotes the usual Lebesgue measure on D.

Since the sequence
{
zn/
√

n + 1 : n ≥ 0
}

is an orthonormal basis of Dirichlet space, the reproducing kernel of
D is given by formula (1)

kµ (z) =
∞∑

n=0

(
µz

)n

n + 1
=

1
µz

log
1

1 − µz
.

Following by [19], note that the Fock space (or Segal-Bargmann space) is the space of entire functions
that are square-integrable with respect to Gaussian measure on the complex plane, that is, the space of all

analytic functions f onC for which
∫
C

∣∣∣ f (z)
∣∣∣2 dµ (z) < ∞,where dµ (z) = e−

|z|2
2 d A(z)

2 . Since
{
zn/ (n!2n)1/2 : n ≥ 0

}
is an orthonormal basis in F , the reproducing kernel in F by formula (1) is given by kF ,µ (z) = eµz/2.

Let L2
a = L2

a (D) represent the Bergman space of all analytic functions onD satisfying
∥∥∥ f

∥∥∥2

L2
a

:=
∫
D

∣∣∣ f (z)
∣∣∣2 dA (z) <

∞, where dA (z) represent Lebesgue area measure on the unit discD, normalized so that the measure ofD
is equal to 1. It is well known (see Zhu [22]) that since

{√
n + 1zn

}
n≥0

is an orthonormal basis of the Bergman

space L2
a , the reproducing kernel of Bergman space is kL2

a ,µ
(z) = 1/

(
1 − µz

)2 , µ, z ∈ D.
In this article, using the reproducing kernel and Berezin symbol techniques we prove that a sequence

(an)n≥0 is Cesàro convergent to L, then (an)n≥0 is Abel convergent to L. We give criteria for Borel convergence
of some sequences and series of complex numbers. Also, we answer if the Berezin transform of a bounded
operator on the Dirichlet spaceD and the Fock spaceF (C) have radial limits almost everywhere. Moreover,
we give an approximation problem for inner function by Berezin number of operators.
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2. A new proof for a relationship between Cesaro and Abel convergences

Recall [17] that a sequence (an)n≥0 of complex numbers an is said to be Cesàro convergent (written (C, 1)
convergent) to a finite number L if the limit

lim
n→∞

1
n + 1

n∑
k=0

ak = L.

It is Abel convergent (written (A) convergent) to L if the limit

lim
x→1−

(1 − x)
∞∑

n=0

anxn = L.

The following theorem was proved in [17]. But, we here give a different proof using the Berezin symbol
technique.

Theorem 2.1. If the sequence (an)n≥0 is (C, 1) convergent to L, then (an)n≥0 is (A) convergent to L.

Proof. Let (an)n≥0 be (C, 1) convergent to L and sn =
1

n + 1

n∑
k=0

ak. Then we have

(n + 1) sn =

n∑
k=0

ak and nsn−1 =

n−1∑
k=0

ak.

From above equations, we obtain

ak = (k + 1) sk − ksk−1. (3)

Now, we calculate the Berezin symbol of diagonal operator with (sn)n≥0 on the Bergman space using formula
(2) for all µ ∈ D that

D̃(sn)
(
µ
)
=

1∑
∞

n=0 (n + 1)
(∣∣∣µ∣∣∣2)n

∞∑
n=0

sn (n + 1)
(∣∣∣µ∣∣∣2)n

=
(
1 −

∣∣∣µ∣∣∣2)2 ∞∑
n=0

sn (n + 1)
(∣∣∣µ∣∣∣2)n

and therefore, D̃(sn) is a radial function onD, that is D̃(sn)
(
µ
)
= D̃(sn)

(∣∣∣µ∣∣∣) .
Let

∣∣∣µ∣∣∣2 = x. Then

D̃(sn)

(√
x
)
= (1 − x)2

∞∑
n=0

sn (n + 1) xn. (4)

Expanding the formula (4), we have that

D̃(sn)

(√
x
)
= (1 − x)

∞∑
n=0

[(n + 1) sn − nsn−1] xn

= (1 − x)
∞∑

n=0

anxn. (by (3) )
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Then, we get from above formula

(1 − x)
∞∑

n=0

anxn = (1 − x)
∞∑

n=0

(an − L) xn + L (1 − x)
∞∑

n=0

xn

= D̃sn−L

(√
x
)
+ L

Since sn−L→ 0 as n→∞, we have that Dsk−L is a compact operator. Therefore, its Berezin symbol vanishes
on the boundary, that is,

lim
x→1−

D̃sn−L

(√
x
)
= 0.

Then we conclude from the last equality

lim
x→1−

(1 − x)
∞∑

n=0

anxn = L,

which shows that (an)n≥0 is (A) convergent to L.

3. Boundary behavior of Berezin symbols of operators

Zorboska in [23] formulated the following natural and fundamental problem: it is not known if the
Berezin transform of a bounded operator on L2

a must have radial limits almost everywhere on the unit
circle. Some authors tried to answer this question. Motivated by this question, one can ask this question:
does the Berezin transform of a bounded operator on Dirichlet spaceDhave radial limits almost everywhere
on the unit circle? Is similar question also valid in case of the Fock space F (C) over the complex plane? In
this section, we try to answer these questions.

Definition 3.1. The sequence (an)n≥0 of complex numbers an is Borel summable (written (B)-summable) to l if the
limit

lim
t→∞

e−t
∞∑

n=0

an
tn

n!
= l

exists.

Definition 3.2. The sequence (an)n≥0 of complex numbers (an)n≥0 is said to be summable to a finite number ζ by the
logarithmic method (L) (or (L)-summable to ζ) if the limit

lim
x→1−
−

1
log (1 − x)

∞∑
n=0

an

n + 1
xn+1 = ζ.

exists.

Let K∞ and K∞
−

denote the set of all bounded non-Borel summable sequences and the set of all bounded
non-(L) summable sequences, respectively (see [9, 18] for Borel and logarithmic type summability).

The following result shows that there exist linear bounded operators on the Dirichlet spaceD such that
their Berezin symbols have no radial boundary values on a unit circle.

Theorem 3.3. Let (an)n≥0 ∈ K∞
−

be any sequence. Then the Berezin symbol of the diagonal operator D{an}

zn

√
n + 1

=

an
zn

√
n + 1

has no radial limits anywhere on the unit circle T, where
{
zn/
√

n + 1 : n ≥ 0
}

is an orthonormal basis of

Dirichlet spaceD.
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Proof. The Berezin symbol of the diaoganal operator on the Dirichlet spaceD is as following for all µ ∈ D
(see [20]):

D̃{an}

(
µ
)
=

〈
D{an }̂kµ, k̂µ

〉
= −

1

log
(
1 −

∣∣∣µ∣∣∣2)
∞∑

n=0

an

(∣∣∣µ∣∣∣2)n+1

n + 1

and so, D̃{an} is a radial function onD, that is D̃{an}

(
µ
)
= D̃{an}

(∣∣∣µ∣∣∣) .
In view of the fact that (an)n≥0 is not (L) convergent sequence, we get from above equation that D̃{an} has

radial limits nowhere on a unit circle, which gives the desired result.

Next result proves that there exist linear bounded operators on the Fock space F (C) such that their
Berezin symbols have no radial boundary values on the complex plane C.

Theorem 3.4. Let (an)n≥0 ∈ K∞ be any sequence, and let D{an} be a diagonal operator with respect to the standard
orthonormal basis en (z) =

{
zn/ (n!2n)1/2

}
n≥0

of the Fock space F (C). Then the Berezin symbol D̃{an} has no radial
limits anywhere on the complex plane C.

Proof. By calculating the Berezin symbol of the diaoganal operator on the Fock space F (C), we have (see
[5])

D̃{an}

(
µ
)
=

〈
D{an }̂kµ, k̂µ

〉
=

1

e|µ|
2
/2

∞∑
n=0

an

(∣∣∣µ∣∣∣2 /2)n

n!

= e−|µ|
2
/2
∞∑

n=0

an

(∣∣∣µ∣∣∣2 /2)n

n!

for all µ ∈ C and hence, D̃{an} is a radial function on C, that is D̃{an}

(
µ
)
= D̃{an}

(∣∣∣µ∣∣∣) .
Since by condition of theorem, (an)n≥0 is not (B)-summable, it follows from above equation that the

Berezin symbol D̃{an} of the operator D{an} has radial limits nowhere on the complex plane C.

4. Berezin symbols and Borel convergence of sequences and series

In this section, we give in terms of Berezin symbols of weighted shift operator WΛ,

WΛ
zn

(n!2n)1/2
= µn

zn+1

((n + 1)!2n+1)1/2
, n ≥ 0, (5)

on the Fock space F some criterion for Borel convergence of sequences and series of complex numbers.

Recall that
{

zn

(n!2n)1/2
: n ≥ 0

}
is an orthonormal basis in F .

Theorem 4.1. Let {an}n≥0 be a bounded sequence of complex numbers, and Wa be an associated weighted shift operator
acting on the Fock space F by the formula (5) . Then

(a) the series
∞∑

n=0

an
√

2n + 2
is Borel convergent if and only if

∣∣∣W̃a

∣∣∣ (√2t
)

√
2t

= O
(
e−t

)
as t→∞;
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(b) the sequence
(

an
√

2n + 2

)
n≥0

is Borel convergent if and only if

∣∣∣W̃a

∣∣∣ (√2t
)
= O

(√
2t

)
as t→∞.

First let us give the following.

Lemma 4.2. For any operator A ∈ B(F ) we obtain

Ã
(
µ
)
= e−|µ|

2
/2
∞∑

n=0

1√
(n!2n) (m!2m)

⟨Aen, em⟩µ
nµm (6)

for µ ∈ C, where en (z) =
{

zn

(n!2n)1/2

}
n≥0

is the orthonormal basis for the space F .

Proof. Actually,

Ã
(
µ
)
=

〈
Âkµ, k̂µ

〉
=

〈
A

kµ∥∥∥kL2
a ,µ

∥∥∥ , kµ∥∥∥kL2
a ,µ

∥∥∥
〉

= e−|µ|
2
/2

〈∑
n≥0

en
(
µ
)
Aen (z) ,

∑
n≥0

en
(
µ
)
en (z)

〉

= e−|µ|
2
/2

∞∑
n,m=0

en
(
µ
)
em

(
µ
)
⟨Aen, em⟩

= e−|µ|
2
/2

∞∑
n,m=0

µn

√
n!2n

µm

√
m!2m

⟨Aen, em⟩

= e−|µ|
2
/2

∞∑
n,m=0

1√
(n!2n) (m!2m)

⟨Aen, em⟩µ
nµm,

which proves (6) .

Proof. [Proof of Theorem 4.1]Let Wa be a weighted shift operator on F . Then it follows from formula (5)
that

W̃a
(
µ
)
= e−|µ|

2
/2

∞∑
n,m=0

1√
(n!2n) (m!2m)

⟨anen+1, em⟩µ
nµm

= µe−|µ|
2
/2
∞∑

n=0

an
√

2n + 2

∣∣∣µ∣∣∣2n

n!2n

= µe−|µ|
2
/2
∞∑

n=0

an
√

2n + 2

(∣∣∣µ∣∣∣2 /2)n

n!

or

W̃a
(
µ
)
= µe−|µ|

2
/2
∞∑

n=0

an
√

2n + 2

(∣∣∣µ∣∣∣2 /2)n

n!
(
µ ∈ C

)
. (7)
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As a result,

∣∣∣∣∣∣∣ W̃a
(
µ
)

µe−|µ|
2
/2

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣
∞∑

n=0

an
√

2n + 2

(∣∣∣µ∣∣∣2 /2)n

n!

∣∣∣∣∣∣∣∣∣∣ (8)

and ∣∣∣∣∣∣∣W̃a
(
µ
)

µ

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣e−|µ|

2
/2
∞∑

n=0

an
√

2n + 2

(∣∣∣µ∣∣∣2 /2)n

n!

∣∣∣∣∣∣∣∣∣∣ (9)

for all µ ∈ C. Let t =
∣∣∣µ∣∣∣2 /2. Then (8) and (9) has the form∣∣∣W̃a

∣∣∣ (√2t
)

√
2te−t

=

∣∣∣∣∣∣∣
∞∑

n=0

an
√

2n + 2

(t)n

n!

∣∣∣∣∣∣∣ (10)

and ∣∣∣W̃a

∣∣∣ (√2t
)

√
2t

=

∣∣∣∣∣∣∣e−t
∞∑

n=0

an
√

2n + 2

(t)n

n!

∣∣∣∣∣∣∣ (11)

for all t ∈ R+. It follows now immediately from (10) and (11) the assertions (a) and (b) of the theorem.

Corollary 4.3. We have:

(a) Ber (Wa) =

µe−|µ|
2
/2
∞∑

n=0

an
√

2n + 2

(∣∣∣µ∣∣∣2 /2)n

n!
: µ ∈ C


(b) ber (Wa) = sup


∣∣∣µ∣∣∣ e−|µ|2/2

∣∣∣∣∣∣∣∣∣∣
∞∑

n=0

an
√

2n + 2

(∣∣∣µ∣∣∣2 /2)n

n!

∣∣∣∣∣∣∣∣∣∣ : µ ∈ C


(c) If sup

n≥0

|an|
√

2n + 2
< +∞, then ber (Wa) does not have an upper bound.

Proof. The proofs of (a) and (b) are clear from the formula (7) . Now we prove (c). Actually, it follows from

the condition sup
n≥0

|an|
√

2n + 2
< +∞, n ≥ 0, that

ber (Wa) ≤ sup
µ∈C

∣∣∣µ∣∣∣ e−|µ|2/2
∞∑

n=0

(∣∣∣µ∣∣∣2 /2)n

n!

 sup
n≥0

|an|
√

2n + 2

≤ sup
n≥0

|an|
√

2n + 2
sup
µ∈C

(∣∣∣µ∣∣∣ e−|µ|2/2e|µ|
2
/2
)

= sup
n≥0

|an|
√

2n + 2
sup
µ∈C

(∣∣∣µ∣∣∣) ,
for all µ ∈ C. This shows that ber (Wa) does not have an upper bound.
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5. Approximation of inner functions and Berezin number

In this section, we give an approximation problem for inner function by Berezin number of operators,
which improves the results in [11, Theorem 5.1].

Theorem 5.1. Let Φ be an inner function. For any A ∈ {TΦ}
′

=
{
L ∈ B

(
H2

)
: LTΦ = TΦL

}
, we set NΦ,A =

TΦ
(
I − ATΦT∗Φ

)
. Let Kϵ,Φ = {z ∈ D : |Φ (z)| ≤ ϵ}, where 0 < ϵ < 1, be a level set of Φ for every ϵ. Then

∥∥∥Φ − ÑΦ,A
∥∥∥

L∞(Kϵ,Φ) ≤

(
ber

(
A2

)
+ ∥A∥2

)1/2

√
2

ϵ3.

Proof. Calculating in the same manner as in Theorem 5.1 of [11], we have

ÑΦ,A (λ) =
〈
NΦ,Âkλ, k̂λ

〉
= Φ (λ)

(
1 − Ã (λ) |Φ (λ)|2

)
from which we have that∣∣∣Φ (λ) − ÑΦ,A

∣∣∣ = ∣∣∣∣Ã (λ)
∣∣∣∣ |Φ (λ)|3

for λ ∈ D. It is known that following inequality was obtained in a different way earlier by Buzano in [4]:

|⟨a, e⟩ ⟨e, b⟩| ≤
1
2

(|⟨a, b⟩| + ∥a∥ ∥b∥) (12)

Putting the e = k̂λ, a = Âkλ, b = A∗̂kλ in (12), we have that∣∣∣Φ (λ) − ÑΦ,A
∣∣∣ = ∣∣∣∣Ã (λ)

∣∣∣∣ |Φ (λ)|3

≤

(∣∣∣∣〈A2̂kλ, k̂λ
〉∣∣∣∣ + ∥∥∥∥Âkλ

∥∥∥∥ ∥∥∥∥A∗̂kλ
∥∥∥∥)1/2

√
2

ϵ3

≤

(
ber

(
A2

)
+ ∥A∥2

)1/2

√
2

ϵ3

for all λ ∈ D and 0 < ϵ < 1. Particularly,

∣∣∣Φ (λ) − ÑΦ,A
∣∣∣ ≤ (

ber
(
A2

)
+ ∥A∥2

)1/2

√
2

ϵ3

for all λ ∈ Kϵ,Φ, and therefore

∥∥∥Φ − ÑΦ,A
∥∥∥

L∞(Kϵ,Φ) ≤

(
ber

(
A2

)
+ ∥A∥2

)1/2

√
2

ϵ3, 0 < ϵ < 1

which gives the desired result.
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