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Abstract. This paper introduces a precise upper limit for solving the numerical solutions of singular
differential equations by employing error analysis. The approach utilizes extended second-kind Chebyshev
wavelets to solve the singular differential equation. By applying the exact upper bound based on the moduli
of continuity in the Hölder space interval [0, µ), it becomes evident that the method exhibits convergence
with a reduced number of wavelet coefficients. Additionally, the paper includes several numerical examples
that effectively showcase the method’s validity and applicability.

1. Introduction

Wavelet analysis is a contemporary field within mathematical research, finding extensive application
in signal analysis, time-frequency analysis, and numerical analysis. This analytical technique revolves
around function representation [12],[11],[5],[10] wherein functions are decomposed into a sum of wavelet
basis functions. Each of these wavelet basis functions results from compressing and translating a mother
wavelet function with desirable attributes of smoothness and locality. Therefore, wavelets are employed as
foundational elements for the representation of signals and functions, characterized by distinct attributes
that render them well-suited for a broad spectrum of applications [3],[7],[13] in science and engineering.

Wavelets are increasingly being used to solve differential equations [6],[20]. This includes both linear
and nonlinear differential equations. The sparse representation property of wavelets makes solving these
equations more efficient and accurate compared to traditional methods. The compact support of wavelets
allows them to naturally incorporate initial and boundary conditions in solving differential equations. This
property makes them suitable for capturing localized features in signals or functions and are adept at
identifying singularities or discontinuities in signals. In the literature, a variety of wavelets can be found,
including the Haar wavelet [16], [18], [17], Meyer wavelet [9], Legendre wavelet [15], Laguerre wavelet
[21], and Chebyshev wavelet [22], Hermite wavelet [14] etc. These wavelets are utilized to the approximate
functions in a specific space.

In the standard formulation of wavelets, they are indeed often defined on the interval [0, 1). This
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interval is convenient for many theoretical and practical reasons. However, in this paper wavelets have
been extended to different intervals, such as [0, µ), where µ is some positive number. Extending wavelets
to [0, µ) involves scaling and translating the original wavelet function to fit within the new interval while
preserving essential properties like orthogonality, compact support, and wavelet transform properties. This
process can be useful when dealing with data that doesn’t naturally conform to the [0, 1) interval, and it
allows for more flexibility in wavelet-based analysis. In this paper an operational matrix of integration based
on the extended second kind Chebyshev wavelets is introduced. This matrix is designed for addressing
non-linear initial value problems that exhibit singularities within the interval [0, µ). An essential objective of
this research paper is to analyse the convergence of the wavelet series of functions having second derivatives
in Hölder class Hα[0, µ) using the moduli of continuity W( f , δ). The modulus of continuity of f , denoted by
W( f , δ) [1], is established through the definition:

W( f , δ) = sup
0<h≤δ

|| f (t + h) − f (t)||2,

for every t belonging to a finite interval, has the property limδ→0+ W( f , δ) = 0. Due to this property, the
better estimations of the rate of approximation of functions in different classes are obtained.

This paper is arranged as: Section 2. contains some definitions and preliminaries used in this paper.
Section 3. gives the convergence and error analysis using moduli of continuity of functions whose second-
order derivatives belong to Hölder class Hα[0, µ), µ > 0. Section 4. provides the detailed description of the
method to solve singular differential equations using wavelet approximations. Section 5. encloses some
numerical examples and their comparisons. Section 6 contains the final remarks, and lastly, the references
used to support the content of this paper have been included.

2. Definitions and Preliminaries

2.1. Chebyshev wavelets of second kind on the interval [0, µ)
The second kind of Chebyshev polynomial [8], denoted as Um(t), is a polynomial of degree m in the

variable t. This polynomial is defined by the equation:

Um(t) =
sin(m + 1)θ

sinθ
when t = cosθ. These polynomials are defined on the interval [-1,1] and are orthogonal with respect to the
weight function w(t) =

√

1 − t2 as∫ 1

−1
Um(t)Un(t)w(t)dt =


π
2
, m = n

0, otherwise,

for m,n = 0, 1, 2, 3... .
The recurrence formula for these polynomials are Um+1(t) = 2tUm(t) −Um−1(t), m = 1, 2, 3, ... .
Extended Chebyshev wavelets ψµn,m(t)=ψ(k,n,m, µ, t) have five arguments, where n = 1, 2, 3, ..., 2k−1, k ∈
Z+,m being the degree of Chebyshev polynomials and t the normalized time. These are defined on the
interval [0, µ) by

ψ
µ
n,m(t) =


2

k+1
2

√
µπ

Um( 2k

µ t − 2n + 1),
(n − 1)µ

2k−1
≤ t <

nµ
2k−1

0, otherwise,

where m = 0, 1, 2, ...,M and n = 1, 2, ..., 2k−1 [22].

Here, the coefficient
√

2
µπ

is for orthonormality, (2n − 1)µ2−k is the translation parameter and 2−k is

the dilation parameter. Also, the weight function w(t) =
√

1 − t2 has to be dilated and translated as
wn(t) = w( 2k

µ t − 2n + 1).
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2.2. Modulus of Continuity
The modulus of continuity [1] of a function f ∈ L2[0, µ) is defined as

W( f , δ) = sup
0<h≤δ

|| f (t + h) − f (t)||2, ∀t ∈ [0, µ)

= sup
0<h≤δ

(∫ µ

0
| f (t + h) − f (t)|2dt

)1/2

.

Remarkably, a noteworthy observation is that W( f , δ) exhibits a monotonically increasing pattern with the
growth of δ and W( f , δ)→ 0 as δ→ 0+ for f ∈ L2[0, µ).

2.3. Hölder class Hα[0, µ)
A function f is said to be in Hölder class [2] Hα[0, µ) of order α ∈ (0, 1] if f is continuous on [0, µ) and

satisfies the inequality,

f (x + t) − f (x) = O(|t|α), ∀ x + t, x ∈ [0, µ).

3. Moduli of Continuity of functions having second derivative in Hölder class Hα[0, µ)

3.1. Convergence Analysis
The following convergence theorem has been proved in this paper:

Theorem 3.1. Suppose there exists a square integrable function denoted by f (t) satisfying the condition f ′′ ∈
Hα[0, µ), where 0 < α ≤ 1 and has the extended second kind Chebyshev wavelet expansion of the form

2k−1∑
n=1

∞∑
m=0

cn,mψ
µ
n,m(t), where cn,m = ⟨ f , ψ

µ
n,m⟩wn , (1)

then the series converges uniformly to the function f (t) in the Hilbert space L2[0, µ).

Proof. Consider the wavelet coefficient

cn,m =

∫ µ

0
f (t)ψµn,m(t)wn(t)dt

=

√
2
µπ
.2

k
2

∫ nµ
2k−1

(n−1)µ

2k−1

f (t)Um(
2kt
µ
− 2n + 1)w(

2kt
µ
− 2n + 1)dt

= 2
k
2

√
2µ
π

∫ π

0
f
(

(cosθ + 2n − 1)µ
2k

)
Um(cosθ)w(cosθ) sinθ

dθ
2k
,

2kt
µ
− 2n + 1 = cosθ

=
1

2
k
2

√
2µ
π

∫ π

0
f
(

(cosθ + 2n − 1)µ
2k

)
Um(cosθ)w(cosθ) sinθdθ

=
1

2
(k−1)

2

√
µ

π

∫ π

0
f
(

(cosθ + 2n − 1)µ
2k

)
sin(m + 1)θ sinθdθ

=
1

2
(k+1)

2

√
µ

π

∫ π

0
f
(

(cosθ + 2n − 1)µ
2k

)
(cos mθ − cos(m + 2)θ) dθ

=
1

2
(k+1)

2

√
µ

π

[
f
(

(cosθ + 2n − 1)µ
2k

) (
sin mθ

m
−

sin(m + 2)θ
m + 2

)π
0

]
−

1

2
(k+1)

2

√
µ

π

[∫ π

0
f ′

(
(cosθ + 2n − 1)µ

2k

) (
−µ sinθ

2k

) (
sin mθ

m
−

sin(m + 2)θ
m + 2

)
dθ

]
,
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=
1

2
(5k+1)

2

µ5/2

√
π

∫ π

0
f ′′

(
(cosθ + 2n − 1)µ

2k

)
γm(θ)dθ,

where γm(θ) =
sinθ

m

(
sin(m − 1)θ

m − 1
−

sin(m + 1)θ
m + 1

)
−

sinθ
m + 2

(
sin(m + 1)θ

m + 1
−

sin(m + 3)θ
m + 3

)
.

cn,m =
1

2
(5k+1)

2

µ5/2

√
π

(∫ π

0

[
f ′′

(
(cosθ + 2n − 1)µ

2k

)
− f ′′

(
(2n − 1)µ

2k

)]
γm(θ)dθ

+ f ′′
(

(2n − 1)µ
2k

) ∫ π

0
γm(θ)dθ

)
= I1 + I2.

I2 =
1

2
(5k+1)

2

µ5/2

√
π

f ′′
(

(2n − 1)µ
2k

) ∫ π

0
γm(θ)dθ = 0.

cn,m =
1

2
(5k+1)

2

µ5/2

√
π

∫ π

0

[
f ′′

(
(cosθ + 2n − 1)µ

2k

)
− f ′′

(
(2n − 1)µ

2k

)]
γm(θ)dθ

|cn,m| =

∣∣∣∣∣∣ 1

2
(5k+1)

2

µ5/2

√
π

∫ π

0

[
f ′′

(
(cosθ + 2n − 1)µ

2k

)
− f ′′

(
(2n − 1)µ

2k

)]
γm(θ)dθ

∣∣∣∣∣∣
≤

1

2
(5k+1)

2

µ5/2

√
π

∫ π

0

∣∣∣∣∣µ cosθ
2k

∣∣∣∣∣α |γm(θ)|dθ, (∵ f ′′ ∈ Hα[0, µ))

≤
1

2
(5k+1)

2

µ
5
2+α

√
π
.

1
2kα

∫ π

0
|γm(θ)|dθ.∫ π

0
|γm(θ)|dθ =

∫ π

0

∣∣∣∣∣∣sinθ
m

(
sin(m − 1)θ

m − 1
−

sin(m + 1)θ
m + 1

)
−

sinθ
m + 2

(
sin(m + 1)θ

m + 1

−
sin(m + 3)θ

m + 3

)∣∣∣∣∣∣ dθ
≤

[ 1
m

( 1
m − 1

+
1

m + 1

)
+

1
m + 2

( 1
m + 1

+
1

m + 3

)] ∫ π

0
dθ

= π
[( 1

m − 1
−

1
m

)
+

( 1
m
−

1
m + 1

)
+

( 1
m + 1

−
1

m + 2

)
+

( 1
m + 2

−
1

m + 3

)]
=

4π
(m − 1)(m + 3)

.

|cn,m| ≤
4
√
π

2(5k+1)/2(m + 3)(m − 1)
.
µ

5
2+α

2kα
, for m > 1. (2)

For m = 0, cn,0 =

∫ µ

0
f (t)ψµn,0(t)wn(t)dt

=

∫ nµ
2k−1

(n−1)µ

2k−1

f (t)2
k
2

√
2
µπ

U0(
2k

µ
t − 2n + 1)w(

2k

µ
t − 2n + 1)dt

=

∫ 1

−1
f
(

(2n − 1 + v)µ
2k

)
2

k
2

√
2µ
π

U0(v)w(v)
dv
2k
,

2k

µ
t − 2n + 1 = v

=
1

2
k
2

√
2µ
π

∫ 1

−1

[
f
(

(2n − 1)µ
2k

)
+

vµ
2k

f ′
(

(2n − 1)µ
2k

)
+

(vµ
2k

)2 1
2!

f ′′
(

(2n − 1)µ
2k

+
θvµ
2k

)]
w(v)dv

= I1 + I2 + I3.
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I1 =
1

2
k
2

√
2µ
π

∫ 1

−1
f
(

(2n − 1)µ
2k

)
√

1 − v2dv =
1

2
k
2

√
µπ

2
f
(

(2n − 1)µ
2k

)
I2 =

1

2
k
2

√
2µ
π

f ′
(

(2n − 1)µ
2k

) ∫ 1

−1

vµ
2k

√

1 − v2dv = 0

I3 =
1

2
k
2

√
2µ
π

1
2!

µ2

(2k)2

∫ 1

−1
v2 f ′′

(
(2n − 1)µ

2k
+
θvµ
2k

)
√

1 − v2dv , 0 < θ < 1

=
1

2
k
2

√
2µ
π

1
2!

µ2

(2k)2
f ′′

(
(2n − 1)µ

2k
+
θv1µ

2k

)
2.

∫ 1

0
v2
√

1 − v2dv , v1 ∈ (−1, 1)

=
1

2
k
2

√
µπ

2
.
1
4
.

1
2!

µ2

(22k)
f ′′

(
(2n − 1)µ

2k
+
θv1µ

2k

)
.

Therefore, cn,0 =
1

2
k
2

√
µπ

2

[
f
(

(2n − 1)µ
2k

)
+

1
4.2!

.
µ2

22k
f ′′

(
(2n − 1)µ

2k
+
θv1µ

2k

)]
(3)

≤
1

2
k
2

√
µπ

2

[
A +

1
4.2!

.
µ2

22k
A′′

]
.

For m = 1, cn,1 =

∫ µ

0
f (t)ψµn,1(t)wn(t)dt

=

∫ nµ
2k−1

(n−1)µ

2k−1

f (t)2
k
2

√
2
µπ

U1(
2k

µ
t − 2n + 1)w(

2k

µ
t − 2n + 1)dt

=
1

2
k
2

√
2µ
π

∫ 1

−1
f
(

(2n − 1)µ
2k

+
vµ
2k

)
2v
√

1 − v2dv

=
2

2
k
2

√
2µ
π

∫ 1

−1

[
f
(

(2n − 1)µ
2k

)
+

vµ
2k

f ′
(

(2n − 1)µ
2k

)
+

(vµ
2k

)2 1
2!

f ′′
(

(2n − 1)µ
2k

+
θvµ
2k

)]
v
√

1 − v2dv, 0 < θ < 1
= J1 + J2 + J3.

J1 =
2

2
k
2

√
2µ
π

∫ 1

−1
f
(

(2n − 1)µ
2k

)
v
√

1 − v2dv = 0

J2 =
2

2
k
2

√
2µ
π

f ′
(

(2n − 1)µ
2k

)
µ

2k

∫ 1

−1
v2
√

1 − v2dv

=
2

2
k
2

√
2µ
π

f ′
(

(2n − 1)µ
2k

)
µ

2k
.
π
8

J3 =
2

2
k
2

√
2µ
π

1
2!

µ2

(2k)2

∫ 1

−1
v3 f ′′

(
(2n − 1)µ

2k
+
θvµ
2k

)
√

1 − v2dv , 0 < θ < 1

=
2

2
k
2

√
2µ
π

1
2!

µ2

(2k)2
f ′′

(
(2n − 1)µ

2k
+
θv2µ

2k

) ∫ 1

−1
v3
√

1 − v2dv = 0 , v2 ∈ (−1, 1).

Therefore, cn,1 =
1
2
.

√
π
2
.
µ3/2

2
3k
2

f ′
(

(2n − 1)µ
2k

)
(4)

≤
1
2
.

√
π
2
.
µ3/2

2
3k
2

A′.
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Hence, from eqns. (2), (3), (4), the series (1) converges absolutely. Therefore,
∑2k−1

n=1
∑
∞

m=0 cn,mψ
µ
n,m(t) converges

to f (t) uniformly in L2[0, µ).

3.2. Error Analysis
In this paper, the following theorem for error estimation has been proved:

Theorem 3.2. Suppose there exists a square integrable function denoted by f (t) satisfying the condition f ′′(t) ∈
Hα[0, µ) i.e. f ′′(x + t) − f ′′(x) = O(|t|α), 0 < α ≤ 1, where 0 < α ≤ 1 and has the extended second kind Chebyshev
wavelet expansion as

f (t) =
2k−1∑
n=1

∞∑
m=0

cn,mψ
µ
n,m(t),

where cn,m = ⟨ f , ψ
µ
n,m⟩wn then the error bound using modulus of continuity W( f − S2k−1,M( f ), 1

2k ) of ( f − S2k−1,M( f ))
gives:
(i) for f (t) =

∑2k−1

n=1 cn,0ψ
µ
n,0(t),

W( f − S2k−1,0( f ),
1
2k

) = sup
0<h≤ 1

2k

||( f − S2k−1,0( f ))(. + h) − ( f − S2k−1,0( f ))(.)||2

= O
(
µα+2

2kα

)
, k ≥ 1,

(ii) for f (t) =
∑2k−1

n=1
∑1

m=0 cn,mψ
µ
n,m(t),

W( f − S2k−1,1( f ),
1
2k

) = sup
0<h≤ 1

2k

||( f − S2k−1,1( f ))(. + h) − ( f − S2k−1,1( f ))(.)||2

= O
(
µα+2

2k(α+2)

)
, k ≥ 1, and

(iii) for f (t) =
∑2k−1

n=1
∑
∞

m=0 cn,mψ
µ
n,m(t),

W( f − S2k−1,M( f ),
1
2k

) = sup
0<h≤ 1

2k

||( f − S2k−1,M( f ))(. + h) − ( f − S2k−1,M( f ))(.)||2

= O

 µ
5
2+α

2k(α+2).M
3
2

 , k ≥ 1,M ≥ 2.

Proof. (i)For m = 0,

The error between f (t) and its Chebyshev wavelet expansion in the interval
[

(n − 1)µ
2k−1

,
nµ

2k−1

)
is given by

en( f ) = cn,0ψ
µ
n,0 − fχ[ (n−1)µ

2k−1 ,
nµ

2k−1 ),
(n − 1)µ

2k−1
≤ t <

nµ
2k−1

. (5)

cn,0 =
1

2
k
2

√
µπ

2

[
f
(

(2n − 1)µ
2k

)
+

1
4.2!

.
µ2

22k
f ′′

(
(2n − 1)µ

2k
+
θv1µ

2k

)]
Using (3).

Substituting the values of cn,0 in eq. (5),

|en( f )| =

∣∣∣∣∣∣ f
(

(2n − 1)µ
2k

)
+

1
4.2!

.
µ2

22k
f ′′

(
(2n − 1 + θv1)µ

2k

)
− f

(
(2n − 1)µ

2k

)
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−
vµ
2k

f ′
(

(2n − 1)µ
2k

)
−

v2

2!

(
µ2

22k

)
f ′′

(
(2n − 1 + θv)µ

2k

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ v2µ2

2!.22k.4
f ′′

(
(2n − 1 + θv1)µ

2k

)
−

v2µ2

2!.22k
f ′′

(
(2n − 1 + θv)µ

2k

)
−

vµ
2k

f ′
(

(2n − 1)µ
2k

)∣∣∣∣∣∣
≤

(
v2µ2

2!.22k

) ∣∣∣∣∣θ(v1 − v)µ
2k

∣∣∣∣∣α + (
v2µ2

2kα

) (
∵ f ′′ ∈ Hα[0, µ), 0 < α ≤ 1

)
≤

µα+2

(2!).2k(α+2)
+

(
µ2

2kα

)
≤

(
2µα+2

2kα

)
. (∵ v ∈ [−1, 1) and 0 < θ < 1)

∥en∥
2
2 =

∫ nµ
2k−1

(n−1)µ

2k−1

|en( f )|2|wn(t)|dt ≤
∫ 1

−1

4µ2α+4

22kα

√

1 − v2

2k
dv =

2πµ2α+4

2k(2α+1)
.

∥ f − S2k−1,0( f )∥22 =

2k−1∑
n=1

∥en∥
2
2 ≤

2k−1∑
n=1

2πµ2α+4

2k(2α+1)
=
πµ2α+4

22kα
.

∥ f − S2k−1,0( f )∥2 ≤
µα+2√π

2kα
.

W
(

f − S2k−1,0( f ),
1
2k

)
= sup

0<h≤ 1
2k

∥( f − S2k−1,0( f ))(t + h) − ( f − S2k−1,0( f ))(t)∥2

≤ sup
0<h≤ 1

2k

[
∥( f − S2k−1,0( f ))(t + h)∥2 + ∥( f − S2k−1,0( f ))(t)∥2

]
≤ 2∥ f − S2k−1,0( f )∥2 ≤ 2

µα+2√π

2kα
= O

(
µα+2

2kα

)
, k ≥ 1.

(ii)For m = 0, 1,

The error between f (t) and its Chebyshev wavelet expansion in the interval
[

(n − 1)µ
2k−1

,
nµ

2k−1

)
is given by

en( f ) = cn,0ψ
µ
n,0 + cn,1ψ

µ
n,1 − fχ[ (n−1)µ

2k−1 ,
nµ

2k−1 ),
(n − 1)µ

2k−1
≤ t <

nµ
2k−1

(6)

cn,0 =
1

2
k
2

√
µπ

2

[
f
(

(2n − 1)µ
2k

)
+

1
4.2!

.
µ2

22k
f ′′

(
(2n − 1)µ

2k
+
θv1µ

2k

)]
, Using (3)

cn,1 =
1
2
.

√
π
2
.
µ3/2

2
3k
2

f ′
(

(2n − 1)µ
2k

)
, Using (4).

Substituting the values of cn,0 and cn,1 in eq. (6)

|en( f )| =

∣∣∣∣∣∣ f
(

(2n − 1)µ
2k

)
+

1
4.2!

.
µ2

22k
f ′′

(
(2n − 1 + θv1)µ

2k

)
+

vµ
2k

f ′
(

(2n − 1)µ
2k

)
− f

(
(2n − 1)µ

2k

)
−

vµ
2k

f ′
(

(2n − 1)µ
2k

)
−

v2

2!

(
µ2

2k

)
f ′′

(
(2n − 1 + θv)µ

2k

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ v2µ2

2!.22k.4
f ′′

(
(2n − 1 + θv1)µ

2k

)
−

v2µ

2!.22k
f ′′

(
(2n − 1 + θv)µ

2k

)∣∣∣∣∣∣
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≤

(
v2µ2

2!.22k

) ∣∣∣∣∣∣ f ′′
(

(2n − 1 + θv1)µ2

2k

)
− f ′′

(
(2n − 1 + θv)µ

2k

)∣∣∣∣∣∣
≤

(
v2µ2

2!.22k

) ∣∣∣∣∣θ(v1 − v)µ
2k

∣∣∣∣∣α (
∵ f ′′ ∈ Hα[0, µ)

)
≤

µα+2

(2!).2k(α+2)
. (∵ v ∈ [−1, 1) and 0 < θ < 1)

∥en∥
2
2 =

∫ nµ
2k−1

(n−1)µ

2k−1

|en( f )|2|wn(t)|dt

≤

∫ 1

−1

µ2α+4

(2!)2.22k(α+2)

√

1 − v2

2k
dv =

πµ2α+4

2(2!)22k(2α+5)
.

∥ f − S2k−1,1( f )∥22 =

2k−1∑
n=1

∥en∥
2
2 ≤

2k−1∑
n=1

πµ2α+4

2(2!)22k(2α+5)
=

πµ2α+4

16.22k(α+2)

∴ ∥ f − S2k−1,1( f )∥2 ≤
µα+2√π

4.2k(α+2)
.

Hence,

W
(

f − S2k−1,1( f ),
1
2k

)
= sup

0<h≤ 1
2k

∥( f − S2k−1,1( f ))(t + h) − ( f − S2k−1,1( f ))(t)∥2

= O
(
µα+2

2k(α+2)

)
, k ≥ 1.

(ii) For m ≥ 2,

∥ f − S2k−1,M∥
2
2 =

2k−1∑
n=1

∞∑
m=M+1

|cn,m|
2.

|cn,m| ≤
4
√
π

2(5k+1)/2(m + 3)(m − 1)
.
µ

5
2+α

2kα
, for m > 1, Using (2).

∴ ∥ f − S2k−1,M( f )∥22 =

2k−1∑
n=1

∞∑
m=M+1

16π
2(5k+1)(m + 3)2(m − 1)2

.
µ5+2α

22kα

=
16π

2(5k+1)

µ5+2α

22kα

∞∑
m=M+1

2k−1

(m + 3)2(m − 1)2

≤
16π

2(4k+2)

µ5+2α

22kα

[ 4
3M3

]
.

∥ f − S2k−1,M( f )∥2 ≤
8
√
π

2(2k+1)

µ
5
2+α

2kα

4
√

3.M3/2

= O

 µ
5
2+α

2k(α+2).M3/2

 , k ≥ 1, M ≥ 2. (7)

Hence,

W
(

f − S2k−1,M ( f ),
1
2k

)
= sup

0<h≤ 1
2k

∥( f − S2k−1,M( f ))(t + h) − ( f − S2k−1,M( f ))(t)∥2
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= O

 µ
5
2+α

2k(α+2).M3/2

 , k ≥ 1, M ≥ 2.

This completes the proof of theorem (3.2).

Following corollary is derived from theorem (3.2):

Corollary 3.3. Suppose there exists a square integrable function denoted by f (t) satisfying the condition f ′′ ∈
Hα[0, µ), where 0 < α ≤ 1 and has the extended second kind Chebyshev wavelet expansion is

f (t) =

∞∑
n=1

∞∑
m=0

cn,mψ
µ
n,m(t), where cn,m = ⟨ f , ψ

µ
n,m⟩wn

then the Chebyshev wavelet approximation E2k−1,M of f by S2k−1,M satisfies
(i) f or f (t) =

∑
∞

n=1 cn,0ψ
µ
n,0(t),

E2k−1,0 = min || f − S2k−1,0( f )||2

= O
(
µα+2

2kα

)
, k ≥ 1,

(ii) f or f (t) =
∑
∞

n=1
∑1

m=0 cn,mψ
µ
n,m(t),

E2k−1,1 = min || f − S2k−1,1( f )||2

= O
(
µα+2

2k(α+2)

)
, k ≥ 1, and

(iii) f or f (t) =
∑
∞

n=1
∑
∞

m=0 cn,mψ
µ
n,m(t)

E2k−1,M = min || f − S2k−1,M( f )||2

= O

 µ
5
2+α

2k(α+2).M3/2

 , k ≥ 1, M ≥ 2.

Proof. : Following the proof of theorem (3.2), ∥ f − S2k−1,0( f )∥2 = O
(
µα+2

2kα

)
, k ≥ 1,

∥ f − S2k−1,1( f )∥2 = O
(
µα+2

2k(α+2)

)
, k ≥ 1,

∥ f − S2k−1,M( f )∥2 = O
(

µ
5
2 +α

2k(α+2).M3/2

)
, k ≥ 1, M ≥ 2.

Remark: The proof of corollary (3.3) can be developed independently, parallel to the proof of theorem (3.2).

4. Solving singular differential equations via extended second kind Chebyshev wavelets

4.1. Expanding and Approximating Functions with Extended Chebyshev Wavelet of the Second Kind
A function f ∈ L2[0, µ) can be expanded in terms of extended second kind Chebyshev wavelet as

f (t) =

∞∑
n=1

∞∑
m=0

cn,mψ
µ
n,m(t),

where cn,m =

∫ µ

0
f (t)ψµn,m(t)wn(t)dt

= S2k−1,M +

2k−1∑
n=1

∞∑
m=M+1

cn,mψ
µ
n,m(t), where S2k−1,M =

2k−1∑
n=1

M∑
m=0

cn,mψ
µ
n,m(t).
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Upon truncating the function f (t) using S2k−1,M, the approximation becomes

f (t) ≈
2k−1∑
n=1

M∑
m=0

cn,mψ
µ
n,m(t) = CTψµ(t),

where C and ψµ(t) are 2k−1(M + 1) vectors of the form
C = [c1,0 c1,1 ... c1,M c2,0 c2,1 ... c2,M ... c2k−1,0 ... c2k−1,M]T and
ψµ(t) = [ψµ1,0 ψ

µ
1,1 ...ψ

µ
1,M ψ

µ
2,0 ψ

µ
2,1 ... ψ

µ
2,M ... ψ

µ

2k−1,0
... ψ

µ

2k−1,M
]T.

4.2. Operational Integration Matrix for extended Second Kind Chebyshev Wavelets
In this segment, we derive the operational matrix of integration for the extended second-kind Chebyshev

wavelet with parameters k=2, M=3, and µ = 3. In this scenario, the wavelet basis functions are delineated
as follows:

ψ
µ
1,0(t) = 2

√
2

3π

ψ
µ
1,1(t) = 4

3

√
2

3π (4t − 3)

ψ
µ
1,2(t) = 2

9

√
2

3π (64t2
− 96t + 27)

ψ
µ
1,3(t) = 2

27

√
2

3π (512t3
− 1152t2 + 750t − 108)


0 ≤ t < 3

2

ψ
µ
2,0(t) = 2

√
2

3π

ψ
µ
2,1(t) = 2

3

√
2

3π (8t − 18)

ψ
µ
2,2(t) = 2

9

√
2

3π (64t2
− 96t + 315)

ψ
µ
2,3(t) = 2

27

√
2

3π (512t3
− 3456t2 + 7632t − 5508)


3
2 ≤ t < 3

Integrating above functions from 0 to t and expressing in terms of basis wavelet functions,

∫ t

0 ψ
µ
1,0(t′)dt′ =


2

√
2

3π
t, 0 ≤ t < 3

2√
6
π
, 3

2 ≤ t < 3

= 3
4ψ

µ
1,0(t) + 3

8ψ
µ
1,1(t) + 3

2ψ
µ
2,0(t)

∫ t

0 ψ
µ
1,1(t′)dt′ =


4
3

√
2

3π
(2t2
− 3t), 0 ≤ t < 3

2

0, 3
2 ≤ t < 3

= −9
16ψ

µ
1,0(t) + 3

16ψ
µ
1,2(t).

Similarly,
∫ t

0 ψ
µ
1,2(t′)dt′ = 1

4ψ
µ
1,0(t) + −1

8 ψ
µ
1,1(t) + 1

8ψ
µ
1,3(t) + 1

2ψ
µ
2,0(t)∫ t

0 ψ
µ
1,3(t′)dt′ = −3

16ψ
µ
1,0(t) + 3

32ψ
µ
1,2(t)∫ t

0 ψ
µ
2,0(t′)dt′ = 3

4ψ
µ
2,0(t) + 3

8ψ
µ
2,1(t)∫ t

0 ψ
µ
2,1(t′)dt′ = −9

16ψ
µ
2,0(t) + 3

16ψ
µ
2,2(t)
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0 ψ
µ
2,2(t′)dt′ = 1

4ψ
µ
2,0(t) + −1

8 ψ
µ
2,1(t) + 1

8ψ
µ
2,3(t)∫ t

0 ψ
µ
2,3(t′)dt′ = −3

16ψ
µ
2,0(t) + −3

32ψ
µ
2,2(t).

Thus,
∫ t

0 ψ
µ
8×1(t′)dt′ = P8×8ψ

µ
8×1(t), where ψµ(t) = [ψµ1,0 ψ

µ
1,1 ψ

µ
1,2 ψ

µ
1,3 ψ

µ
2,0 ψ

µ
2,1 ψ

µ
2,2 ψ

µ
2,3 ]T.

Hence, operational matrix of integration using extended second kind Chebyshev wavelet is given by

P8×8 =



3
4

3
8 0 0 3

2 0 0 0
−9
16 0 3

16 0 0 0 0 0
1
4

−1
8 0 1

8
1
2 0 0 0

−3
16 0 −3

32 0 0 0 0 0
0 0 0 0 3

4
3
8 0 0

0 0 0 0 −9
16 0 3

16 0
0 0 0 0 1

4
−1
8 0 1

8
0 0 0 0 −3

16 0 −3
32 0


(8)

4.3. Description of the method
Consider the non-linear singular differential equation given by

u′′(t) +
mu′(t)

t
+ h(t,u) = d(t), 0 ≤ t < µ, m ≥ 1 (9)

with initial conditions

u(0) = β, u′(0) = γ. (10)

To solve the differential equation (9), we begin by multiplying it by t:

tu′′(t) +mu′(t) + th(t,u) = td(t), 0 ≤ t < µ, m ≥ 1 (11)

We also approximate u”(t) as a linear combination:

u′′(t) ≈
2∑

n=1

3∑
m=0

cn,mψ
µ
n,m(t) = CTψµ(t). (12)

Integrating equation (11) twice with respect t twice from 0 to t, we get the following approximations for

u′(t) ≈ CTPψµ(t) + γ
= CTPψµ(t) + ATψµ(t), (13)

u(t) ≈ CTP2ψµ(t) + tγ + β
= CTP2ψµ(t) + BTψµ(t), (14)

where A and B can be determined from the initial conditions (10). We also make approximations for
t, h(t,u) and d(t):

t ≈ ETψµ(t), (15)

h(t,u) ≈

n∑
j=0

1
j!

(
(t − t0)

∂
∂t
+ (u − u0)

∂
∂y

) j

h(t0,u0)

= FTψµ(t), (16)

d(t) ≈

n∑
j=0

1( j)(t0)
j!

(t − t0) j
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= GTψµ(t). (17)

Substituting the values from equations (12)-(17) into equation (11), we obtain the following equation:

ETψµ(t)CTψµ(t) +m(CTP + AT)ψµ(t) + ETψµ(t)FTψµ(t) = ETψµ(t)GTψµ(t). (18)

By solving the system of algebraic equations (18), the differential equation (9) can be solved.

5. Numerical Examples

1. Consider the singular differential equation [19]:

u′′(t) +
2u′(t)

t
+ us(t) = 0, 0 ≤ t < 3, s ≥ 1 (19)

with initial conditions u(0) = 1, u′(0) = 0.
Substituting s = 1 and 5, the eq. (19) reduces to

linear equation u′′(t) +
2u′(t)

t
+ u(t) = 0, u(0) = 1, u′(0) = 0. (20)

non-linear equation u′′(t) +
2u′(t)

t
+ u5(t) = 0, u(0) = 1, u′(0) = 0. (21)

The exact solutions of eqs. (20) and (21) are

u(t) =
sin t

t
and u(t) =

1√
1 + t2

3

.

.
On the other hand, when considering a numerical approach to solving equations (20) and (21), a specific
method outlined in section (4.3) is employed. The outcome of this numerical procedure is documented
comprehensively within Table (1). This table encapsulate the results of computations carried out through
the prescribed methodology. Table (1) presents comparison between the numerical solutions of the linear
and non-linear singular differential equations with an index of s = 1 and s = 5 and their corresponding exact
solutions. The evaluation of absolute errors underscores a remarkable alignment between the numerical
results attained through the application of the extended second-kind Chebyshev wavelet and the true
values at these specific points. Moreover, Figure (1) and (2) visually illustrate the plotted graphs depicting
both the precise and approximate solutions achieved by utilizing the extended second-kind Chebyshev
wavelet. It is noteworthy that these graphical representations showcase an almost ubiquitous concurrence
between the exact and approximate solutions profiles.

Table 1: Extended Chebyshev solution of singular differential equations for s = 1 and s = 5
t Sol.of eqn.(20) Exact sol. Abs. error Sol.of eqn.(21) Exact sol. Abs. error

0.0001 0.99999008 0.99999998 9.9×10−6 0.9999961 0.99999999 3.89×10−6

0.01 0.99997393 0.99998333 9.4×10−6 0.99997737 0.99998333 5.96×10−6

0.1 0.99832697 0.99833416 7.19×10−6 0.99833045 0.99833749 7.04×10−6

0.3 0.98505748 0.98506735 9.87×10−6 0.98532655 0.98532928 2.73×10−6

0.6 0.94106118 0.94107078 9.6×10−6 0.94490722 0.94491118 3.96×10−6

1.2 0.77669224 0.77669923 6.99×10−6 0.82199073 0.82199493 4.2×10−6

1.5 0.66499416 0.66499665 2.49×10−6 0.75592675 0.75592894 2.19×10−6

1.8 0.54018146 0.54102646 8.25×10−4 0.69352324 0.69337524 1.48×10−4

2.1 0.41105103 0.41105208 1.05×10−6 0.63629466 0.63628476 9.9×10−6

2.3 0.32421944 0.32421965 2.1×10−7 0.601566387 0.60156611 2.77×10−7

2.5 0.23938069 0.23938885 8.16×10−6 0.569501445 0.56949479 6.655×10−6

2.9 0.08249762 0.08249976 2.14×10−6 0.51275802 0.51276432 6.3×10−6
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Figure 1: Comparison of extended second kind Chebyshev and exact solution of eqn. 20
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Figure 2: Comparison of extended second kind Chebyshev and exact solution of eqn. 21
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2. Consider the non-linear singular differential equation whose analytic solution is not known in the
literature.

u′′(t) +
2u′(t)

t
+ t2lo12(t)lo13(u) = 0, t ≥ 0, (22)

with initial conditions u(0) = e, u′(0) = 0.
The numerical solutions of equation (22) have been obtained using the computational approach detailed
in section (4.3). These results are presented in Table (2). Furthermore, Figure (3) displays the graphical
representations of the numerical solutions for eqn. 22.
Examining the information in Table (2), it becomes evident that the proposed methodology yields highly
accurate solutions while demanding a reduced computational work.

Table 2: Extented Chebyshev solution of non-linear singular eqn. 22
t Sol. of eqn. 22 Comparison with [4]

0.0001 2.71828676 2×10−8

0.01 2.71828676 2×10−8

0.1 2.71828676 2×10−8

0.3 2.717793942 1.472×10−5

0.6 2.710893672 2.092×10−5

1.2 2.68954882 2.79×10−5

1.5 2.667693675 1.717×10−5

1.8 2.643273457 5.2×10−5

2.1 2.59983386 2.32×10−5

2.3 2.571128569 4.02×10−5

2.5 2.552859927 3.56×10−4

2.9 2.512833638 2.9×10−4

0 0.5 1 1.5 2 2.5 3

2.5

2.55

2.6

2.65

2.7

2.75

Wavelet solution

Figure 3: Approximate solution of eqn. 22 using extended Chebyshev wavelet
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6. Conclusions

In conclusion, this study establishes the uniform convergence of wavelet series for functions in Hα[0, µ),
supported by theorems (3.1) and (3.2). The study reveals that the moduli of continuity W( f − S2k−1,M( f ), 1

2k )
demonstrate remarkable convergence properties, rapidly vanishing as k and M tend to infinity. Through
corollary (3.3), it is shown that these moduli of continuity surpass the approximations
E2k−1,0,E2k−1,1,E2k−1,M in precision. The paper introduces an extended second-kind Chebyshev wavelet opera-
tional matrix of integration method, enabling efficient solution of non-linear singular differential equations.
This extension allows wavelets to be adapted to signals or data that are defined on a different domain or
have different characteristics. The method’s accuracy and efficiency surpass previous approaches ([4],[19]),
and its potential extends to a wider range of non-linear singular differential equations. Notably, this accu-
racy is achieved while utilizing a reduced number of basis functions and computational efforts in contrast
to alternative techniques. This work marks a significant advancement in both theoretical understanding
and practical application of wavelet-based methods for solving complex mathematical problems.
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