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Abstract. In this paper, we introduce nth thick and nth weak thick Spanier groups as subgroups of the
nth homotopy groups of a topological space. Then, we use these subgroups to define topologies on the nth
homotopy groups that make them into topological groups. Finally, we present some properties of these
topologies and examine the way they are related to the underlying space.

1. Introduction

One of the most important problems in homotopy theory is to understand the local behavior of a
topological space. For example, to find the homotopy groups of a space, one needs to know its local
properties. To compute the fundamental group of a space, two classical tools are commonly used, namely,
Van-Kampen’s theorem and the theory of covering spaces. But, these are appropriate only for locally
well-behaved spaces, and papular instruments used to understand the higher homotopy groups of a space
depend on its fundamental group and local behavior. Usually, in the topology literature, locally n-connected
or n-semilocally simply connected spaces are considered as well-behaved spaces. On the other hand, many
spaces that appear in topology, analysis and other branches of mathematics, including fractals and Menger
spaces, are not locally well-behaved spaces. Such spaces are known as locally complicated or locally wild
spaces.

It is beneficial to the study of a homotopy group, as well as any other group, to know about some of
its subgroups. In his book [18], Spanier proved the equivalence of the semi-locally simple connectivity of
a topological space and the triviality of a special subgroup of its fundamental group. He also used this
subgroup to classify and study covering spaces of topological spaces. In [12], Fisher et al. referred to
this group as the Spanier group. In [19], Wilkins equip the fundamental group of a space with a topology
which he called the Spanier subgroup topology, what we refer to as the Spanier topology. Also, he explored the
relation between the topology of a space X and the topology of its fundamental group. We know that when
equipped with other topologies, this group and higher homotopy groups may not be topological groups.
See [4] for more details.

In this paper we use the nth Spanier groups, defined in [3], to equip the nth homotopy group with
topologies that make it into topological groups. Then, motivated by the work of Bogley and Sierdaski
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in [10], we define and study other topologies on πn(X, x0) that make it into topological groups. Also, we
provide conditions that ensure the metrizability of these topological groups. We denote the nth homotopy
group with these topologies by τSp, τtSp and τwtSp, to which we refer as the Spanier topology, the thick Spanier
topology and the weak thick Spanier topology, respectively. Moreover, we examine the relationship between
some local properties of the space X and the topologies τSp, τtSp and τwtSp on the nth homotopy group.

In Section 2, we first explain some basic notions concerning topological spaces and their homotopy
groups that will be used in other sections. Then, we recall various approaches to homotopy groups and
relative homotopy groups. Next, we discuss the behavior of the homotopy group under changing the base
point. In Definition 2.2 and Definition 2.3, we recall the definitions of Spanier group and thick Spanier
group from [5, 12], respectively. At the end of this section, we describe the construction of the nth shape
homotopy group of a space.

In Section 3, we state the definition of n-Spanier group from [3], and introduce a general version of
the thick Spanier group. Also, we compare these subgroups and consider their equality under certain
conditions. See Theorem 3.10. Next, we introduce the nth weak thick Spanier group, and we explore the
relation between this group and the nth thick Spanier group. Moreover, in Example 3.7 we compare these
three important subgroups of the nth homotopy group. Then, we show that these subgroups are equal for
all paracompact spaces. Also, in Theorem 3.12, we prove the equality of the first Spanier group and the
first thick (weak thick) Spanier group under certain conditions. Furthermore, in Theorem 3.8 we show that
these three subgroups of the homotopy groups are equal for each topological group. One of the well-known
subgroups of the nth homotopy group is the shape kernel of the canonical homomorphism from the nth
homotopy group to the nth shape homotopy group (or kerΨ.) In Proposition 3.15, we prove that the nth
thick (weak thick) Spanier group lies in the kernel of this map.

In Section 4, we define the topologies τSp, τtsp and τwtSp (or the Spanier, thick Spanier and weak thick
Spanier topologies) on the nth homotopy group, which induce topological group structures on πn(X, x0).
See Proposition 4.2. In Theorem 4.16, we provide conditions under which these topological groups are
metrizable. Moreover, we examine the ways the topological properties of these topological groups are
related to the local properties of the space (X, x0). For example, let σ be a path from x0 to x1. Notice that the
isomorphism σ♯ is not necessarily continuous ([9]). But, we prove that the isomorphism σ♯(πn(X, x0), τ) −→
(πn(X, x1), τ) is a homeomorphism, where τ ∈ {τSp, τtSp, τwtSp}. See Proposition 4.4. In Theorem 4.7, we
show that if (πn(X, x1), τ) is Hausdorff, where τ ∈ {τSp, τtSp, τwtSp}, then X is n-homotopically Hausdorff. But,
in Example 4.9 we observe that the converse of Theorem 4.7 is not always true. Notice that converse of
Theorem 4.7, in the special case n = 1, is Problem 8.11 of [8]. In Proposition 4.14, we state conditions under
which the converse of Theorem 4.7 is true. Finally, we answer the following problem, posed by Brodskiy et
al. in [8].

Let X be a path-connected space and x0 ∈ X. Are the following conditions equivalent?

(i) πSp
1 (X, x0) =

⋂
U π

Sp
1 (U, x0) is trivial.

(ii) p : (X̂, x̂0) −→ (X, x0) has the unique path lifting property.
(iii) X is 1-homotopically Hausdorff (or homotopically Hausdorff).

2. Preliminaries

This section summarizes some notions that will be used in the next sections. In this paper, we let

In = {(x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ 1, 1 ≤ i ≤ n} , ∂In = {(x1, . . . , xn) ∈ In : xi ∈ {0, 1} for some i} ,
Dn =

{
(x1, . . . , xn) ∈ Rn :

∑n+1
i=1 x2

i ≤ 1
}
, Sn =

{
(x1, . . . , xn+1) ∈ Rn+1 :

∑n+1
i=1 x2

i = 1
}
,

Sn
+ = {(x1, . . . , xn+1) ∈ Sn : xn+1 ≥ 0} and Sn

−
= {(x1, . . . , xn+1) ∈ Sn : xn+1 ≤ 0} .

Let X be a topological space and x0 ∈ X.

(1) We say that X is locally path-connected at x ∈ X if for every open set V containing x, there exists a
path-connected open set U with x ∈ U ⊂ V. The space X is said to be locally path-connected if it is
locally path-connected at each of its elements.
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(2) An n-loop at x0 is a continuous map f : In
→ X such that f (∂In) = {x0}. The n-loop f is null-homotopic if

it is homotopic to the constant map Cx0 : In
−→ X defined by Cx0 (s) = x0.

(3) The space X is called n-semilocally simply connected if for each x ∈ X, there exists an open subset U of
X containing x such that every n-loop in U is null-homotopic in X.

(4) We call X a locally n-connected space if for every point x of X and any neighborhood U of x, there exists
an open set V of x such that V ⊂ U and for every 1 ≤ k ≤ n, any k-loop in V is homotopically trivial in
U.

(5) We say that X is n-connected if it is path-connected and any k-loop map in X is null-homotopic, for
every 1 ≤ k ≤ n.

(6) If πn(X, x0) is the set of homotopy classes of n-loops f : (In, ∂In) → (X, x0) at x0, then πn(X, x0) has a
group structure with the operation [ f ] + [1] = [ f + 1], where

( f + 1)(x1, x2, . . . , xn) =
{

f (2x1, x2, . . . , xn), x1 ∈ [0, 1
2 ]

1(2x1 − 1, x2, . . . , xn), x1 ∈ [ 1
2 , 1].

This group is called the nth homotopy group of X with base point x0. See [16] for more details.
In (7), we present another definition of the nth homotopy group of X.

(7) If the boundary ∂In of In is equal to a point, the quotient space is homeomorphic to the n-sphere Sn

with a base point 1 = (1, 0, ..., 0) ∈ Sn, each element of πn(X, x0) can be represented by a homotopy
class relative to 1 ∈ Sn of the maps f : (Sn, 1) −→ (X, x0), and vice versa. So, this definition of the nth
homotopy group is conceptually equivalent to the one above.
We use this equivalent definition of the nth homotopy group throughout this paper. See [2] for more
details.

(8) Let A be a subspace of X. A useful generalization of the homotopy group πn(X, x0) is provided by
the relative homotopy group πn(X,A, x0) with a base point x0 ∈ A. Here, we are going to recall the
definition of these groups from [14].
First, note that we can regard In−1 as the face of In with the last coordinate xn = 0. Let Jn−1 be
the union of the other faces of In. Suppose that πn(X,A, x0) is the set of homotopy classes of maps
(In, ∂In, Jn−1) → (X,A, x0), with homotopies through maps of the same form. The action taken in the
relative homotopy groups is exactly the same as that in the homotopy groups. It is easy to see that
πn(X,A, x0) is a group for n ≥ 2, and that it is a commutative group if n ≥ 3.

(9) If Jn−1 is equal to a point s0, then (In, ∂In, Jn−1) admits a configuration equivalent to (Dn, ∂Dn, s0). This
shows that an element of πn(X,A, x0) can be as equally well-defined as a homotopy class of the maps
f : (Dn,Sn−1, s0)→ (X,A, x0). From this point of view, addition is done via the map c : Dn

∨Dn
→ Dn,

collapsing Dn−1
⊂ Dn to a point. In general, changing the base point in the homotopy group of a

topological space X may change the homotopy group. We know that when a path σ exists between
two points of a path-connected topological space X, the homotopy groups corresponding to these
points are isomorphic. In what follows, we define the isomorphism induced by σ.

(10) Let n ≥ 2, and define σ♯ : πn(X, x1) −→ πn(X, x0) by σ♯[α] = [F1], where F1(s) = F(s, 1) for any s ∈ In,
and F : In

× [0, 1] −→ X is a homotopy with the following properties.

F(s, 0) = α(s) s ∈ In

F(s, t) = ←−σ (t) s ∈ ∂In, t ∈ [0, 1].

Then by [16, Theorem 2.5.6], the map σ♯ is a well-defined isomorphism that only depends on the
homotopy class of σ.

Theorem 2.1. [7] If σ, τ : I → X are paths, then given any n ∈ N the following statements are true for the
isomorphisms σ♯, τ♯ : πn(X, x1)→ πn(X, x0).

1. If σ ≃ τ rel(∂I), then σ♯ = τ♯.
2. If σ(1) = τ(0), then (σ ∗ τ)♯ = σ♯ ◦ τ♯.
3. If σ is the constant map, then σ♯ is the identity map.
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4. (Naturality): Let Y be a topological space and ϕ : X→ Y be a continuous map such that τ = ϕ ◦ σ. Then, the
following diagram commutes.

πn(X, σ(1))

ϕ∗

��

σ♯ // πn(X, σ(0))

ϕ∗

��
πn(Y, τ(1)) τ♯

// πn(Y, τ(0))

Notation. Throughout this paper we denote the collection of all open covers of X by O(X), and we let

X̃ = {[α] : α is a path in X with α(0) = x0}.

In Definition 2.2, we recall the definition of the Spanier group of a pointed space (X, x0), as introduced by
Fischer et al. in [12].

Definition 2.2. Let (X, x0) be a pointed topological space.

1. Suppose thatU is an element of O(X). The Spanier group of X at x0 with respect toU, denoted by πSp(U, x0),
is a subgroup of π1(X, x0) which is generated by [σ][α][←−σ ], where [σ] ∈ X̃ and α : I → U is a loop based at
σ(1), for some U ∈ U.

2. The Spanier group of X at x0, denoted by πSp(X, x0), is
⋂
U∈O(X) π

Sp(U, x0). Equivalently, πSp(X, x0) is the
inverse limit (or lim

←−
πSp(U, x0)) of the inverse system {πSp(U, x0), πSp(V, x0) ↪→ πSp(U, x0),O(X)}, where

O(X) is directed by refinement.

In [5], Brazas and Fabel defined the thick Spanier group as a subgroup of the fundamental group. A result
established in this paper says that the Spanier group of a topological space is contained in the thick Spanier
group. In the following definition, we define the thick Spanier group.

Definition 2.3. Let (X, x0) be a pointed topological space.

1. Suppose that U is an arbitrary open cover of X. The thick Spanier group of X with respect to U, denoted by
ΠSp(U, x0), is the subgroup generated by the elements

[σ][α1][α2][←−σ ],

where [σ] ∈ X̃ and for i = 1, 2, the maps αi : I→ Ui are paths for some Ui ∈ U.
2. The subgroup ΠSp(X, x0) =

⋂
U∈O(X) π

Sp(U, x0) of π1(X, x0) is called thick Spanier group. Equivalently,
ΠSp(X, x0) is the inverse limit (or lim

←−
ΠSp(U, x0)) of the inverse system {ΠSp(U, x0),ΠSp(V, x0) ↪→ ΠSp(U, x0),O(X)},

where O(X) is directed by refinement.

2.1. Čech expansion and the nth shape homotopy group
In this section, we recall the construction of the nth shape homotopy group via Čech expansion. See [15]

for more details.
Let O(X) be the set of all open covers of X, and

O(X, x0) = {(U,U0) :U ∈ O(X),U0 ∈ U}.

It is easy to see that O(X) is a directed set by refinement. We say that (V,V0) refines (U,U0) ifV refinesU
as a covering and V0 ⊂ U0.

The nerve of a covering (U,U0)∈ O(X, x0) is an abstract simplicial complex N(U) whose vertex set is the
set of elements of U and the vertices U0,U1, . . . ,Un ∈ U span an n-simplex in N(U) if

⋂n
i=1 Ui , ∅. The

vertex U0 is taken to be the base point of the geometric realization |N(U)|. If (V,V0) refines (U,U0), we can
construct a simplicial map PUV : N(V)→ N(U), called projection map, as follows.

Given a vertex V ∈ N(V), there exists U ∈ U such that V ⊂ U, (V,V0) refines (U,U0)), the map PUV sends
the vertex V of N(V) to the vertex U of N(U), and V0 must be sent to U0. We know that such an assignment
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of vertices induces a simplicial map. Now, PUV induces a map |PUV| : |N(V)| → |N(U)|, which is unique
up to the based homotopy. Thus, the induced homomorphism pUV∗ : πn(|N(V|,V0) −→ πn(|N(U|,U0) is
independent of the choice of the simplicial map.

An open coveringU of X is said to be normal if it admits a partition of unity subordinated toU. LetΛ be
the subset of O(X, x0) consisting of all pairs (U,U0), whereU is a normal open covering of X, such that there
exists a partition of unity {φu}u∈U subordinated to U with φu0 (x0) = 1. We know that for a paracompact
Hausdorff space X, Λ is cofinal in O(X, x0).

For each (U,U0) ∈ Λ, choose a pointed map pU : (X, x0) → (|N(U)|,U0) such that p−1
U

(St(U,N(U))) ⊆ U
for all U ∈ U, where St(U,N(U)) denotes the open star of the vertex of N(U) which corresponds to U.
(For example, define pU based on a locally finite partition of unity subordinated to U.) Again, such a
map pU is unique up to the pointed homotopy, and we denote its pointed homotopy class by [pU]. Then,
[pUV ◦ pV] = [pU]. The so-called (pointed) Čech expansion

(X, x0) [pU
−→

] ((N(U, ∗), [pUV],C)

is an HPol∗-expansion. The nth shape homotopy group of a space X based at x0, denoted by π̌n(X, x0), is defined
as follows.

πn(X, x0) = lim
←−

(πn(|N(U)|,U0), pUV∗,Λ).

Since the maps pU induce homomorphisms pU∗ : πn(X, x0) → πn(|N(U)|,U0) such that pU∗ = pUV∗ ◦ pV∗,
whenever (V,V0) refines (U,U0), we obtain an induced homomorphism

ΨX : πn(X, x0) −→ π̌n(X, x0)

given byΨX([α]) = [αU], whereαU = pU◦α. We say that X is n-shape injective (bijective) if the homomorphism
φ is injective (bijective).

3. The nth thick and weak thick Spanier groups and their properties

Throughout the paper, σ♯[α] is an n-loop such that σ is a path from σ(0) to σ(1), and α is an n-loop at
σ(1). To begin with, we recall the construction of the nth Spanier groups from [3].

Definition 3.1. Let (X, x0) be a pointed space, and U = {Ui|i ∈ I} ∈ O(X). Let πSp
n (U, x0) be the subgroup of

πn(X, x0) which is spanned by all homotopy classes of the formΠn
j=1σ j♯[ν j], where for every 1 ≤ j ≤ n, σ j(0) = x0 and

the n-loop ν j lies in one of the neighborhoods U j ∈ U. This group is called the n-Spanier group with respect to U.
Moreover, the subgroup πSp

n (X, x0) =
⋂
U∈O(X) π

Sp
n (U, x0) is said to be the n-Spanier group.

Let (X, x0) be a pointed space, and s0 = (1, 0, 0, ..., 0) ∈ ∂Dn. Suppose that f1, f2 : (Dn, s0) −→ (X, x0) are
pointed continuous maps such that f1(z) = f2(z), for every z ∈ ∂Dn. Then the map f1 ⊛ f2 : Sn

−→ X, defined
by the following formula, is an n-loop at x0.

f1 ⊛ f2(z) =
{

f1(z) z ∈ Sn
+

f2(z) z ∈ Sn
−
.

In the following proposition, we show that the definition above is independent of the choice of maps in
their relative homotopy classes under homotopy.

Proposition 3.2. Let (X, x0) be a pointed space, s0 = (1, 0, 0, ..., 0) ∈ ∂Dn and fi, 1i : (Dn, s0) −→ (X, x0) be pointed
continuous functions, for i = 1, 2, such that for each z ∈ ∂Dn, f1(z) = f2(z) and 11(z) = 12(z). If fi ≃ 1i rel{∂Dn

},
then [ f1 ⊛ f2] = [11 ⊛ 12].

Proof. Let F be a relative homotopy from f1 to 11, and G be a relative homotopy from f2 to 12. The map
H : Sn

× [0, 1] −→ X, defined by H(z, t) = Ft ⊛ Gt(z), is a relative homotopy from f1 ⊛ f2 to 11 ⊛ 12 because
for every z in Sn, H(z, 0) = f1 ⊛ f2(z),H(z, 1) = 11 ⊛ 12(z) and for every z ∈ ∂Dn, t ∈ [0, 1], H(z, t) = f1 ⊛ f2(z) =
11 ⊛ 12(z). H. Therefore, [ f1 ⊛ f2] = [11 ⊛ 12].
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Definition 3.3. LetU be an open cover of a pointed space (X, x0).

(1) The n-thick Spanier group with respect toU is the subgroup of πn(X, x0) which is spanned by elements of the
form σ♯[ f1 ⊛ f2], where σ ∈ X̃, f1, f2 : (Dn, s0) −→ (X, x0) are pointed continuous maps such that for any
z ∈ ∂Dn, f1(z) = f2(z), and Im fi ⊆ Ui for some Ui ∈ U (i = 1, 2). We denote this by πtSp

n (U, x0).
(2) The subgroup

πtSp
n (X, x0) =

⋂
U∈O(X) π

tSp
n (U, x0)

is said to be the n-thick Spanier group of X. Equivalently, πtSp
n (X, x0) is the inverse limit (or lim

←−
πtSp

n (U, x0)) of

the inverse system {πtSp
n (U, x0), πtSp

n (V, x0) ↪→ πtSp
n (U, x0),O(X)}, where O(X) is directed by refinement.

If n = 1, then Definition 3.3 and Definition 2.3 are equivalent. It is easy to see that if an open coverV of X
refinesU ∈ O(X), then πSp

n (U, x0) ⊆ πtSp
n (U, x0) and πtSp

n (V, x0) ⊆ πtSp
n (U, x0). It is also clear that πSp

n (X, x0)
is a subgroup of πtSp

n (X, x0).

Example 3.4. LetU be an open cover of a locally (n-1)-connected metric space X. Then,U is called (2,n)-set simple
if each element of this cover is (n − 1)-connected and each n-loop in X that lies in the union of two elements of U
is contractible in X (See [13]). Clearly, for each (2,n)-set simple open cover of X, the n-thick Spanier group and the
n-Spanier group of X with respect toU are equal to the trivial group.

In our next example, we show that the n-Spanier group and the n-thick Spanier group of a cover are not
equal in general.

Example 3.5. Let U = Sn
− {N} and V = Sn

− {S}, where N and S are the north pole and the south pole of Sn,
respectively. It is obvious thatU = {U,V} is an open cover of Sn, and that U and V are contractible open subsets of
Sn. So, πSp

n (U, x0) is the trivial group. On the other hand, the generator of πn(Sn, x0) is an element of πtSp
n (U, x0),

and so πtSp
n (U, x0) = πn(Sn, x0) = Z.

Definition 3.6. Let U be an open cover of a pointed space (X, x0). The n-weak thick Spanier group with respect to
U is the subgroup of πn(X, x0) which is generated by elements of the form σ♯[α], where α(In) ⊆ U1 ∪ U2 for some
U1,U2 ∈ U. We denote this by πwtSp

n (U, x0). The n-weak thick Spanier group of X is defined as follows.

πwtSp
n (X, x0) =

⋂
U∈O(X) π

wtSp
n (U, x0).

Equivalently, πwtSp
n (X, x0) is the inverse limit (or lim

←−
πwtSp

n (U, x0)) of the inverse system

{πwtSp
n (U, x0), πwtSp

n (V, x0) ↪→ πwtSp
n (U, x0),O(X)},

where O(X) is directed by refinement.

LetU be an open cover of the pointed space (X, x0). According to the definitions of the nth Spanier group,
the nth weak thick Spanier group and the nth thick Spanier group,

πSp
n (U, x0) ⊆ πtSp

n (U, x0) ⊆ πwtSp
n (U, x0).

Moreover, ifV is an open cover of X which refinesU, then πwtSp
n (V, x0) ⊆ πwtSp

n (U, x0). In parts (i) and (ii)
of the next example, we compute the nth Spanier group, the nth thick Spanier group and the nth weak thick
Spanier group. In (iii), we show that in general, these subgroups are not equal to each other.

Example 3.7. (i) Let K be a geometric simplicial complex, andW = {St(v,K) : v is a vertex of K} be an open
cover of K. Since for any vertex v of K, the open star St(v,K) is contractible and path-connected,

πSp
n (W,w0) = πtSp

n (W,w0) = πwtSp
n (W,w0) = 1.
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(ii) As shown in Example 3.5, πSp
n (U, x0) is the trivial group and πtSp

n (U, x0) = πn(Sn, x0) = Z. Hence,
πwtSp

n (U, x0) = Z.

(iii) Let U1 = {e2πit : 0 < t < 1
4 },U2 = {e2πit : 1

2 < t < 3
4 }, U3 = {e2πit : 1

8 < t < 5
8 } and U4 = {e2πit : 5

8 < t < 9
8 }.

If V1 = U1 ∪ U2 and V2 = U3 ∪ U4, then V = {V1,V2} is an open cover of S1. The subgroup πtSp
1 (V, x0) is

trivial, because no pair of paths γ1 : I −→ V1 and γ2 : I −→ V2 satisfying γ1 ⊛ γ2(I) = S1 can be found. Since
πwtSp

1 (V, x0) contains a generator of π1(S1, x0), πwtSp
1 (V, x0) = π1(S1, x0) ≃ Z. If X = Sn, using a similar

method one finds an open coverV such that

πwtSp
n (V, x0) = πn(Sn, x0) ≃ Z, and πtSp

n (V, x0) = 1.

As mentioned in Example 3.5 and Example 3.7, in general, the nth Spanier group, the nth thick Spanier
group and the nth weak thick Spanier group of an open cover may be different subgroups of the nth
homotopy group. In the following theorems, we present sufficient conditions that ensure the equality of
these subgroups for an open cover.

Theorem 3.8. If U is an open cover of (X, x0) such that U1 ∩ U2 is non-empty and path-connected for every pair
U1,U2 ∈ U, thenπSp

1 (U, x0) = πtSp
1 (U, x0) = πwtSp

1 (U, x0).Moreover, if every open coverU of X admits a refinement
V with this property, then

πSp
1 (X, x0) = πtSp

1 (X, x0) = πwtSp
1 (X, x0).

Proof. LetU be an open cover of X, and σ♯[α] = [σα←−σ ] be a generator of πwtSp
1 (U, x0), where α(I) ⊆ U1 ∪U2

for some U1,U2 ∈ U. First, assume that σ(1) = x1 ∈ U1 ∩ U2. By [2, Lemma 3.2.5], there exist loops
µ1, ..., µk such that [α] = [µ1][µ2] · · · [µk], and for each 1 ≤ i ≤ k, µi(I) is contained in U1 or U2. Now, for
any 1 ≤ i ≤ k, σ♯[µi] ∈ π

Sp
1 (U, x0) and hence σ♯[α] = σ♯[µ1]σ♯[µ2] · · · σ♯[µk] ∈ πSp

1 (U, x0). Let x1 < U1 ∩ U2
and y = α(t0) ∈ U1 ∩ U2. Suppose that τ : I −→ X is a part of the loop α such that τ(0) = y and τ(1) = x1.
Clearly, β = τα←−τ is a loop at y which satisfies β(I) ⊆ U1 ∪U2. Since σ♯[α] = (σ←−τ )♯[β] and y ∈ U1 ∩U2, by the
paragraph above, σ♯[α] = (σ←−τ )♯[β] ∈ πSp

1 (U, x0).

As already mentioned, there are two equivalent definitions for relative homotopic groups as well as for
homotopic groups. So, we can redefine f1⊛ f2 using the cubical approach. If f and 1 are pointed continuous
maps from (In, ∂In, Jn−1) to (X,A, x0), where A = f (∂In) = 1(∂In), then the map f ⊛ 1 is defined as follows.

f ⊛ 1(x1, x2, x3, . . . , xn) =
{

f (x1, x2, x3, . . . , 1 − 2xn) 0 ≤ xn ≤
1
2

1(x1, x2, x3, . . . , 2xn − 1) 1
2 ≤ xn ≤ 1.

Lemma 3.9. Let f1, f2, 11 and 12 be maps from In to X such that f1|∂In = f2|∂In = 11|∂In = 12|∂In = A. Then

[( f1 ⊛ 11) + ( f2 ⊛ 12)] = [( f1 + f2) ⊛ (11 + 12)], (1)

where + in the left side of (1) is the sum in πn(X, x0), and + in the right side of (1) is the sum in πn(X,A, x0).
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Proof. If (x1, x2, . . . , xn) ∈ In, then

( f1 ⊛ 11) + ( f2 ⊛ 12)(x1, x2, . . . , xn) =
{

f1 ⊛ 11(2x1, x2, . . . , xn) 0 ≤ x1 ≤
1
2

f2 ⊛ 12(2x1 − 1, x2, . . . , xn)) 1
2 ≤ x1 ≤ 1

=


f1(2x1, x2, . . . , 1 − 2xn) 0 ≤ x1 ≤

1
2 , 0 ≤ xn ≤

1
2

11(2x1, x2, . . . , 2xn − 1) 0 ≤ x1 ≤
1
2 ,

1
2 ≤ xn ≤ 1

f2(2x1 − 1, x2, . . . , 1 − 2xn) 1
2 ≤ x1 ≤ 1, 0 ≤ xn ≤

1
2

12(2x1 − 1, x2, . . . , 2xn − 1) 1
2 ≤ x1 ≤ 1, 1

2 ≤ xn ≤ 1

=


f1(2x1, x2, . . . , 1 − 2xn)) 0 ≤ x1 ≤

1
2 , 0 ≤ xn ≤

1
2

f2(2x1 − 1, x2, . . . , 1 − 2xn)) 1
2 ≤ x1 ≤ 1, 0 ≤ xn ≤

1
2

11(2x1, x2, . . . , 2xn − 1)) 0 ≤ x1 ≤
1
2 ,

1
2 ≤ xn ≤ 1

12(2x1 − 1, x2, . . . , 2xn − 1)) 1
2 ≤ x1 ≤ 1, 1

2 ≤ xn ≤ 1

=

{
f1 + f2(x1, x2, . . . , 1 − 2xn) 0 ≤ xn ≤

1
2

11 + 12(x1, x2, . . . , 2xn − 1)) 1
2 ≤ xn ≤ 1

= ( f1 + f2) ⊛ (11 + 12)(x1, x2, . . . , xn).

Therefore,

[( f1 ⊛ 11) + ( f2 ⊛ 12)] = [( f1 + f2) ⊛ (11 + 12)].

Theorem 3.10. If U is an open cover of (X, x0) such that for every U1,U2 ∈ U, U1 ∩ U2 is (n − 1)-connected (or
empty), then πSp

n (U, x0) = πtSp
n (U, x0). Also, if every open coverU of X admits a refinementV with this property,

then πSp
n (X, x0) = πtSp

n (X, x0).

Proof. Let U be an open cover of X as stated, and k = σ♯[ f1 ⊛ f2] be a generator of πtSp
n (X, x0), where

f1, f2 : Dn
→ X, f1|∂Dn = f2|∂Dn and there exist U1,U2 ∈ U such that the image of fi is a subset of Ui for

each i ∈ {1, 2}. Hence, the image of the map 1 = f1|∂Dn = f2|∂Dn is a subset of U1 ∩ U2. Since U1 ∩ U2 is
(n − 1)-connected, there exists a map 1̂ : Dn

→ U1 ∩U2 such that 1̂|∂Dn = 1. Thus, 1̂, f1 and f2 are maps from
Dn to X such that 1̂|∂Dn = f1|∂Dn = f2|∂Dn . If A = f1(∂Dn) = f2(∂Dn) = 1̂(∂Dn), then f1, f2 and 1̂ are elements of
πn(X,A, x0). If h1 = σ♯[ f1⊛ 1̂] and h2 = σ♯[1̂⊛ f2], it is obvious that Im( f1⊛ 1̂) ⊂ U1 and Im(1̂⊛ f2) ⊂ U2. So, the
maps h1 and h2 are in πSp

n (U, x0). To complete the proof, we need to show that k = h1 + h2. Since 1̂(∂Dn) = A,
1̂ is the zero element of πn(X,A, x0). So, by Lemma 3.9 and Theorem 2.1,

k = σ♯[ f1 ⊛ f2] = σ♯[( f1 + 1̂) ⊛ (1̂ + f2)]
= σ♯[( f1 ⊛ 1̂) + (1̂ ⊛ f2)] = σ♯[ f1 ⊛ 1̂] + σ♯[1̂ ⊛ f2]
= h1 + h2 ∈ π

Sp
n (U, x0).

Let U be an open cover of a topological space X. We recall that the star of x with respect to U, denoted
by St(x,U), is the union of all U ∈ U which contain x. An open refinement V of U is called a barycentric
refinement ofU if for each x ∈ X, there exists U ∈ U such that St(x,V) ⊂ U. [11]

Theorem 3.11. If (X, x0) is a T1 and paracompact space, then πSp
n (X, x0) = πtSp

n (X, x0) = πwtSp
n (X, x0). Moreover,

this identity holds if X is metrizable.

Proof. Let U be an open cover of X. Since X is T1 and paracompact, by [11, Theorem 5.1.12] there
exists an open barycentric refinement V of U. Suppose that σ♯[α] is a generator of πwtSp

n (V, x0), where
α(In) ⊆ V1 ∪V2 for some V1,V2 ∈ V. SinceV is a barycentric refinement ofU, there exists U ∈ U such that
V1 ∪ V2 ⊆ St(σ(1),V) ⊂ U. This implies that σ♯[α] is an element of πSp

n (U, x0). Now, it is easy to see that
πSp

n (X, x0) = πtSp
n (X, x0) = πwtSp

n (X, x0).
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Theorem 3.12. If G is a path-connected topological group, then for every x ∈ G,

πSp
n (G, x) = πtSp

n (G, x) = πwtSp
n (G, x).

Proof. We only show that πwtSp
n (G, x) ⊆ πSp

n (G, x), for every x ∈ G. Let x ∈ G, [β] be a generator of πwtSp
n (G, x),

andW be an open cover of G. Then, there exist a path σ from x to σ(1) = y and an n-loop α : In
−→ G at y

such that σ♯[α] = [β] and α(In) ⊆W1 ∪W2 for some W1 and W2 inW. If W1 ∩W2 is empty, since the set α(In)
is connected, [β] ∈ πSp

n (W, x).Now assume that z ∈W1 ∩W2 =W. Since G is a topological group, there exist
open neighborhoods U and V of e such that zU ⊆ W,V2

⊆ U and V is symmetric. IfV = {1V : 1 ∈ G}, then
V is an open cover of G such that for some 11, 12 ∈ G, y ∈ α(In) ⊆ 11V∪ 12V. Since V is symmetric, y−111 ∈ V
or y−112 ∈ V. Let τ : I −→ G be a path from z to y. Define an n-loop γ : In

−→ G by γ(s) = zy−1α(s) at z, and a
map H : In

× I −→ G by H(s, t) =←−τ (t)z−1γ(s). Then, for any s ∈ In,H(s, 0) =←−τ (0)z−1γ(s) = yz−1zy−1α(s) = α(s),
and for every s ∈ ∂In,

H(s, t) =←−τ (t)z−1γ(s) =←−τ (t)z−1zy−1α(s) =←−τ (t)y−1y =←−τ (t).

Since for each s ∈ In, H(s, 1) =←−τ (1)z−1γ(s) = zz−1γ(s) = γ(s), τ♯[α] = [γ] and

γ(In) = zy−1α(In) ⊆ zy−1(11V ∪ 12V) ⊆ zy−111V ∪ zy−112V ⊆ zV2
∪ zV2 = zV2

⊆ zU ⊆W.

Then, [β] = (σ←−τ )♯[γ] ∈ πSp
n (W, x). SinceW is an arbitrary open cover, [β] ∈ πSp

n (G, x).

Problem 3.13. Is there a topological group whose nth weak thick (or thick) Spanier group is a non-trivial group?

The authors do not know the answer to this question.

Lemma 3.14. Let h : (X, x0) −→ (Y, y0) be a pointed map, and σ : [0, 1] −→ X be a path with σ(0) = x0. Then, the
following statements are true.

(i) For all [β] ∈ πn(X, σ(1)), (h ◦ σ)♯[h ◦ β] = h∗ ◦ σ♯[β].
(ii) IfW is an open cover of Y such that h−1(W) is an open cover of X, then

h∗(π
wtSp
n (h−1(W), x0)) ⊆ πwtSp

n (W, y0).

Proof. The proof is straightforward.

As Brazas et al. proved in [5], the thick Spanier group lies in the kernel of the canonical map from the
fundamental group to the first shape homotopy groups. In the following proposition, we show that this
holds for the nth thick (weak thick) Spanier group.

Proposition 3.15. For any space X, if ΨX is the canonical map from the nth homotopy group to the nth shape
homotopy groups, then πtSp

n (X, x0) ⊆ πwtSp
n (X, x0) ⊆ kerΨX.

Proof. Let (U,U0) be a pointed open cover of X. The set V = {P−1
U

(St(U,N(U))) : U ∈ U} is an open
refinement ofU, because for each U ∈ U, the set P−1

U
(St(U,N(U))) is a subset of U. Let 1 be a generator of

πwtSp
n (X, x0). Since 1 lies in πwtSp

n (V, x0), there exist σ ∈ X̃ and α : In
→ P−1

U
(St(U,N(U))) ∪ P−1

U
(St(V,N(U))),

for some U,V ∈ U, such that 1 = σ♯[α]. So, PU ◦ σ is a path in |N(U)| with initial point U0 and end point
PU(σ(1)), and (PU ◦ α)(In) ⊂ St(U,N(U)) ∪ St(V,N(U)). SinceW = {St(U,N(U)) : U ∈ U} is an open cover
of |N(U)| by open stars, PU#(σ♯[α]) = (PU ◦ σ)♯[(PU ◦ α)] by Lemma 3.14. But the right side of the latter
equation is a generator of πwtSp

n (W,U0), and by (i) of Example 3.7, this group is the trivial group. So, 1 lies
in kerPU#.
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4. Some topologies on the nth homotopy group

Homotopy groups can be equipped with various topologies. Relative homotopy defines an equivalence
relation on the space of continuous maps from the n-sphere to a topological space with the compact-open
topology. So, this relation induces a quotient topology on the homotopy groups. See [4, 6] for more details.

Perhaps, this was the first topology defined on the homotopy groups. Many authors have defined other
topologies on the homotopy groups. They have explored the relationship between the topological properties
of a topological space and its homotopy groups, for example, the relation between the Hausdorffness of a
topological space X and the Hausdorffness of its homotopy groups.

In this section we use the notion of subgroup topology, introduced by Brodskiy in [10], and our subgroups
of homotopy groups to define some topologies on the homotopy groups. To begin with, let us recall the
definition of subgroup topology from [10].

Definition 4.1. Let G be a group, and Σ be a non-empty family of subgroups of G such that for any S,S′ ∈ Σ there
exists S′′ ∈ Σ such that S′′ ⊆ S ∩ S′. Then, the following statements are true.

(S1) The set {1S : 1 ∈ G,S ∈ Σ} is a base for a topology τΣ on G which is called the subgroup topology induced by Σ.
(S2) The topology τΣ is discrete if and only if Σ contains the trivial group.
(S3) The space (G, τΣ) is topological group if all members of Σ are normal subgroups of G ([19]).
(S4) The space (G, τΣ) is Hausdorff if and only if ∩S∈ΣS is the trivial group.

Proposition 4.2. Let (X, x0) be a pointed space and n ∈N. Then, the following statements are true.

1. The sets ΣSp = {π
Sp
n (U, x0) : U ∈ O(X)}, ΣtSp = {π

tSp
n (U, x0) : U ∈ O(X)} and Σwtsp = {π

wtSp
n (U, x0) : U ∈

O(X)} induce subgroup topologies τSp, τtSp and τwtSp on πn(X, x0), respectively.
2. The space (πn(X, x0), τ) is a topological group if τ ∈ {τSp, τtSp, τwtSp}.

Proof. (i) It suffices to show that ΣSp induces a topology τSp on πn(X, x0). The other cases can be proved
similarly. Let πSp

n (U, x0) and πSp
n (V, x0) be elements of ΣSp. The set W = {U ∩ V : U ∈ U,V ∈ V} is

a refinement of U and V such that πSp
n (W, x0) ⊆ πSp

n (U, x0) ∩ πSp
n (V, x0). By (S1), the set ΣSp induces a

subgroup topology τSp on πn(X, x0). (ii) Since the elements of ΣSp,ΣtSp and ΣwtSp are normal in πn(X, x0), by
(S3), the proof is straightforward.

Definition 4.3. Let (X, x0) be a pointed space. We call the topologies τSp, τtSp and τwtSp the Spanier topology, the
thick Spanier topology, and the weak thick Spanier topology, respectively.

Proposition 4.4. Let σ : I −→ X be a path from x0 to x1 in a topological space X. Then, σ♯ : (πn(X, x1), τ) −→
(πn(X, x0), τ) is a homeomorphism, where τ ∈ {τSp, τtSp, τwtSp}.

Proof. Let 11 = [cx1 ] be the identity element of πn(X, x1), and τ ∈ {τSp, τtSp, τwtSp}. Since for each open coverU
of X, σ♯(π

Sp
n (U, x1)) ⊆ πSp

n (U, x0), σ♯(π
tSp
n (U, x1)) ⊆ πtSp

n (U, x0), and σ♯(π
wtSp
n (U, x1)) ⊆ πwtSp

n (U, x0), the map
σ♯ is continuous at 11. By Proposition 4.2, (πn(X, x0), τ) and (πn(X, x1), τ) are topological groups. So, σ♯ is
continuous at every point of (πn(X, x1), τ). Similarly, we can prove that←−σ ♯ is also continuous.

Proposition 4.5. If f : (X, x0) −→ (Y, y0) is a pointed continuous map, then the induced homomorphism f∗ :
(πn(X, x0), τ) −→ (πn(Y, y0), τ) is continuous, where τ ∈ {τSp, τtSp, τwtSp}.

Proof. Let τ ∈ {τSp, τtSp, τwtSp}, and U be an open cover of Y. Then, f−1(U) = { f−1(U) : U ∈ U} is an
open cover of X. It is easy to prove that f∗(π

Sp
n ( f−1(U), x0)) ⊆ πSp

n (U, y0), f∗(π
tSp
n ( f−1(U), x0)) ⊆ πtSp

n (U, y0)
and f∗(π

wtSp
n ( f−1(U), x0)) ⊆ πwtSp

n (U, y0). Hence, f∗ is continuous at the identity element of πn(X, x0). Since
(πn(X, x0), τ) and (πn(Y, y0), τ) are topological groups, the homomorphism f∗ is continuous.



A. A. Bahredar et al. / Filomat 38:12 (2024), 4381–4394 4391

Proposition 4.6. Let {(Xi, xi) : i ∈ I} be a family of pointed spaces, x = {xi : i ∈ I} and X =
∏

i∈I Xi. If
τ ∈ {τSp, τtSp, τwtSp} and τ′ is the product topology on

∏
i∈I πn(Xi, xi), then the isomorphism ψ : πn(X, x) −→∏

i∈I πn(Xi, xi) defined by ψ([α]) = {Pi∗([α])}i∈I is continuous, where Pi : X −→ Xi is the canonical projection into
the ith component of X.

Proof. Let τ = τSp, and
∏

i∈I Bi be a base element of τ′. Then, there exists a finite subset J of I such that for
any i ∈ I \ J, Bi = πn(Xi, xi). If Bi = π

Sp
n (Ui, xi) for each i ∈ J, then the set

W =
{∏

i∈I Ui : Ui ∈ Ui for i ∈ J and Ui = Xi for i ∈ I \ J
}

is an open cover of X. We show that ψ(πSp
n (W, x)) ⊆

∏
i∈I Bi. Let σ♯[γ] be a generator of πSp

n (W, x) such that
γ(In) ⊆

∏
i∈I Ui for some

∏
i∈I Ui ∈ W. Then,

ψ(σ♯[γ]) = {Pi∗σ♯[γ]}i∈I = {(Pi ◦ σ)♯[Pi ◦ γ]}i∈I ∈
∏

i∈I Bi.

Therefore,ψ is continuous at the identity element of (πn(X, x), τ). Since (πn(X, x), τ) and (
∏

i∈I πn(Xi, xi), τ′) are
topological groups, ψ is continuous at any element of πn(X, x). The other cases can be proved similarly.

A topological space X is said to be n-homotopically Hausdorff at x ∈ X if for any essential n-loopα : (In, ∂In) −→
(X, x), there exists an open neighborhood U of x such that no n-loops at x are homotopic (in X) to α rel ∂In.
The space X is called n-homotopically Hausdorff if it is n-homotopically Hausdorff at x, for every x ∈ X. See
[13] for more details.

Theorem 4.7. Let X be a path-connected space, x0 ∈ X and τ ∈ {τSp, τtSp, τwtSp}. If (πn(X, x0), τ) is Hausdorff for
every n ∈N, then X is n-homotopically Hausdorff.

Proof. Let τ = τSp, and suppose that(πn(X, x0), τ) is a Hausdorff space. Then by (S4),
⋂
U∈O(X) π

Sp
n (U, x0) =

πSp
n (X, x0) is the trivial group. Suppose that X is not n-homotopically Hausdorff. Then there exists an

essential n-loop α with base point x such that for eachU ∈ O(X), there exist an open set V ∈ U and an n-
loop βV : In

−→ V with base point x such that [α] = [βV]. Since X is path-connected, there exists a path σ from
x0 to x such that σ♯[α] = σ♯[βV] ∈ πSp

n (U, x0). SinceU is arbitrary, σ♯[α] is the identity element of πSp
n (X, x0),

and so [α] = 1, which is a contradiction. Therefore, X is n-homotopically Hausdorff. If τ ∈ {τtSp, τwtSp} and
(πn(X, x0), τ) are Hausdorff spaces, then by (S4), πSp

n (X, x0) or πwtSp
n (X, x0) is the trivial group. This implies

that πSp
n (X, x0) is the trivial group, and so X is n-homotopically Hausdorff.

Corollary 4.8. If X is a πn-injective space, then X is n-homotopically Hausdorff.

Proof. Since X is a πn-injective space (that is, kerΨ = 1), by Proposition 3.15 and (S3), (πn(X, x0), τ) is
Hausdorff, where τ ∈ {τSp, τtSp, τwtSp}. Therefore, by Theorem 4.7, X is n-homotopically Hausdorff.

The following example shows that the converse of Theorem 4.7 is not true in general. In Proposition 4.14,
we will show that there are some conditions under which the converse of Theorem 4.7 is true.

Example 4.9. Let An =
(⋃

i∈N

(
Sn

i × [0, 1]
))
∪

(⋃
i∈N

(
Bn

i × [0, 1]
))
, where

Sn
i =
{
(x1, ..., xn) ∈ Rn : x2

1 + · · · + x2
n =

1
i2

}
and Bn

i =
{
(x1, ..., xn) ∈ Rn : x2

1 + · · · + x2
n = ( 2i+1

2i(i+1) )
2
}
.

It is easy to show that if x ∈ Bn
i , then 2i+2

2i+1 x and 2i
2i+1 x are in Sn

i and Sn
i+1, respectively. Hence, the following relation is

an equivalence relation on An. For any i ∈N and x ∈ Bn
i ,

(x, 0) ∼
(

2i+2
2i+1 x, 0

)
and (x, 1) ∼

(
2i

2i+1 x, 1
)
,

and the other points of An are only related to themselves. Let Wn = An

∼
be the subspace of Rn+2. The space Wn is

n-semilocally simply connected, and its n-Spanier groups are trivial. By Theorem 4.7, the topological space Wn is
n-homotopically Hausdorff. Now, let W1 = W1

∪ {(0, 0, b) ∈ R3 : 0 ≤ b ≤ 1} ∪ C, where C is a single arc that
intersects the central axis of W1 only at its endpoint (Figure 4.9).
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The spaceW1

In general, letWn = Wn
∪ {(0, ..., 0, b) ∈ Rn+1 : 0 ≤ b ≤ 1} ∪ C, where C is a single arc that connects the central

axis to Wn. This arc C cannot intersect Wn or the central axis at any points other than its endpoints. The n-Spanier
group of the spaceWn is non-trivial ([3]). Since

πSp
n (Wn, x0) ⊆ πtSp

n (Wn, x0) ⊆ πwtSp
n (Wn, x0),

the subgroupsπtSp
n (Wn, x0) andπwtSp

n (Wn, x0) are also non-trivial. By (S3), the topological spaces (πn(Wn, x0), τSp),
(πn(Wn, x0), τtSp) and (πn(Wn, x0), τwtSp) are not Hausdorff. But, by [17, Theorem 2.9], the space Wn is n-
homotopically Hausdorff.

The concept of small loop transfer was defined by Brodskiy et al. in [9]. Now, we are going to introduce
the concept of small n-loop transfer as an extension of this.

Definition 4.10. A topological space X is said to be a small n-loop transfer space at x ∈ X if for every path σ in
X with σ(0) = x and every open neighborhood U of x, there is an open set V containing σ(1) such that for any n-loop
β in V at σ(1), there exists an n-loop α in U at x such that σ♯[β] = [α]. A topological space is called a small n-loop
transfer space if it is small n-loop transfer at each of its points.

Proposition 4.11. Any path-connected topological group is a small n-loop transfer space.

Proof. Let G be a topological group and x ∈ G. Let σ be a path in G from x to y, and U be an open
neighborhood of x. Then, V = yx−1U is an open neighborhood of y. If β is an n-loop at y in V, then the map
α : In

−→ U defined by α(t) = xy−1β(t) is an n-loop at x. The homotopy map H : In
× I −→ G given by

H(s, t) = σ(t)x−1α(s) satisfies the following conditions.

H(s, 0) = α(s),H(s, 1) = β(s), for all s ∈ In

H(s, t) = σ(t), for all s ∈ ∂In, t ∈ I.

Hence by (10), σ♯[β] = [α]. Therefore, G is a small n-loop transfer space.

Definition 4.12. [13] A space X is said to be n-homotopically Hausdorff at x ∈ X if for any essential n-loop
α : (In, ∂In) −→ (X, x), there exists an open neighborhood U of x such that no n-loops at x with image in U are
homotopic (in X) to α rel ∂In. The space X is called n-homotopically Hausdorff if it is n-homotopically Hausdorff at x,
for every x ∈ X.
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Definition 4.13. [14] A path-connected space X is said to be abelian if the action of the fundamental group on each
homotopy group of X is trivial.

Proposition 4.14. Let (X, x0) be an abelian, locally path-connected, n-homotopically Hausdorff and small n-loop
transfer space. Then, (πn(X, x0), τSp) is a Hausdorff space. Moreover, if X is a T1 and paracompact space, then
(πn(X, x0), τtSp) and (πn(X, x0), τwtSp) are Hausdorff spaces.

Proof. Let α : In
−→ X be an essential n-loop at x0. Since the space is locally path-connected and n-

homotopically Hausdorff, there exists a path-connected open neighborhood U of x0 such that α is not
homotopic to any n-loop at x0 in U. Let σ be a path from x0 to σ(1). Since X is a small n-loop transfer
space, there exists a path-connected open neighborhood Vσ of σ(1) such that σ♯(πn(Vσ, σ(1)) ⊆ πn(U, x0). We
claim that for an open coverV = {Vσ : σ is a path from x0 to σ(1)} of X, [α] < πSp

n (V, x0). If [α] ∈ πSp
n (V, x0),

then there exist paths σ1, ..., σm from x0 and n-loops γ1, ..., γm at σ1(1), ..., σm(1), respectively, such that
[α] = σ1♯[γ1]...σm♯[γm], where γi(In) ⊆ Vλi for some Vλi ∈ V (for i = 1, 2, ...,m). Since X is path-connected,
there exists a path δi from λi(1) to σi(1) in Vλi such that δi♯[γi] is an n-loop at λi(1) in Vλi , for each 1 ≤ i ≤ m.
Since X is a small n-loop transfer space, there exists an n-loop fi at x0 in U such that λi♯δi♯[γi] = [ fi], for
all 1 ≤ i ≤ m. On the other hand, since the space X is abelian, (λiδi)♯ = σi♯ for every 1 ≤ i ≤ m. Thus,
[α] = [ f1]...[ fm] = [ f1 f2... fm], which is a contradiction because f1... fm(In) ⊆ U. Therefore, the topological
group (πn(X, x0), τSp) is a T0 space, and so it is Hausdorff. If X is a T1 and paracompact space, then the proof
is straightforward by Theorem 3.11.

Proposition 4.15. Let (X, x0) be a path-connected and small n-loop transfer space. If X is first countable at x0, then
(πn(X, x0), τSp) is also first countable.

Proof. Let {Ui : i ∈N}be a local base at x0.Since (X, x0) is a small n-loop transfer space, for any i ∈N and every
path σ from x0 to σ(1), there exists an open neighborhood Vσ

i of σ(1) such that σ♯πn(Vσ
i , σ(1)) ⊆ πn(Ui, x0).

Since X is a path-connected space, the set Vi = {Vσ
i : σ is a path with σ(0) = x0} is an open cover of X. We

show that the set {πSp
n (Vi, x0) : i ∈N} is a local base of (πn(X, x0), τSp) at the identity element. Let us consider

the open neighborhood πSp
n (U, x0) of this, whereU is an open cover of X. Let x0 ∈ U for some U ∈ U. Then

there exists j ∈ N such that x0 ∈ U j ⊆ U. It is easy to see that πn(U j, x0) ⊆ πSp
n (U, x0). Since for every path σ

with σ(0) = x0, σ♯πn(Vσ
j , σ(1)) ⊆ πn(U j, x0), we obtain

πSp
n (V j, x0) ⊆

⋃
σ σ♯πn(Vσ

j , σ(1)) ⊆ πn(U j, x0).

Thus πSp
n (V j, x0) ⊆ πSp

n (U, x0), which implies that the set {πSp
n (Vi, x0) : i ∈ N} is a local base at the identity

element of the topological space (πn(X, x0), τSp). By Proposition 4.2, this space is first countable.

Theorem 4.16. Let (X, x0) be path-connected, locally path-connected and n-homotopically Hausdorff, and assume
that the space X is abelian. If X is first countable at x0 and a small n-loop transfer space, then (πn(X, x0), τSp) is
metrizable. Moreover, if X is a T1 and paracompact space, then (πn(X, x0), τtSp) and (πn(X, x0), τwtSp) are metrizable.

Proof. The proof can be completed using Propositions 4.2, 4.15 and 4.14 and Theorem 3.3.12 of [1].

Recall that a map f : X −→ Y has the unique path lifting property if for any two paths α, β : [0, 1] −→ X, we
obtain α = β whenever f ◦ α = f ◦ β and α(0) = β(0).

Now, we recall the definition of Whisker topology on the set X̃ from [8].

Definition 4.17. The basis of the Whisker topology on X̃ is the collection of sets of the form

B([σ],U) =
{
[λ] ∈ X̃ : [λ] = [σδ], for some δ : I −→ U, δ(0) = σ(1)

}
,

where σ ∈ X̃ and U is an open neighborhood of σ(1).
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The set X̃ with the Whisker topology is a topological space, denoted by X̂.
In what follows, we use Proposition 4.14 to give an answer to the problem posed by Brodskiy et al. in

[8, Problem 8.11]. First, let us recall this problem.

Problem 4.18. ([8, Problem 8.11]) Let X be a path-connected space and x0 ∈ X. Are the following conditions
equivalent?

(i) πSp
1 (X, x0) =

⋂
U π

Sp
1 (U, x0) is trivial.

(ii) p : (X̂, x̂0) −→ (X, x0) has the unique path lifting property.
(iii) X is 1-homotopically Hausdorff (or homotopically Hausdorff).

The implications (i) =⇒ (ii) =⇒ (iii) follow from [8]. But, under what conditions is the implication (iii) =⇒ (i)
established?

Notice that by (S3), Problem 4.18 can be transformed into a strong problem as follows.

Problem 4.19. Let X be a path-connected space and x0 ∈ X. Given any n ∈ N, are the following conditions
equivalent?

(i) The space (πn(X, x0), τSp) is Hausdorff.
(ii) The space X is n-homotopically Hausdorff.

Answer:
The implication (i) =⇒ (ii) follows from Theorem 4.7. Now, if we add to (ii) the assumption of being a
locally path-connected, small n-loop transfer space, and assume that the space X is abelian, then (i) follows
by Proposition 4.14. Thus, the answer to Problem 4.18 is given with n = 1. So, we obtain the following
theorem.

Theorem 4.20. Let X be a path-connected space and x0 ∈ X. If X is a locally path-connected, small 1-loop transfer
space and π1(X, x0) is abelian, then the following conditions are equivalent.

(i) πSp
1 (X, x0) =

⋂
U π

Sp
1 (U, x0) is trivial.

(ii) p : (X̂, x̂0) −→ (X, x0) has the unique path lifting property.
(iii) The space X is 1-homotopically Hausdorff.
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