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Abstract. In this paper, we studied the stability of the Linearized compressible Adiabatic flow System
(LAS) in one dimension. First, by studying the semigroup of the LAS, we proved the existence and
uniqueness of a solution to LAS. Then, by using a deep analysis of the spectrum of the associated linear
operator to the LAS, we were able to determine some new exponential stability results for the solution
to the LAS in two different Hilbert spaces. Finally, some numerical experiments are given to confirm the
theoretical results.

1. Introduction

The study of the stability of partial differential equations has interested several researchers in the field
of mathematics [1–9, 11, 13, 14]. In particular, the study of the exponential stability of unstable systems
or those which have a slow stability is a problem which represents a great challenge for many researchers
in the world. In [1], the author studied the exponential stability of the Saint-Venant system linearized
around a steady state. In fact, the linearized Saint-Venant system had a very slow stability and the aim of
this study was to accelerate this stability and in this case some results were established in different Hilbert
spaces. Also, in [15, 16], some results of exponential stability for the linearized Navier-Stokes system were
demonstrated.

In this work, we are interested in the study of the exponential stability of the Adiabatic system linearized
around a given steady state. In this case, we have obtained extremely large exponential stability results in
different Hilbert spaces such as L2(Ω) × L2(Ω) and H1(Ω) × H1(Ω), (Ω is a bounded domain in R). In fact,
thanks to an in-depth study of the spectrum of the linear operator associated with the linear system LAS,
we were able to determine an explicit exponential decay rate able to stabilize the solution very fast. Also,
we have confirmed the theoretical results obtained by numerical results given at the end of this paper.

Note that the results obtained will be used for the study of several problems such as the controllability
problem and the study of the stabilizability problems by control localized on a part of the space domain for
example.

Let’s summarize the novelties of this work. In fact, we have developed several goals which are as
follows:
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- We proved that the unbounded operator associated to LAS is the infinitesimal generator of a strongly
continuous semigroup of contractions on L2(Ω) × L2(Ω), (Lemma 2.1).

- We proved an exponential stability result, for the LAS, on L2(Ω) × L2(Ω), (Theorem 3.1).

- We proved an exponential stability result, for the LAS, on H1(Ω) ×H1(Ω), (Theorem 3.2).

- Presentation of some numerical experiments to validate and confirm the theoretical results.

The paper is organized as follows. in section 2, we studied the semigroup generated by the linear
operator associated with LAS. Also, we performed a full spectrum analysis of the linear operator of the
LAS. Section 3 was devoted to the presentation of the main results of this paper. In fact, we have established
two results of exponential stability of the solution in Theorem 3.1 and Theorem 3.2. Finally and in section
4, we have studied numerically the stabilization problem where we have implemented and presented
numerical results which confirm well the theoretical results obtained.

The motion of the Adiabatic gas flow through porous media can be modeled by the following damped
hyperbolic system [10]:

ϑt(x, t) − ϱx(x, t) = 0, (1)
ϱt(x, t) + (p(ϑ, s))x(x, t) + αϱ(x, t) = 0, (2)
st = 0, (3)

where ϱ(x, t) is the velocity of the flow, ϑ(x, t) is the specific volume for every (x, t) ∈ R× (0,∞). In this model
p represents the pressure of the gas with (p(ϑ, s))ϑ < 0 for ϑ > 0, the parameter α > 0 and s is the entropy.
We assume that the solutions of the system (1)-(3) are smooth. Here, the pressure satisfies the following
law:

p(ϑ, s) = (σ − 1)ϑ−σ1s, for σ > 1,

and 1 is the specific internal energy for which one has 1s , 0, 1ϑ + p = 0 (this is a consequence of the second
law of thermodynamics).

In the case of an isentropic flow, s = c0 is a constant, the system (1)-(3) becomes as follows:

ϑt(x, t) − ϱx(x, t) = 0, (4)
ϱt(x, t) + (p(ϑ, c0))x(x, t) + αϱ(x, t) = 0. (5)

The initial conditions are as follows:

ϑ(x, 0) = ϑ0(x), ϱ(x, 0) = ϱ0(x), x ∈ R.

The boundary conditions are given by:

ϱ(−∞, t) = q−(t), ϱ(+∞, t) = q+(t), t > 0.

Let (ϑc, ϱc) be a constant state, ϑc > 0 and ϱc > 0. The linearized compressible Adiabatic flow system around
the state (ϑc, ϱc) is given as follows:

zt − yx = 0, (6)
yt − ηzx + αy = 0, (7)

where α > 0 and the constant η is given by:

η =
1c0σ(σ − 1)

ϑσ+1
c

, σ > 1.

For the simplicity of the analysis, we consider a bounded spatial domain Ω = (a, b), a, b ∈ R, (a < b). Then,
the initial conditions are as follows:

z(x, 0) = z0(x), y(x, 0) = y0(x), x ∈ Ω.
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The boundary conditions are given by:

y(a, t) = d−(t), y(b, t) = d+(t), t > 0.

Let’s introduce some Hilbert spaces that will be used later.

1. Let L̃2(Ω) = L2(Ω) × L2(Ω) with the inner product:

(V,U)L̃2(Ω) = η

∫
Ω

v1u1 +

∫
Ω

v2u2,

where V = (v1, v2), U = (u1,u2).
2. Let H̃1(Ω) = H1(Ω) ×H1(Ω), with the inner product:

(V,U)H̃1(Ω) = η

∫
Ω

v′1u′1 +
∫
Ω

v′2u′2,

where V = (v1, v2), U = (u1,u2).

2. Analysis of the linearized system

Let Ω = (0, π). For all (x, t) ∈ Ω × [0,∞), consider the linear homogeneous system:

zt − yx = 0, (8)
yt − ηzx + αy = 0, (9)
z(x, 0) = z0(x), y(x, 0) = y0(x), x ∈ Ω, (10)
y(0, t) = y(π, t) = 0, t > 0. (11)

Let U = (z, y), then the system (8)-(11) can be written as follows:

U′(t) = AU(t), ∀t > 0 and U(0) = U0, (12)

where the unbounded operator A is given by:

A =
(

0 d
dx

η d
dx −α

)
,

and D(A) the domain of A is defined by:

D(A) = H1(Ω) ×H1
0(Ω).

Lemma 2.1. The operator A is maximal dissipative in L̃2(Ω) and we have:

ker(A) = {(c, 0)T, c ∈ R}.

Consequently, (A,D(A)) is the infinitesimal generator of a strongly continuous semigroup of contractions on L̃2(Ω)
denoted by S(t) = e−tA, t ≥ 0. Moreover, for any U0 ∈ L̃2(Ω), there exists a unique solution U of (12) in C(0,∞; L̃2(Ω))
such that:

∥U(t)∥L̃2(Ω) ≤ ∥U0∥L̃2(Ω), ∀t ≥ 0.

Proof. We can verify the following properties for the operator A:

⋄ A is maximal. Indeed, for U ∈ D(A)

(AU,U)L̃2(Ω) = η

∫
Ω

∂xyzdx +
∫
Ω

(η∂xz − αy)ydx = −α∥y∥2L2(Ω) ≤ 0.
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⋄ A is dissipative. Indeed, for X = (u, v) ∈ D(A) and F = ( f , ℓ) ∈ L̃2(Ω)

(I − A)X = F,

is equivalent to the following problem:

Find (u, v) ∈ D(A) :
u − v′ = f ,
−ηu′ + (1 + α)v = ℓ,
v(0) = v(π) = 0.

This problem has a unique solution in D(A). Moreover, we have:

∥U(t)∥D(A) ≤ C∥F(t)∥L̃2(Ω),

where C > 0 is a positive constant.

Let U = (z, y) ∈ ker(A). So, we get:

y′ = 0,
ηz′ − αy = 0.

We have y′ = 0 and y ∈ H1
0(Ω). Thus, y ≡ 0 and ηz′ − αy = 0 implies that z ≡ c, c ∈ R. From the

semigroup theory [12], for any U0 ∈ L̃2(Ω), there exists a unique solution U of (8)-(11) in C(0,∞; L̃2(Ω))
and the estimation holds.

Let (Bk)k≥0 = {ψ0} ∪ {ψm
k , m = 1, 2}k≥1 be the family in L̃2(Ω) defined by:

ψ0 =

√
2
πη

(1, 0),

ψ1
k(x) =

√
2
πη

(cos(
kx
2

), 0), k ≥ 1,

ψ2
k(x) =

√
2
π

(0, sin(
kx
2

)), k ≥ 1.

We can easily prove that (Bk)k≥0 is an orthonormal basis in L̃2(Ω). Moreover, we have:

L̃2(Ω) = ⊕
k≥0

Vk,

H̃1(Ω) = ⊕
k≥0

Vk,

where the subspaces (Vk)k≥0 are defined by:

V0 = span{ψ0},

Vk = span{ψm
k , m = 1, 2}, for k ≥ 1.

Lemma 2.2. For all k ∈N, Vk is invariant under A, and Ak = A/Vk has the following matrix representation:

Ak =

 0 −
k
√
η

2
k
√
η

2 −α

 . (13)
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Proof. For all k ∈N, we have:

Aψ1
k(x) = −

k
√
η

2
ψ2

k(x),

Aψ2
k(x) =

k
√
η

2
ψ1

k(x) − αψ2
k(x),

we deduce that Aψi
k(x) ∈ Vk for i = 1, 2. So, Vk is invariant under A. Moreover, A|Vk is given by (13).

Lemma 2.3. The spectrum of Ak is given as follows:

⋄ If k ∈ [1, α
√
η [, the eigenvalues are real:

λ1
k = −

1
2

[
α −

√
α2 − η k2

]
< 0,

λ2
k = −

1
2

[
α +

√
α2 − η k2

]
< 0.

Moreover, we have:
−
α
2
≤ λ1

k ≤ 0 and − α ≤ λ2
k ≤ −

α
2
.

⋄ If k = α
√
η , we obtained:

λ1
k = λ

2
k = −

α
2
.

⋄ If k ∈] α
√
η ,+∞[; the eigenvalues are complex:

λ1
k = −

1
2

[
α − i

√
η k2 − α2

]
, λ2

k = λ
1
k .

Moreover, we have:

ℜ(λ1
k) =ℜ(λ2

k) = −
1
2
α,

|ℑ(λ1
k)| = |ℑ(λ2

k)| =
√
η k2 − α2.

Let U = (z, y) ∈ L̃2(Ω). The expression of U in the basis (Bk)k≥0 is given as follows:

U(t) =
∑
k≥1

(ak(t)ψ1
k + bk(t)ψ2

k),

U0 =
∑
k≥1

(a0kψ
1
k + b0kψ

2
k).

Then, the projection of the equation:

U′(t) = AU(t), (14)
U(0) = U0

on the subspaces (Vk)k≥1 is given by

(S)



(
ak
bk

)′
(t) = Ak

(
ak
bk

)
(t), t ≥ 0,

(
ak
bk

)
(0) =

(
a0k
b0k

)
,

where U|Vk = Uk = (ak, bk), for all k ≥ 1.
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Proposition 2.4. For all k ≥ 1, the system (S) has a unique solution given as follows:

• If k ∈ [1, α
√
η [, then:

ak(t) =
−1

λ1
k − λ

2
k

{(
λ2

keλ
1
k t
− λ1

keλ
2
k t
)
a0k +

k
√
η

2

(
eλ

1
k t
− eλ

2
k t
)
b0k

}
,

bk(t) =
1

(λ1
k − λ

2
k)

{k
√
η

2

(
eλ

1
k t
− eλ

2
k t
)
a0k +

(
λ1

keλ
1
k t
− λ2

keλ
2
k t
)
b0k

}
.

• If k ∈] α
√
η ,+∞[, then:

ak(t) =
e−

α
2 t

mk

{(
mk cos(mkt) −

α
2

sin(mkt)
)
a0k +

k
√
η

2
sin(mkt)b0k

}
,

bk(t) =
2e−

α
2 t

mk

{
k
√
η sin(mkt)a0k +

1
2

(
mk cos(mkt) −

α
2

sin(mkt)
)
b0k

}
,

where mk =
√
ηk2 − α2.

• If k = α
√
η , then we get:

ak(t) = e−
α
2 t
{
(1 +

α
2

t)a0k −
α
2

tb0k

}
,

bk(t) = e−
α
2 t
{α

2
ta0k + (1 −

α
2

t)b0k

}
.

Proof. From the general solution of linear differential systems, we can establish the proof of the proposi-
tion.

3. Main results

Theorem 3.1. For any U0 ∈ L̃2(Ω), there exists a strictly positive t0 > 0 such that the solution U to the problem (12)
satisfies the following exponential stability identity:

∥U(t)∥L̃2(Ω) ≤ C(1 +
α
2

t)e−
α
2 t
∥U0∥L̃2(Ω), ∀t ≥ t0, (15)

where C is a strictly positive constant dependent only on α, η.

Proof. The existence and the uniqueness of a solution to the problem (12) follows Lemma 2.1. Now, from
Proposition 2.4, we have:

⋄ If k ∈ [1, α
√
η [.

ak(t) =
(λ1

keλ
2
k t
− λ2

keλ
1
k t

λ1
k − λ

2
k

)
a0k +

k
√
η

2

( eλ
2
k t
− eλ

1
k t

λ1
k − λ

2
k

)
b0k.

Remark that we have:

eλ
1
k t = e−

α
2 e

1
2

√
α2−ηk2t, ∀t ≥ 0, (16)

and the function

k 7→ e
1
2

√
α2−ηk2t

−
ηk2

4
t, t ≥ 0,



F. Maddouri / Filomat 38:13 (2024), 4585–4595 4591

is decreasing with respect to k ∈ [1, α
√
η ]. Now, it’s easy to show that there exists t0 > 0 such that:

e
1
2

√
α2−ηk2t

≤
ηk2

4
t, ∀t ≥ t0. (17)

Thus:

|ak(t)| ≤
1

|λ1
k − λ

2
k |

{(
|λ1

k |e
λ2

k t + |λ2
k |e

λ1
k t
)
|a0k| +

k
√
η

2

(
eλ

2
k t + eλ

1
k t
)
|b0k|

}
.

From Lemma 2.3, we deduce the following identities:

|λ1
k | ≤

α
2
, |λ2

k | ≤ α, ∀k ∈ [1,
α
√
η

], (18)

∃C > 0 :
1

|λ1
k − λ

2
k |
≤ C, ∀k ∈ [1,

α
√
η

]. (19)

Now, using the relations (16)-(19), we obtain:

|ak(t)| ≤ Ce−
α
2 t
{(α3

4
t +

α
2

)
|a0k| +

α
2

(α2

4
t + 1

)
|b0k|

}
,

and then we get:

|ak(t)| ≤ C0(1 +
α
2

t)e−
α
2 t
(
|a0k| + |b0k|

)
, (20)

where C0 > 0 is a constant dependent only on α and η. With the same calculation, we can prove easily
that:

|bk(t)| ≤ C1(1 +
α
2

t)e−
α
2 t
(
|a0k| + |b0k|

)
, (21)

where C1 > 0 is a constant dependent only on α and η.

⋄ If k = α
√
η

|ak(t)|2 ≤ 4e−αt
{
(1 +

α2

4
t2)a2

0k +
α2

4
t2b2

0k

}
, (22)

|bk(t)|2 ≤ 4e−αt
{α2

4
t2a2

0k + (1 +
α2

4
t2)b2

0k

}
, (23)

⋄ If k ∈] α
√
η ,+∞[. Using the following identity

sin(cx)
c

≤ x, ∀x ≥ 0, ∀c > 0,

we proved that:

|ak(t)|2 ≤ 4e−αt
{
(1 + (

α
2

)2t2)a2
0k +

k2η

4
t2b2

0k

}
, (24)

|bk(t)|2 ≤ 4e−αt
{k2η

4
t2a2

0k + (1 + (
α
2

)2t2)b2
0k

}
. (25)
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So from identities (20)-(25) we can deduce the identity (15).

Theorem 3.2. For any U0 ∈ H̃1
0(Ω), there exists a strictly positive t0 > 0 such that the solution U to the problem

(12) is exponentially stable on H̃1(Ω) and we have:

∥U(t)∥H̃1(Ω) ≤ C(1 +
α
2

t)e−
α
2 t
∥U0∥H̃1(Ω) ∀t ≥ 0, (26)

where C is a strictly positive constant dependent only on α, η.

Proof. The existence and the uniqueness of a solution to the problem (12) follows Lemma 2.1. Knowing that

∥U(t)∥2H̃1(Ω) =
∑
k≥1

∥Uk(t)∥2H̃1(Ω) =
∑
k≥1

k2
∥Uk(t)∥2L̃2(Ω),

∥U0∥
2
H̃1(Ω) =

∑
k≥1

k2
∥U0∥

2
L̃2(Ω),

and we use the same calculation as in Theorem (3.1), we can establish the identity (26).

Remark 3.3. It is very important to point out that the results obtained in this paper, (Lemma 2.1, Theorem 3.1,
Theorem 3.2), are extremely important for other future works. Indeed, these results constitute a solid basis for the
study of several problems such as the control problem for the LAS with boundary control (for example), or the study
of the controllability problem for the LAS.

4. Numerical simulation and interpretations

Recall that we are interested in the study of the following system:

zt − yx = 0, (27)
yt − ηzx + αy = 0, (28)

z(x, 0) = z0(x), (29)
y(x, 0) = y0(x). (30)

For the simplicity of the numerical experiments, we consider a finite spatial domain Ω = [0, 1]. Then, the
boundary conditions are as follows:

y(0, t) = d0(t), (31)
y(1, t) = d1(t). (32)

Let ν = 1
M

be a spatial step and tn = nτ, n ≥ 0, where τ is a time step. So, a point xi, i = 0, · · · ,M in Ω is
given by: xi = iν, i = 0, · · · ,M. For the discretization of the problem (27)-(32), we use the finite differences
θ−scheme [1]. Thus, at the grid point (x j, tn), we have:

zn+1
j − zn

j

τ
− θ

yn+1
j+1 − yn+1

j

ν
− (1 − θ)

yn
j+1 − yn

j

ν
= 0,

yn+1
j − yn

j

τ
− ηθ

zn+1
j+1 − zn+1

j

ν
− η(1 − θ)

zn
j+1 − zn

j

ν
+ αyn+1

j = 0.

Note that the θ−scheme is unconditionally stable for θ ∈ [0.5, 1]. In fact, this scheme is well adapted for the
hyperbolic systems.

For the below examples, we consider the following data:

z0(x) = 0, x ∈ Ω,
y0(x) = 2 sin(11πx) cos(13πx)ex, x ∈ Ω,
d0(t) = d1(t) = 0, t ≥ 0,
α = 8, η = 2.
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We consider here an initial state with an important perturbation see Figure 1. In fact, this choice is taken
to demonstrate the exponential stability of the solution (z, y). In Figure 2, we have plotted the eigenvalues
of the system. Remark that there are 10 real eigenvalues for α = 8 in the interval [1, α

√
η [= [1, 5.65[ and for

α = 20 there are 28 eigenvalues in [1, α
√
η [= [1, 14.142[, and infinite number of complex eigenvalues. Figure

3 confirms the theoretical results of the exponential stability obtained in Theorem 3.1. Indeed, at time
t = 1.5 we have a good stabilization of the solution (z, y) around (0, 0). Also, in figure 4 we have plotted the
evolution in time of the solution (z, y) a long the time interval [0, 1.5]. Moreover, we studied numerically
the evolution of the solution with respect to the values of the parameter α. Notes that when α increases
the stabilization becomes very fast. This explains well that the real eigenvalues are responsible for a fast
stablization of the solution. Indeed, from Lemma 2.3, for any value of α the real eigenvalues are λ1

k and
λ2

k , with k ∈ [1, α
√
η [. Thus, when α = 3, 8, 20, (η = 2), the number of the real eigenvalues are 4, 10, 28,

respectively.

0 0.2 0.4 0.6 0.8 1
−3

−2

−1

0

1

2

3

4

5

Figure 1: The initial state y0(x), x ∈ Ω.
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Figure 2: The eigenvalues of the system: α = 8 in the left (a), α = 20 in the right (b).
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Figure 3: Numerical solutions: z in the left (a), y in the right (b).
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Figure 4: Numerical solutions for t ∈ [0, 1.5]: z in the left (a), y in the right (b).

5. Conclusion

In this paper, we have succeeded in determining an exponential stability result, with a decay rate α
2 > 0,

of the solution to the linearized compressible Adiabatic flow system in one dimension. This result is
obtained in two different Hilbert spaces, (see Theorem 3.1 and Theorem 3.2). Numerical experiments are
given to confirm the theoretical results obtained.
This very important results can serve as a starting point for the study of several very interesting problems
such as, for example, the study of the controllability problem, also the problem of stabilizability by boundary
Dirichlet control. In fact, this last problem is the one I am focusing on at the moment.
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Figure 5: Numerical solutions for t = 0.6: z in the left (a), y in the right (b).
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