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GSEP elements in a ring with involution
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Abstract. In this paper, we characterize SEP elements and GSEP elements by various methods. SEP
elements are mainly characterized by a element in a given set, and then extended to GSEP elements. GSEP
elements are characterized by (b,c)-inverse, inner invertible elements and equations. We obtain a lot of new
characterizations of SEP elements and GSEP elements.

1. Introduction

Generalized inverses of rings plays an important role in solving equations with one or two variables [1–5].
Therefore, generalized inverses of rings have important applications in many fields, such as mathematical
statistics, system theory, optimization theory, modern control theory, and so on. Now more and more
people explore the generalized inverses of rings [6–17]. In recent years, with the help of the expression
of the solution of the generalized inverse equation in an involution ring, people have adopted some new
methods to characterize EP elements, SEP elements and normal elements. Many new characterization of
EP elements and SEP elements are obtained [18–27].

In this paper, we introduce a new kind of generalized inverse, so-called GSEP, which is between EP and
SEP. The goal of this paper is to give some new characterizations of SEP elements and GSEP elements.

Let R be a ring and ∗ : R→ R be a map satisfying

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ for a, b ∈ R.

Then R is called an involution ring or a ∗−ring .
Let R be a ring and a ∈ R. Then a is called the group invertible element if there exists a#

∈ R such that

a = aa#a, a# = a#aa#, aa# = a#a.

We usually write R# to denote the set of all group invertible elements in R.
It is well known that a ∈ R# if and only if a ∈ a2R ∩ Ra2.
Let R be a ∗−ring and a ∈ R. Then a is called the Moore-Penrose invertible element if there exists a+ ∈ R

such that
a = aa+a, a+ = a+aa+, (aa+)∗ = aa+, (a+a)∗ = a+a.
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Research supported by the National Natural Science Foundation of China (11901510, 11761017), Natural Science Foundation of

Jiangsu Province (BK20200944, BK20170589).
* Corresponding author: Long Wang
Email addresses: 3034715904@qq.com (Peipei Zhai), lwangmath@yzu.edu.cn (Long Wang), jcweiyz@126.com (Junchao Wei)



P. Zhai et al. / Filomat 38:13 (2024), 4649–4662 4650

We always use R+ to denote the set of all Moore-Penrose invertible elements in R.
Noting that if a# and a+ exist, then they are all unique.
Let a ∈ R#

∩ R+, if a# = a+, then a is called an EP element.
We denote the set of all EP elements in R by REP.
If a ∈ R and a = aa∗a, then a is said to be the PI element and we use RPI to denote the set of all PI elements

in R.
If a ∈ REP

∩ RPI, then a is said to be the strong EP element. We used to write RSEP to represent the set of
all strong EP elements in R.

Let R be a ring and a ∈ R. Then a is called projection, if a2 = a = a∗. We always use PE(R) to denote the
set of all projections in R.

Clearly, aa+, a+a ∈ PE(R).
Let a, b, c ∈ R. If there exists y ∈ R, such that

y ∈ bRy ∩ yRc, b = yab, c = cay,

then a is called a (b, c)−invertible, y is unique when it exists and y is called the (b, c)−inverse of a and write
it by a||(b,c), that is y = a||(b,c).

Let a ∈ R#
∩ R+, we take χa = {a, a#, a+, a∗, (a+)∗, (a#)∗}, τa = {a, a#, (a+)∗} and γa = {a+, a∗, (a#)∗}. Cleraly,

χa = τa ∪ γa.
An element a ∈ R is regular if there exists some b ∈ R satisfying aba = a. In this case b is called an inner

inverse of a.

2. Characterizing SEP elements by projections

It is well known that a ∈ RSEP if and only if a# = a+ and a = (a+)∗. This implies a#(a+)∗ = a+a ∈ PE(R).
Hence, we have the following theorem.

Theorem 2.1. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if a#(a+)∗ ∈ PE(R).

Proof. We only need to show the sufficiency: From the hypothesis, we have

a#(a+)∗ = (a#(a+)∗)2 = (a#(a+)∗)∗.

This induces
a#(a+)∗ = a+(a#)∗ = a+(a#)∗aa+ = a#(a+)∗aa+,

and
(a+)∗ = aa#(a+)∗ = aa#(a+)∗aa+ = (a+)∗aa+.

Applying the involution on the equality, one gets a+ = aa+a+. Hence, a ∈ REP by [11, Theorem 1.2.1]. Now
we have

(a+)∗ = aa#(a+)∗ = a(a#(a+)∗)2 = (a+)∗a#(a+)∗,

and
a = (a+)∗a∗a = (a+)∗a#(a+)∗a∗a = (a+)∗a#aa+a = (a+)∗a#a = (a+)∗,

one obtains a ∈ RPI. Thus a ∈ RSEP. □

It is well known that a ∈ RSEP if and only if a∗ ∈ RSEP. Hence, Theorem 2.1 implies the following corollary.

Corollary 2.2. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if (a#)∗a+ ∈ PE(R).

It is easy to show that a ∈ PE(R) if and only if a∗ ∈ PE(R). Hence, Theorem 2.1 induces the following
corollary.

Corollary 2.3. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if a+(a#)∗ ∈ PE(R).
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Lemma 2.4. Let a ∈ R#. If a ∈ PE(R), then a#
∈ PE(R).

Proof. Since a ∈ PE(R), a2 = a = a∗. This gives

(a#)2 = a(a#)3 = a2(a#)3 = a#,

and
(a#)∗ = (a∗)# = a#.

Hence, a#
∈ PE(R). □

Lemma 2.5. Let a ∈ R#
∩ R+. Then

(1) (a#(a+)∗)# = aa#a∗a;
(2) (a#(a+)∗)+ = a∗a2a+.

Proof. (1) Since (a#(a+)∗)(aa#a∗a) = a#(a+)∗a∗a = a#aa+a = a#a,

(a#(a+)∗)(aa#a∗a)(a#(a+)∗) = a#a(a#(a+)∗) = a#(a+)∗.

Noting that
(aa#a∗a)(a#(a+)∗) = aa#a∗(a+)∗ = aa#a+a = aa#.

Then
(aa#a∗a)(a#(a+)∗)(aa#a∗a) = aa#(aa#a∗a) = aa#a∗a.

Thus a#(a+)∗ ∈ R# and (a#(a+)∗)# = aa#a∗a.
(2) Since (a#(a+)∗)(a∗a2a+) = a#aa+a2a+ = aa+,

(a#(a+)∗)(a∗a2a+)(a#(a+)∗) = aa+(a#(a+)∗) = a#(a+)∗.

Also
(a∗a2a+)(a#(a+)∗)(a∗a2a+) = (a∗a2a+)aa+ = a∗a2a+,

and
(a∗a2a+)(a#(a+)∗) = a∗aa#(a+)∗ = a∗(a+)∗ = a+a.

Hence, a#(a+)∗ ∈ R+ and (a#(a+)∗)+ = a∗a2a+. □

Lemma 2.4, Lemma 2.5 and Theorem 2.1 lead to the following theorem.

Theorem 2.6. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if aa#a∗a ∈ PE(R).

Lemma 2.7. Let a ∈ R#
∩ R+. If a ∈ PE(R), then a ∈ REP.

Proof. It is an immediate result of [11, Theorem 1.4.1], because a is Hermitian. □

Theorem 2.8. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if a∗a2a+ ∈ PE(R).

Proof. =⇒ Assume that a ∈ RSEP, then a#(a+)∗ ∈ PE(R) by Theorem 2.1. And we can get (a#(a+)∗)#
∈ PE(R)

by Lemma 2.4. Noting that a#(a+)∗ ∈ PE(R), then a#(a+)∗ ∈ REP by Lemma 2.7. Thus (a#(a+)∗)+ = (a#(a+)∗)#
∈

PE(R). By Lemma 2.5, a∗a2a+ ∈ PE(R).
⇐= From the hypothesis, we have a∗a2a+ ∈ PE(R). By Lemma 2.7, a∗a2a+ ∈ REP, then we have (a∗a2a+)+ =

(a∗a2a+)#. Noting that a∗a2a+ ∈ PE(R), then (a∗a2a+)#
∈ PE(R) by Lemma 2.4. By Lemma 2.5, we have

a#(a+)∗ = (a∗a2a+)+ = (a∗a2a+)#
∈ PE(R). Hence, a ∈ RSEP by Theorem 2.1. □
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3. Generalized SEP elements

Theorem 3.1. Let a ∈ R#
∩ R+. Then a#(a+)∗ ∈ RSEP if and only if (a#)∗ = aa∗a.

Proof. =⇒ Assume that a#(a+)∗ ∈ RSEP. Then (a#(a+)∗)# = (a#(a+)∗)∗. By Lemma 2.5, aa#a∗a = a+(a#)∗.
Multiplying the equality on the left by aa#, one gets

a+(a#)∗ = aa#a+(a#)∗.

This gives
a+ = a+(a#)∗a∗ = aa#a+(a#)∗a∗ = aa#a+.

Multiplying the equality on the right by a, one gets

a+a = aa#a+a = a#aa+a = a#a.

Hence, a ∈ REP by [12, Theorem 1.2].
It follows that aa∗a = a(aa#a∗a) = aa+(a#)∗ = aa+(a+)∗ = (a+)∗ = (a#)∗.
⇐= From the hypothesis, we have (a#)∗ = aa∗a. Multiplying the equality on the left by a+, one gets

a+(a#)∗ = a+aa∗a = a∗a.

Applying the involution on the equality, one gets a#(a+)∗ = a∗a. By Lemma 2.5,

(a#(a+)∗)+ = a∗a2a+ = a+(aa∗a)aa+ = a+(a#)∗aa+ = a+(a#)∗ = a∗a.

(a#(a+)∗)∗ = a+(a#)∗ = a∗a.

And
(a#(a+)∗)(a∗a) = a∗aa∗a = (a∗a)(a#(a+)∗).

One gets (a#(a+)∗)# = a∗a. Hence
(a#(a+)∗)+ = (a#(a+)∗)∗ = (a#(a+)∗)#.

Thus, a#(a+)∗ ∈ RSEP. □

Let a ∈ R#
∩ R+. If (a#)∗ = aa∗a, then a is called a generalized SEP element.

Noting that if a ∈ RSEP, then (a#)∗ = a = aa∗a. So SEP elements are generalized SEP.
By Theorem 3.1, we have a is a generalized SEP element if and only if a#(a+)∗ ∈ RSEP.
We write RGSEP to denote the set of all generalized SEP elements of R. Hence, RSEP

⊆ RGSEP.

Let R = M2(Z5) with the transposition involution ∗. Choose a =
(

1 1
1 1

)
. Then a# = a+ =

(
4 4
4 4

)
and

a∗ = a , a#. It follows that aa∗a = a3 =

(
4 4
4 4

)
= a# = (a#)∗. Hence, a ∈ RGSEP, but a < RSEP. Thus the

generalized SEP elements are proper generalization of SEP.
Following from the following Theorem 3.2, we have RGSEP

⊆ REP. We claim that RGSEP ⫋ REP.

In fact, choose a =
(

1 2
0 1

)
∈ M2(R). Then a# = a+ = a−1 =

(
1 −2
0 1

)
, so a ∈ REP. However,

aa∗a =
(

5 12
2 5

)
,

(
1 0
−2 1

)
= (a#)∗. Hence, a < RGSEP.

Therefore we have RSEP ⫋ RGSEP ⫋ REP.

Theorem 3.2. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if a ∈ REP and a∗ = a+(a#)∗a+.
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Proof. =⇒ Assume that a ∈ RGSEP. Then (a#)∗ = aa∗a = (aa∗a)a+a = (a#)∗a+a, this implies a# = a+aa#.
Multiplying the equality on the right by a, one gets

a#a = a+aa#a = a+a.

Hence, a ∈ REP by [12, Theorem 1.2]. Now a+(a#)∗a+ = a+(aa∗a)a+ = a∗.
⇐= Since a ∈ REP and a∗ = a+(a#)∗a+, aa+ = a+a and aa∗a = aa+(a#)∗a+a = a+a(a#)∗aa+ = (a#)∗. Hence,

a ∈ RGSEP. □

Lemma 3.3. Let a ∈ R#
∩ R+. Then the followings are equivalent:

(1) a ∈ RGSEP;
(2) a∗ = a#(a#)∗a+;
(3) a∗ = a+(a#)∗a#.

Proof. (1) =⇒ (2) It is an immediate result of Theorem 3.2 because a+ = a#.
(2) =⇒ (1) Suppose that a∗ = a#(a#)∗a+. Then

aa+a∗ = aa+a#(a#)∗a+ = a#(a#)∗a+ = a∗.

Hence, a ∈ REP by [11, Theorem 1.2.1], this gives a# = a+. So a∗ = a+(a#)∗a+. By Theorem 3.2, a ∈ RGSEP.
Similarly, we can show (1)⇔ (3). □

Theorem 3.4. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if a#(a#)∗a+(a+)∗ ∈ PE(R).

Proof. =⇒ Assume that a ∈ RGSEP. Then a∗ = a#(a#)∗a+ by Lemma 3.3. This leads to a#(a#)∗a+(a+)∗ = a∗(a+)∗ =
a+a ∈ PE(R).
⇐= Form the assumption, one has

a#(a#)∗a+(a+)∗ = (a#(a#)∗a+(a+)∗)2 = (a#(a#)∗a+(a+)∗)∗.

This gives
a#(a#)∗a+(a+)∗ = a+(a+)∗a#(a#)∗ = a+a(a+(a+)∗a#(a#)∗) = a+a(a#(a#)∗a+(a+)∗),

and
a#(a#)∗a+ = a#(a#)∗a+(a+)∗a∗ = a+aa#(a#)∗a+(a+)∗a∗ = a+aa#(a#)∗a+.

Multiplying the equality on the right by aa∗a+a, one gives a# = a+aa#. Hence, a ∈ REP. Now we have

a#(a#)∗a+ = a#(a#)∗a+(a+)∗a∗ = (a#(a#)∗a+(a+)∗)2a∗ = a#(a#)∗a+(a+)∗a#(a#)∗a+,

and
a#(a#)∗ = a#(a#)∗aa+ = a#(a#)∗a+a = a#(a#)∗a+(a+)∗a#(a#)∗a+a = a#(a#)∗a+(a+)∗a#(a#)∗.

Noting that a+ = a# and a+(a#)∗a∗ = a+. Then

a# = a+ = a+(a#)∗a∗ = a#(a#)∗a∗ = a#(a#)∗a+(a+)∗a#(a#)∗a∗ = a#(a#)∗a+(a+)∗a#,

a = aa#a = a(a#(a#)∗a+(a+)∗a#)a = aa#(a+)∗a+(a+)∗a#a = (a+)∗a+(a+)∗,

a∗ = a+(a+)∗a+ = a+(a#)∗a+.

By Theorem 3.2, a ∈ RGSEP. □

Theorem 3.5. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if aa∗ = (a#)∗a+.
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Proof. =⇒ Since a ∈ RGSEP, a ∈ REP and a∗ = a+(a#)∗a+ by Theorem 3.2. This gives

aa∗ = aa+(a#)∗a+ = a+a(a#)∗a+ = (a#)∗a+.

⇐= Suppose that aa∗ = (a#)∗a+. Then

a+a2a∗ = a+a((a#)∗a+) = (a#)∗a+ = aa∗,

and
a# = a(a#)2 = aa∗(a+)∗(a#)2 = a+a2a∗(a+)∗(a#)2 = a+a2(a#)2 = a+a#a.

Hence, a ∈ REP by [13, Theorem 2.1] and a∗ = a+aa∗ = a+(a#)∗a+. Thus a ∈ RGSEP by Theorem 3.2. □

Similarly, we have the following theorem.

Theorem 3.6. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if a∗a = a+(a#)∗.

4. Using (b, c)-inverse to characterize GSEP elements

Theorem 4.1. Let a ∈ R#
∩R+. Then a ∈ RGSEP if and only if (a#)∗a+(a+)∗ is (a∗, a∗)-invertible with ((a#)∗a+(a+)∗)||(a

∗,a∗) =
a#.

Proof. =⇒ Assume that a ∈ RGSEP. Then a∗ = a#(a#)∗a+ = a+(a#)∗a# by Lemma 3.3 and a ∈ REP by Theorem
3.2. Hence

a# = a+aa# = a∗(a+)∗a#
∈ a∗Ra#,

and
a# = a#aa+ = a#(a+)∗a∗ ∈ a#Ra∗.

Noting that
a#((a#)∗a+(a+)∗)a∗ = a#(a#)∗a+ = a∗,

a∗((a#)∗a+(a+)∗)a# = (a∗(a#)∗a+)((a#)∗a#) = a+(a#)∗a# = a∗.

Hence, ((a#)∗a+(a+)∗)||(a
∗,a∗) = a#.

⇐= From the assumption, we have

a∗ = a#((a#)∗a+(a+)∗)a∗ = a#(a#)∗a+.

By Lemma 3.3, a ∈ RGSEP. □

Theorem 4.2. Let a ∈ R#
∩R+. Then a ∈ RGSEP if and only if (a#)∗a+(a+)∗ is (a∗, x)-invertible with ((a#)∗a+(a+)∗)||(a

∗,x) =
a# for some x ∈ χa.

Proof. =⇒ It is an immediate result in instead of by choosing x = a∗ by Theorem 4.1.
⇐= From the proof of the sufficiency of Theorem 4.1, we easy know that a ∈ RGSEP. □

Theorem 4.3. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if (a+(a+)∗)||(a

∗,a∗a) exists and (a+(a+)∗)||(a
∗,a∗a) = a#(a#)∗.

Proof. =⇒ Assume that a ∈ RGSEP. Then a∗ = a#(a#)∗a+ = (a#(a#)∗)(a+(a+)∗)a∗ by Lemma 3.3. Noting that

(a∗a)(a+(a+)∗)(a#(a#)∗) = a∗(a+)∗a#(a#)∗ = a+aa#(a#)∗.

By Theorem 3.2, a ∈ REP, this gives

(a∗a)(a+(a+)∗)(a#(a#)∗) = a+(a#)∗.
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By Theorem 3.6, a∗a = a+(a#)∗. Hence, (a∗a)(a+(a+)∗)(a#(a#)∗) = a∗a. Since a ∈ REP,

a#(a#)∗ = a∗(a+)∗a#(a#)∗ ∈ a∗Ra#(a#)∗,

a#(a#)∗ = a#(a#)∗a+(a+)∗a∗a ∈ a#(a#)∗Ra∗a.

Hence, (a+(a+)∗)||(a
∗,a∗a) = a#(a#)∗.

⇐= From the assumption, we have

a∗ = (a#(a#)∗)(a+(a+)∗)a∗ = a#(a#)∗a+.

By Lemma 3.3, a ∈ RGSEP. □

5. Characterizing GSEP elements by inner invertible elements

Theorem 5.1. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if

(
a#

a+

)
is a regular vector with an inner inverse

(a − aa∗a, (a#)∗).

Proof. Clearly,
(
a#

a+

)
(a − aa∗a, (a#)∗)

(
a#

a+

)
=

(
a#
− a#aa∗aa# + a#(a#)∗a+

a+aa#
− a∗aa# + a+(a#)∗a+

)
.

=⇒ Since a ∈ RGSEP, a ∈ REP by Theorem 3.2 and a#(a#)∗a+ = a∗ by Lemma 3.3. This gives

a#
− a#aa∗aa# + a#(a#)∗a+ = a#

− a+aa∗aa+ + a∗ = a#,

a+aa#
− a∗aa# + a+(a#)∗a+ = a+aa+ − a∗aa+ + a#(a#)∗a+ = a+ − a∗ + a∗ = a+.

Hence,
(
a#

a+

)
(a − aa∗a, (a#)∗)

(
a#

a+

)
=

(
a#

a+

)
.

⇐= From the assumption, one gets

 a# = a#
− a#aa∗aa# + a#(a#)∗a+ (1)

a+ = a+aa#
− a∗aa# + a+(a#)∗a+ (2)

.

From (1), we have

a#aa∗aa# = a#(a#)∗a+ = a#(a#)∗a+aa+ = a#aa∗aa#aa+ = a#aa∗,

and
a∗ = a+aa∗ = a+aa#aa∗ = a+aa#aa∗aa# = a∗aa#.

Hence, a ∈ REP by [11, Theorem 1.1.3]. Now we obtain

a∗ = a#aa∗aa# = a#(a#)∗a+.

By Lemma 3.3, a ∈ RGSEP. □

Similarly, we have the following theorem.

Theorem 5.2. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if

(
a#

a+

)
is a regular vector with an inner inverse

(a − (a#)∗, a+a2a∗a).

Theorem 5.3. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if a ∈ REP and a#(a#)∗ is a regular with an inner inverse

a+(a#)∗.
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Proof. =⇒ Assume that a ∈ RGSEP. Then a∗ = a#(a#)∗a+ by Lemma 3.3, and a ∈ REP by Theorem 3.2. Now we
have

(a#(a#)∗)(a+(a#)∗)(a#(a#)∗) = (a#(a#)∗a+)(a#)∗a+(a#)∗ = a∗(a#)∗a+(a#)∗ = a+(a#)∗ = a#(a#)∗.

Hence, a+(a#)∗ is an inner inverse of a#(a#)∗.
⇐= From the assumption, we have

a#(a#)∗ = (a#(a#)∗)(a+(a#)∗)(a#(a#)∗).

Multiplying the equality on the left by a+a2, one gets

(a#)∗ = (a#)∗a+(a#)∗a#(a#)∗.

Multiplying the equality on the right by a∗ and remind in heart that a ∈ REP, one obtains

aa# = (aa#)∗ = (a#)∗a+(a#)∗a#(a#)∗a∗ = (a#)∗a+(a#)∗a+(aa#)∗ = (a#)∗a+(a#)∗a+.

This gives
a∗ = a∗aa+ = a∗aa# = a∗(a#)∗a+(a#)∗a+ = a+(a#)∗a+,

and
a∗a = a+(a#)∗a+a = a+(a+)∗a+a = a+(a+)∗ = a+(a#)∗.

By Theorem 3.6, a ∈ RGSEP. □

Let a ∈ R, if there exists b ∈ R such that a = ba2, then a is called a left strongly regular and b is called a
left strongly regular inverse of a.

Theorem 5.4. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if a#(a#)∗ is a left strongly regular with a left strongly

regular inverse a+(a#)∗.

Proof. =⇒ Assume that a ∈ RGSEP. Then a∗ = a#(a#)∗a+ and a# = a+. This gives

(a+(a#)∗)(a#(a#)∗)2 = (a#(a#)∗a+)(a#)∗a+(a#)∗ = a∗(a#)∗a+(a#)∗ = a+(a#)∗ = a#(a#)∗.

⇐= From the hypothesis, one gets

a#(a#)∗ = a+(a#)∗(a#(a#)∗)2.

Multiplying the equality on the right by a∗a+a, one gives

a# = a+(a#)∗a#(a#)∗a#.

This leads to

aa+ = a#a2a+ = a+(a#)∗a#(a#)∗a#a2a+ = a+(a#)∗a#(a#)∗ = a+a(a+(a#)∗a#(a#)∗) = a+a2a+,

and
a = aa+a = a+a2a+a = a+a2.

Hence, a ∈ REP, it follows that

a∗ = aa+a∗ = a+(a#)∗a#(a#)∗a∗ = a+(a#)∗a+(a#)∗a∗ = a+(a#)∗a+,

and
a∗a = a+(a#)∗a+a = a+(a#)∗aa+ = a+(a#)∗.

By Theorem 3.6, a ∈ RGSEP. □
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6. Constructing invertible elements to characterize GSEP elements

Theorem 6.1. Let a ∈ R#
∩R+. Then a ∈ RGSEP if and only if there exists invertible element u such that a∗ = a#(a#)∗u

and ua+a = a+.

Proof. =⇒ Suppose that a ∈ RGSEP. Then a∗ = a#(a#)∗a+ and a+ = a#. Choose u = a+ + 1 − aa#. Then u ∈ U(R)
with u−1 = a + 1 − aa# and ua+a = ua#a = (a+ + 1 − aa#)a#a = a+a#a = a+.

Also, a#(a#)∗u = a#(a#)∗(a+ + 1 − aa#) = a#(a#)∗a+ + a#(a#)∗ − a#(a#)∗aa+ = a∗.
⇐= From the assumption, we have a∗ = a#(a#)∗u and ua+a = a+ for some u ∈ U(R). This gives

a+ = (ua+a)a+a = a+a+a.

Hence, a ∈ REP. It follows that
a∗ = a∗a+a = a#(a#)∗ua+a = a#(a#)∗a+.

Hence, a ∈ RGSEP by Lemma 3.3. □

Theorem 6.2. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if a∗ = a#ua+ and uaa# = (a#)∗ for some u ∈ U(R).

Proof. =⇒ Since a ∈ RGSEP, a ∈ REP and a∗ = a#(a#)∗a+, one has aa# = (aa#)∗. Choose u = (a#)∗ + 1 − aa#.
Then u−1 = a∗ + 1 − aa#, this implies u ∈ U(R) and uaa# = u(aa#)∗ = (a#)∗ and a#ua+ = a#((a#)∗ + 1 − aa#)a+ =
a#(a#)∗a+ = a∗.
⇐= From the hypothesis, one yields

a∗ = a#ua+ = aa+(a#ua+) = aa+a∗.

Hence, a ∈ REP by [11, Theorem 1.2.1]. It follows that

a∗ = a#ua+ = a#u(aa#)∗a+ = a#uaa#a+ = a#(a#)∗a+.

Thus a ∈ RGSEP by Lemma 3.3. □

Theorem 6.3. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if a∗ = u(a#)∗a+ and aa+u = a+ for some u ∈ U(R).

Proof. =⇒ Choose u = a# + 1 − aa#. Then we are done.
⇐= Since a+ = aa+u = aa#(aa+u) = aa#a+. Multiplying the equality on the right by a, one gets a+a = aa#.

Hence, a ∈ REP by [12, Theorem 1.2]. This gives

a∗ = aa+a∗ = aa+u(a#)∗a+ = a+(a#)∗a+.

Hence, a ∈ RGSEP by Theorem 3.2. □

Theorem 6.4. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if a∗ = u(a#)∗a+ and aa+u = a∗ for some u ∈ U(R).

Proof. =⇒ Assume that a ∈ RSEP. Then a ∈ RGSEP and a+ = a∗. By Theorem 6.3, we are done.
⇐= Since a∗ = aa+u = aa#(aa+u) = aa#a∗, then a ∈ REP by [11, Theorem 1.1.3]. This gives

a∗ = aa+a∗ = aa+u(a#)∗a+ = a∗(a#)∗a+ = a+.

Hence, a ∈ RSEP. □
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7. Using the consistency of certain equation to characterize GSEP elements

Now we construct the following equation

a#xa+ = a∗. (7.1)

Lemma 7.1. Let a ∈ R#
∩ R+. Then Eq.(7.1) is consistent if and only if a ∈ REP. In this case, the general solution to

Eq.(7.1) is given by

x = aa∗a + u − a+aua+a,u ∈ R. (7.2)

Proof. =⇒ If Eq.(7.1) is consistent, then there exists x0 ∈ R such that a#x0a+ = a∗, this gives a∗ = aa#a∗. Hence,
a ∈ REP by [11, Theorem 1.1.3].
⇐= If a ∈ REP, then a∗ = a#aa∗aa+, it follows that x = aa∗a is a solution. Hence, Eq.(7.1) is consistent.
Now, if a ∈ REP, then x = aa∗a is a solution. Hence

a#(aa∗a + u − a+aua+a)a+ = a#aa∗aa+ = a∗,

it follows that the formula (7.2) is the solution to Eq.(7.1).
Let x = x0 be any solution to Eq.(7.1). Then a#x0a+ = a∗.
Choose u = x0. Then

a+aua+a = a+a2(a#x0a+)a = a+a2a∗a = aa∗a.

It follows that x0 = aa∗a + u − a+aua+a has the form of the formula (7.2).
Thus the general solution to Eq.(7.1) is given by (7.2). □

Theorem 7.2. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if Eq.(7.1) is consistent and the general solution to

Eq.(7.1) is given by

x = (a#)∗ + u − a+aua+a,u ∈ R. (7.3)

Proof. It is an immediate result of Theorem 3.2 and Lemma 7.1. □

Lemma 7.3. Let a ∈ R#
∩ R+. Then the general solution to the following equation is given by (7.3).

a+axa∗a∗ = a∗. (7.4)

Proof. First, we have
a+a((a#)∗ + u − a+aua+a)a∗a∗ = a+a(a#)∗a∗a∗ = a∗.

Hence, the formula (7.3) is the solution to Eq.(7.4).
Now, let x = x0 be any solution to Eq.(7.4). Then

a+ax0a∗a∗ = a∗.

This gives
a+ax0a+a = a+ax0a∗(a+)∗ = (a+ax0a∗a∗)(a#)∗(a+)∗ = a∗(a#)∗(a+)∗ = (a#)∗a+a.

Choose u = x0 − (a#)∗. Then

a+aua+a = a+ax0a+a − a+a(a#)∗a+a = (a#)∗a+a − (a#)∗a+a = 0,

and
x0 = (a#)∗ + x0 − (a#)∗ = (a#)∗ + u = (a#)∗ + u − a+aua+a.

Thus the general solution to Eq.(7.4) is given by (7.3). □

Theorem 7.2 and Lemma 7.3 induce the following theorem.
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Theorem 7.4. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if Eq.(7.1) has the same solution as Eq.(7.4).

Now we establish the following euqation

a+axa∗a+(a#)∗ = a∗a. (7.5)

Theorem 7.5. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if Eq.(7.5) is consistent and the general solution to

Eq.(7.5) is given by (7.3).

Proof. =⇒ Since a ∈ RGSEP, a∗a = a+(a#)∗ by Theorem 3.6. This gives x = (a#)∗ + u − a+aua+a is the solution to
Eq.(7.5).

Now let x = x0 be any solution to Eq.(7.5), one has

a+ax0a∗a+(a#)∗ = a∗a.

This induces
a+ax0a+a = a+ax0a∗a+a(a#)∗a+a = (a+ax0a∗)(a+(a+)∗a∗)(a(a#)∗a+a)

= (a+ax0a∗a+(a#)∗)a∗a(a#)∗a+a = a∗aa∗a(a#)∗a+a = a∗aa∗a(a#)∗

= a+(a#)∗a∗a(a#)∗ = a+a(a#)∗ = (a#)∗.

Choose u = x0. Then

x0 = (a#)∗ + x0 − (a#)∗ = (a#)∗ + u − a+ax0a+a = (a#)∗ + u − a+aua+a.

Hence, the general solution to Eq.(7.5) is given by (7.3).
⇐= It follows from the assumption that

a+a((a#)∗ + u − a+aua+a)a∗a+(a#)∗ = a∗a.

One gets a+(a#)∗ = a∗a. Hence, a ∈ RGSEP. □

The following corollary follows from Theorem 7.2 and Theorem 7.5.

Corollary 7.6. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if Eq.(7.5) has the same solution as Eq.(7.1).

8. Characterizing GSEP elements by the form of solution to related equations

Now, we know that if a ∈ RGSEP, then (a#)∗ = aa∗a and a ∈ REP by Theorem 3.2, so we get

a∗a = a#(a#)∗ = a#(a#)∗a+a.

This inspires us to give the following equation

a∗x = a#(a#)∗a+x. (8.1)

Theorem 8.1. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if Eq.(8.1) has at least one solution in χa =

{a, a#, (a+)∗, a+, a∗, (a#)∗}.

Proof. =⇒ Assume that a ∈ RGSEP. Then a∗ = a#(a#)∗a+. Hence, every element in χa is a solution to Eq.(8.1).
⇐= From the hypothesis, there exists x0 ∈ χa such that

a∗x0 = a#(a#)∗a+x0.
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If x0 ∈ τa = {a, a#, (a+)∗}, then x0x+0 = aa+ by [26, Theorem 4.2], this induces

a∗ = a∗aa+ = a∗x0x+0 = a#(a#)∗a+x0x+0 = a#(a#)∗a+aa+ = a#(a#)∗a+.

If x ∈ γa = {a+, a∗, (a#)∗}, then x0x+0 = a+a, this leads to

a∗a+a = a∗x0x+0 = a#(a#)∗a+x0x+0 = a#(a#)∗a+a+a.

Multiplying the equality on the right by (a#)∗a∗, one gets

a∗ = a#(a#)∗a+.

In any case, we have a ∈ RGSEP. □

Now we revise Eq.(8.1) as follows

a∗x = a#(a#)∗ya+. (8.2)

Theorem 8.2. Let a ∈ R#
∩ R+. Then the general solution to Eq.(8.2) is given byx = (a#)∗a+a2pa+ + u − aa+u

y = a∗a+a3p + v − aa+va+a
, p, u, v ∈ R with ap = a+a2p. (8.3)

Proof. First, we claim that the formula (8.3) is the solution to Eq.(8.2). In fact

a∗x = a∗((a#)∗a+a2pa+ + u − aa+u) = a∗(a#)∗a+a2pa+ = a+a2pa+ = apa+

= a#(a#)∗a∗a+a3pa+ = a#(a#)∗(a∗a+a3p + v − aa+va+a)a+ = a#(a#)∗ya+.

Next, let
{

x = x0

y = y0
be any solution to Eq.(8.2). Then

a∗x0 = a#(a#)∗y0a+.

Choose p = a+a#(a#)∗y0a+a, u = x0 − (a#)∗a+a2pa+, v = y0 − a∗a+a3p. Then

ap = aa+a#(a#)∗y0a+a = a#(a#)∗y0a+a = a∗x0a = a+a(a∗x0a) = a+a(ap) = a+a2p,

aa+u = aa+(x0 − (a#)∗a+a2pa+) = aa+x0 − aa+(a#)∗a+a2pa+ = aa+x0 − (a+)∗apa+

= aa+x0 − (a+)∗(a∗x0a)a+ = aa+x0 − aa+x0aa+ = (a+)∗a∗x0 − aa+x0aa+

= (a+)∗(a#(a#)∗y0a+) − aa+x0aa+ = (a+)∗(a#(a#)∗y0a+)aa+ − aa+x0aa+

= (a+)∗(a∗x0)aa+ − aa+x0aa+ = 0.

Thus
x0 = (a#)∗a+a2pa+ + u − aa+u,

aa+va+a = aa+(y0 − a∗a+a3p)a+a = aa+y0a+a − aa+a∗a+a3pa+a

= aa+y0a+a − aa+a∗a+a3(a+a#(a#)∗y0a+a)a+a

= aa+y0a+a − aa+a∗a+a(a#)∗y0a+a

= aa+y0a+a − aa+y0a+a = 0.

Hence, y0 = a∗a+a3p + v − aa+va+a. Hence, every solution to Eq.(8.2) has the form of the formula (8.3). □
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Theorem 8.3. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if the general solution to Eq.(8.2) is given byx = aa∗a2pa+ + u − aa+u

y = a∗a+a3p + v − aa+va+a
, p, u, v ∈ R. (8.4)

Proof. =⇒ Since a ∈ RGSEP, aa∗ = (a#)∗a+ by Theorem 3.5. Hence, by Theorem 8.2, we are done.
⇐= The assumption implies

a∗(aa∗a2pa+ + u − aa+u) = a#(a#)∗(a∗a+a3p + v − aa+va+a)a+,

a∗aa∗a2pa+ = a#(a#)∗a∗a+a3pa+ = apa+ for all p ∈ R.

Especially, choose p = a#, one has
a∗aa∗ = aa#a+.

Multiplying the equality on the left by a+a, one obtains

aa#a+ = a+.

Hence, a ∈ REP. This gives a# = aa#a+ = a∗aa∗, that is, (a#)∗ = aa∗a. Hence, a ∈ RGSEP. □

Theorem 8.4. Let a ∈ R#
∩ R+. Then a ∈ RGSEP if and only if the general solution to Eq.(8.2) is given byx = (a#)∗a+a2pa+ + u − aa+u

y = a+(a#)∗a+a+a3p + v − aa+va+a
, p, u, v ∈ R. (8.5)

Proof. =⇒ Assume that a ∈ RGSEP. Then a ∈ REP and a∗a = a+(a#)∗. It follows that

a∗a+a3p = a∗aa+a+a3p = a+(a#)∗a+a+a3p.

By Theorem 8.2, we are done.
⇐= According to the assumption, we have

a∗((a#)∗a+a2pa+ + u − aa+u) = a#(a#)∗(a+(a#)∗a+a+a3p + v − aa+va+a)a+,

this leads to
a+a2pa+ = a#(a#)∗a+(a#)∗a+a+a3pa+ for all p ∈ R.

Choose p = a#, we yield
a+ = a#(a#)∗a+(a#)∗a+a+a2a+.

Multiplying the equality on the left by aa#, we get a+ = aa#a+. Then multiplying the equality on the right by
a, one gives a+a = aa#. Hence, a ∈ REP by [12, Theorem 1.2]. It follows that

a+ = a#(a#)∗a+(a#)∗a+,

a = aa+a = aa#(a#)∗a+(a#)∗a+a = aa#(a+)∗a+(a+)∗a+a = (a+)∗a+(a+)∗,

a∗a = a∗(a+)∗a+(a+)∗ = a+(a+)∗ = a+(a#)∗.

Hence, a ∈ RGSEP by Theorem 3.6. □

Theorem 8.5. Let a ∈ R#
∩ R+. Then a ∈ RSEP if and only if the general solution to Eq.(8.2) is given byx = (aa#)∗a2pa+ + u − aa+u

y = a∗a+a3p + v − aa+va+a
, p, u, v ∈ R. (8.6)
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Proof. =⇒ Assume that a ∈ RSEP. Then a ∈ REP and a+ = a∗. Hence, by Theorem 8.2, we are done.
⇐= From the assumption, we have

a∗((aa#)∗a2pa+ + u − aa+u) = a#(a#)∗(a∗a+a3p + v − aa+va+a)a+,

this leads to
a∗a2pa+ = a#(a#)∗a∗a+a3pa+ = apa+ for all p ∈ R.

Choose p = a#, one gets
a∗ = aa#a+.

Hence, a ∈ RSEP by [11, Theorem 1.5.3]. □
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