
Filomat 38:13 (2024), 4417–4440
https://doi.org/10.2298/FIL2413417G

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Functional characterizations of realized homogeneous Besov and
Triebel-Lizorkin spaces
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Abstract. As the realizations of homogeneous Besov and Triebel-Lizorkin spaces are “true” distributions
and not modulo polynomials, we will show some functional properties of these functions related to BMO
space.

1. Introduction

For s ∈ R and 0 < p, q ≤ ∞, the homogeneous Besov spaces Ḃs
p,q(Rn) and Triebel-Lizorkin spaces Ḟs

p,q(Rn),
abbreviated by B and F, respectively, are defined modulo polynomials, since || f ||Ḃs

p,q
= || f ||Ḟs

p,q
= 0 if and

only if f is a polynomial on Rn, this fact because they are embedded in S′∞(Rn) “the set of tempered
distributions modulo polynomials in Rn”, see, e.g., [26, 27, 30]. Thus, the elements of these spaces are not
“true” distributions and can not “sometimes” satisfy some functional properties. For instance, we know
that if a function f belongs to BMO(Rn) “the John-Nirenberg space which is defined as the set of all locally
integrable functions f (modulo constants) such that ∥ f ∥BMO := supQ |Q|

−1
∫

Q | f (x) −mQ f |dx < ∞, where the
supremum is taken over all finite cubes Q in Rn”, then

Ad( f ) :=
∫
Rn

(1 + |x|n+d)−1
| f (x)|dx < ∞ (for all d > 0) (1)

|Q|−1
∫

Q
| f (x) −mQ f |p dx ≤ c∥ f ∥pBMO (for all cubes Q in Rn), (2)

where p < ∞ and the constant c depends on p, see, e.g., [13, 15, 17, 29], but these estimates are false if we
replace BMO(Rn) by Ḃs

p,q(Rn) or Ḟs
p,q(Rn). Indeed, let f (x) := xn+2

1 and 1(x) := x1, we have A1( f ) = ∞ and∫
[−1, 1]n |1(x)−m[−1, 1]n1|pdx = 2n

p+1 , while ∥ f ∥Ḃs
p,q
= ∥1∥Ḃs

p,q
= 0, and similarly for Ḟs

p,q(Rn). However, it is possible
to obtain such inequalities using the realizations mapping [10], which leads us to work on counterparts of
B and F the realized spaces ˙̃Bs

p,q(Rn) and ˙̃Fs
p,q(Rn), respectively; they are defined by distributions f such that

f (α) (∀|α| = ν) vanish at the infinity in the weak sense, where the positive integer ν is defined as

ν :=
{

([s − n
p ] + 1)+ if s − n

p <N0 or q > 1 in B-case (p > 1 in F-case),
s − n

p if s − n
p ∈N0 and q ≤ 1 in B-case (p ≤ 1 in F-case); (3)
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this natural number presents a minimal value such that Ḃs
p,q(Rn) is embedded inS′ν(Rn) “the set of tempered

distributions modulo polynomials of degree < ν”; similarly for F-case.
In this paper, we will give some functional characterizations of ˙̃Bs

p,q(Rn) and ˙̃Fs
p,q(Rn) related to BMO(Rn)

space, where essentially we find that d > (s − n
p )+ is sufficient to obtain (1) and it is an optimal value; see

Section 5.1 below. On the other hand, the realizations commuting with translations and/or dilations (the
so-called classification) will play an important role to get (1) and (2). For this reason, the following three
cases with respect to parameters n, s, p and q are needed (cf. [10, thms. 4.1, 4.2]):

either s < n
p or s = n

p and q ≤ 1 in B-case (p ≤ 1 in F-case), (4)

either s − n
p ∈ R

+
\N0 or s − n

p ∈N and q ≤ 1 in B-case (p ≤ 1 in F-case), (5)

s − n
p ∈N0 and q > 1 in B-case (p > 1 in F-case). (6)

Concerning the realized spaces ˙̃Bs
p,q(Rn) and ˙̃Fs

p,q(Rn) we refer to Subsection 3.2.2 below and to [8, 9, 21],

the case ˙̃Fs
∞,q(Rn) can be found in [2]. Then, our treatment will be based on these conditions, where (4) is the

so-called “canonical case”, however for (5)–(6) we quote the comment given at the end of page 68 in [1], in
which it has mentioned, for a specific subject, that working in such spaces is much more difficult to handle.
So for this reason, it seems that some functional properties of these spaces have not yet been studied in
detail, since realizations, except the canonical case, are defined up to a polynomial whose degree depends
on s − n

p and q in B-case (p in F-case), cf. [26, pp. 55-56]. In this context, let us recall some previous works
related to topics in functional analysis:

– convolution inequalities, [3],
– inequalities of Gagliardo-Nirenberg type, [4],
– pointwise multiplications in canonical case, [6],
– the boundedness of pseudodifferential operators in B-case, [19],
– some Hardy type estimates between Lp(Rn; |x|−sdx) and B-space (F-space), [22].
There are also other papers on application of the realizations on other homogeneous function spaces,

e.g., [12].

Notation. All spaces occurring in this paper are defined on Euclidean space Rn, we will omit Rn. As
usual, N denotes the set of natural numbers and N0 = N ∪ {0}. We denote by Qλ(x0) the cube with side
length λ centered at x0 ∈ Rn, i.e., Qλ(x0) := x0 + [−λ, λ]n. If a ∈ R we put a+ := max(a, 0). If t ∈ R, [t]
denotes the greatest integer less than or equal to t. The symbol ↪→means a continuous embedding. By ∥ · ∥p
we denote the quasi-norm of the Lebesgue space Lp. We denote by Lloc

p the set of all functions f such that
f ∈ Lp(K) for all compact sets K ⊂ Rn. If 1 ≤ p ≤ ∞, p′ := p

p−1 is its conjugate exponent. If f ∈ L1

F f (ξ) = f̂ (ξ) :=
∫
Rn

e−ix·ξ f (x) dx

is its Fourier transform on Rn; the operator F can be extended to the whole of tempered distributions S′

in the usual way. For a function f we defined translation and dilatation operators by τa f := f (· − a), a ∈ Rn,
and hλ f := f (λ−1

·), λ > 0, respectively. For a locally integrable function f we denote by mB f := |B|−1
∫

B f dx
its mean value with respect to the set B, where |B| is the Lebesgue measure of B. We put P0 := {0},
P1 := {c : c ∈ C}, Pm the set of all polynomials in Rn of degree < m (m = 2, 3, . . .) and P∞ the set of all
polynomials in Rn.

For m ∈ N0 ∪ {∞}, the symbol Sm will be used for the set of functions φ in Schwartz space S such that
⟨u, φ⟩ = 0 for all u ∈ Pm (e.g., S0 = S), its topological dual is denoted by S′m. If f ∈ S′ then [ f ]m denotes the
equivalence class of f modulo Pm. The quotient space S′/Pm can be identified with S′m.

We will use the notation Ȧs
p,q for Ḃs

p,q or Ḟs
p,q, and ˙̃As

p,q for ˙̃Bs
p,q or ˙̃Fs

p,q, when it is no need to distinguish
between them.
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The constants c, c1, . . . are strictly positive, depend only on the fixed parameters as n, s, p, . . . and some
fixed functions, their values may change from line to line.

Finally, we will multiple use of the following well-known assertion: If 0 < p ≤ q ≤ ∞, then there exists
a constant c > 0 such that the inequality

∥ f (α)
∥q ≤ cR|α|+n(1/p−1/q)

∥∥∥ f
∥∥∥

p (7)

holds for all f ∈ Lp and all R > 0, such that supp f̂ ⊂ {ξ : |ξ| ≤ R}, see, e.g., [30, rem. 1.3.2/1]. In case |α| = 0,
the constant c can be given explicitly, c = pn(1/p−1/q)

0 where p0 is the smallest integer not less than p/2, cf. [24,
thm. 4].

Plan. This work is organized as follows. In Section 2 we state our main results. In Section 3, we recall
definitions and some properties of Ȧs

p,q and their realizations. Section 4 is devoted to the proofs. In a last
section, we first discuss the optimal conditions on “d” such that (1) holds, then we give an extension to
inhomogeneous and Morrey spaces.

2. Statement of the main results

We will prove the following statements, where for brevity, if for a given function f ∈ ˙̃As
p,q there exists a

polynomial u f ∈ Pν then we set

f̃ := f + u f . (8)

Theorem 2.1. Let 0 < p, q ≤ ∞ and s > ( n
p − n)+. Let d be a real number such that d > (s − n

p )+.

(i) If f ∈ ˙̃As
p,q, then there exists a polynomial u f ∈ Pν such that the inequality∫
Rn

| f̃ (x)|
1 + |x|n+d

dx ≤ c∥[ f ]∞∥Ȧs
p,q

(9)

holds; the constant c is independent of f .

(ii) If moreover p < ∞ in F-case and that (4) is satisfied; here we have realizations commuting with translations,
then the inequality∫

Rn

| f (x)|
1 + |x − x0|

n+d
dx ≤ c∥[ f ]∞∥Ȧs

p,q
(10)

holds for all x0 ∈ Rn; the constant c is independent of f and x0.

Remark 2.2. If (4) is satisfied and s > 0, it is necessary that p < ∞.

Remark 2.3. It is well-known that BMO = ˙̃F0
∞,2 and ν = 1, see [2, rem. 7]. Then, by Theorem 2.1 we obtain∫

Rn (1+ |x|n+d)−1
| f (x)+ c|dx < ∞ for all f ∈ ˙̃F0

∞,2 and all c ∈ C, also for all f ∈ BMO (here d > 0), see (1); in [13]
it has been chosen d = 1.

Theorem 2.4. Let s, p, q and d be the same as in Theorem 2.1.

(i) If f ∈ ˙̃As
p,q, then there exists a polynomial u f ∈ Pν such that the inequality∫
Rn

∣∣∣ f̃ (x) −mQ1(0) f̃
∣∣∣

1 + |x|n+d
dx ≤ c∥[ f ]∞∥Ȧs

p,q
(11)

holds; the constant c is independent of f .
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(ii) Assume that p < ∞ in F-case and that either (4) or (5) is satisfied; here we have realizations commuting with
dilations. If f ∈ ˙̃As

p,q, then there exists a polynomial u f ∈ Pν such that the inequality∫
Rn

∣∣∣ f̃ (x) −mQλ(0) f̃
∣∣∣

λn+d + |x|n+d
dx ≤ cλs−d−n/p

∥[ f ]∞∥Ȧs
p,q

(12)

holds for all λ > 0; the constant c is independent of f and λ.

(iii) In particular, if (4) is satisfied (p < ∞ in F-case); here we have realizations commuting with translations, then
the inequality∫

Rn

∣∣∣ f (x) −mQλ(x0) f
∣∣∣

λn+d + |x − x0|
n+d

dx ≤ cλs−d−n/p
∥[ f ]∞∥Ȧs

p,q
(13)

holds for all f ∈ ˙̃As
p,q, all λ > 0 and all x0 ∈ Rn; the constant c is independent of f , λ and x0.

In case of modulo constants (ν = 1, i.e., u f = constant), we can extend the third assertion in this theorem
to the cases (5) and (6), that is the following formulation:

Corollary 2.5. Let 0 < p, q ≤ ∞. Suppose that ν = 1 in either (5) or (6). Then, the inequality (13) remains true.

Theorem 2.6. Let 0 < p, q ≤ ∞ and s > ( n
p − n)+. Let 0 < p1 < ∞. In case 1 < p1 < ∞ we assume that

in F-case: n
p1
≥

n
p − s, (14)

in B-case: either n
p1
> n

p − s, or n
p1
= n

p − s and q ≤ p1. (15)

(i) If f ∈ ˙̃As
p,q, then there exists a polynomial u f ∈ Pν such that the inequality( ∫
Q1(0)

∣∣∣ f̃ (x) −mQ1(0) f̃
∣∣∣p1 dx

)1/p1

≤ c∥[ f ]∞∥Ȧs
p,q

(16)

holds; the constant c is independent of f .

(ii) Assume that p < ∞ in F-case and that either (4) or (5) is satisfied; here we have realizations commuting with
dilations. If f ∈ ˙̃As

p,q, then there exists a polynomial u f ∈ Pν such that the inequality(
1

|Qλ(0)|

∫
Qλ(0)

∣∣∣ f̃ (x) −mQλ(0) f̃
∣∣∣p1 dx

)1/p1

≤ cλs−n/p
∥[ f ]∞∥Ȧs

p,q
(17)

holds for all λ > 0; the constant c is independent of f and λ.

(iii) In particular, if (4) is satisfied (p < ∞ in F-case); here we have realizations commuting with translations, then
the inequality(

1
|Qλ(x0)|

∫
Qλ(x0)

∣∣∣ f (x) −mQλ(x0) f
∣∣∣p1 dx

)1/p1

≤ cλs−n/p
∥[ f ]∞∥Ȧs

p,q
(18)

holds for all f ∈ ˙̃As
p,q, all λ > 0 and all x0 ∈ Rn; the constant c is independent of f , λ and x0.

Remark 2.7. In the left-hand sides of inequalities (9), (11), (12), (16) and (17) one can replace
∫

and f̃ by
infu∈P∞

∫
and f + u, respectively; this is in the spirit of, e.g., [30, 5.2.4(2)].



B. Gheribi, M. Moussai / Filomat 38:13 (2024), 4417–4440 4421

Remark 2.8. For Theorem 2.6 the assumption n
p1
≥

n
p − s is necessary at least in (17). Indeed, assume that

s− n
p +

n
p1
< 0, then by dividing each term in (17) by λs−n/p and letting λ→∞we obtain a contradiction. We

note that assumptions (14) and (15) coincide with the necessary conditions so that the inhomogeneous As
p,q

is embedded in Lp1 , cf. [27, coro. 2.2.4/2] (see Subsection 5.2 below for the definition of As
p,q).

As in Corollary 2.5, we extend the assertion in Theorem 2.6/(iii) to functions f ∈ ˙̃As
p,q such that ν = 1.

Where in this formulation we will find interesting examples with cases s = n
p or 1 + n

p .

Corollary 2.9. Let s, p, p1 and q be the same as in Theorem 2.6, in particular the conditions (14)–(15). Let either
( n

p − n)+ < s < 1 + n
p or s = 1 + n

p and q ≤ 1 in B-case (p ≤ 1 in F-case). Then, the inequality (18) remains true.

Remark 2.10. In Corollary 2.9 we have ν = 0 or 1. If ν ≥ 2, there exist functions f ∈ ˙̃As
p,q for which the

inequality (18) is false. Indeed, the first example is given by the function h(x) := x2
1. Clearly h ∈ ˙̃A3+n/p

p,q since
ν ≥ 3. By a direct calculation one finds

∫
Q1(0) |h(x) −mQ1(0)h|dx = 4

9
√

3
2n. Thus, if p1 ≥ 1 by Hölder inequality

we obtain∫
Q1(0)
|h(x) −mQ1(0)h|dx ≤ c

( ∫
Q1(0)

∣∣∣h(x) −mQ1(0)h
∣∣∣p1 dx

)1/p1

,

if 0 < p1 < 1, since |h(x) −mQ1(0)h| ≤ |h(x)| + 1
3 ≤

4
3 for all x ∈ Q1(0), we have∫

Q1(0)
|h(x) −mQ1(0)h|dx =

∫
Q1(0)
|h(x) −mQ1(0)h|p1 |h(x) −mQ1(0)h|1−p1 dx

≤

(
4
3

)1−p1

∫
Q1(0)
|h(x) −mQ1(0)h|p1 dx,

this is the left-hand side of (18), while ∥[h]∞∥Ȧs
p,q
= 0. The second example in ˙̃A1+n/p

p,q (with q > 1 in B-case and
p > 1 in F-case, here ν = 2) for the function 1(x) := x1 with the same calculations given for h.

Remark 2.11. In case s ≥ n
p and 1 ≤ p1 < ∞, a careful examination of the proof of Theorem 2.6 shows that

the constant c appears in the right-hand sides of (16)–(18) has the form c1p1, where c1 > 1 independent of p1.

The aim of Corollary 2.9 is to extend the so-called John-Nirenberg inequality, proved on BMO see, e.g.,
[15, 18, 28] and [29, p. 144], to realized spaces:

Theorem 2.12. Let 0 < p < ∞ and 0 < q ≤ ∞. Let either n
p ≤ s < 1 + n

p or s = 1 + n
p and q ≤ 1 in B-case (p ≤ 1 in

F-case). Then, there exist two positive constants c1, c2, such that the inequality∣∣∣∣{x ∈ Q : | f (x) −mQ f | > R
}∣∣∣∣ ≤ c1|Q| exp

(
−

c2R
|Q|s/n−1/p∥[ f ]∞∥Ȧs

p,q

)
(19)

holds for all f ∈ ˙̃As
p,q, all R > 0 and all cubes Q in Rn with sides parallel to the axes.

We recall that the estimates (9)–(12) are satisfied if we replace ˙̃As
p,q by BMO, see, e.g., [13]. In that case,

the right-hand side of (12) is λ−d
∥ f ∥BMO with any d > 0. Theorem 2.12 has the well-known consequence (in

our situation)

1
|Q|

∫
Q

exp
(

b
|Q|s/n−1/p∥[ f ]∞∥Ȧs

p,q

∣∣∣ f (x) −mQ f
∣∣∣) dx ≤ c, c := c(n, b),

where b < c2 (c2 is the constant given in (19)), see again [15, coro. 3.1.7] and [29, p. 146].
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3. Preliminaries

In this section, the numbers s, p and q satisfy: s ∈ R and p, q ∈]0,∞], unless otherwise stated.

3.1. Besov and Triebel-Lizorkin spaces
To define Besov and Triebel-Lizorkin spaces, we briefly recall the Littlewood-Paley decomposition. We

introduce a C∞ radial function ρ such that 0 ≤ ρ ≤ 1, ρ(ξ) = 1 if |ξ| ≤ 1 and ρ(ξ) = 0 if |ξ| ≥ 3
2 . We put

γ(ξ) := ρ(ξ) − ρ(2ξ). Then γ vanishes outside the annulus 1
2 ≤ |ξ| ≤

3
2 and γ(ξ) = 1 if 3

4 ≤ |ξ| ≤ 1. We have
the following identity∑

j∈Z

γ(2 jξ) = 1 , (ξ ∈ Rn
\ {0}).

We also introduce the convolution operators Q̂ j f (ξ) := γ(2− jξ) f̂ (ξ) (∀ j ∈ Z). The operators Q j are defined
on S′, also on S′∞ since Q j f = 0 iff f ∈ P∞, then we make use of the following convention:

If f ∈ S′∞ we define Q j f := Q j1 for all 1 ∈ S′ such that [1]∞ = f .

They take values in the space of analytical functions of exponential type, see Paley-Wiener theorem. They
are also uniformly bounded in L(Lp) for any 1 ≤ p ≤ ∞ (the Young inequality). Finally, the desired
decompositions are described by the following well-known statement:

Proposition 3.1. (i) For every f ∈ S∞ (S′∞, resp.), it holds that f =
∑

j∈ZQ j f in S∞ (S′∞, resp.).

(ii) For every f ∈ S (S′, resp.) and every k ∈ Z, it holds that f = ρk ∗ f +
∑

j>k Q j f in S (S′, resp.), where
ρ̂k(ξ) := ρ(2−kξ).

Definition 3.2. (i) The homogeneous Besov space Ḃs
p,q is the set of all f ∈ S′∞ such that

∥ f ∥Ḃs
p,q

:=
(∑

j∈Z(2 js
∥Q j f ∥p)q

)1/q
< ∞.

(ii) Let 0 < p < ∞. The homogeneous Triebel-Lizorkin space Ḟs
p,q is the set of all f ∈ S′∞ such that

∥ f ∥Ḟs
p,q

:=
∥∥∥(∑ j∈Z(2 js

|Q j f |)q
)1/q∥∥∥

p < ∞.

Definition 3.3. (i) Let 0 < q < ∞. The homogeneous space Ḟs
∞,q is the set of all f ∈ S′∞ such that

∥ f ∥Ḟs
∞,q

:= sup
k∈Z, µ∈Zn

(
2kn

∫
Pk,µ

∑
j≥k

2 jsq
|Q j f (x)|qdx

)1/q

< ∞,

where Pk,µ (k ∈ Z, µ ∈ Zn) is the set (dyadic cube) of x ∈ Rn such that 2−kµℓ ≤ xℓ < 2−k(µℓ + 1) (ℓ = 1, . . . ,n).

(ii) We put Ḟs
∞,∞ = Ḃs

∞,∞.

Remark 3.4. The spaces Ȧs
p,q are quasi-Banach for the above defined quasi-seminorms. The above defini-

tions are independent of the choice of ρ, see, e.g., [26, 30] and [14, coro. 5.3].

We have S∞ ↪→ Ȧs
p,q ↪→ S

′
∞. We also have Ḃs

p,min(p,q) ↪→ Ḟs
p,q ↪→ Ḃs

p,max(p,q) (p < ∞ in F-case) and the
following two statements which are proved in [16] and [2, lem. 3], respectively:

Proposition 3.5. For 0 < r ≤ ∞, s1 > s2 and 0 < p1 < p2 < ∞ such that s1 −
n
p1
= s2 −

n
p2

, it holds that

Ḃs1
p1,q ↪→ Ḃs2

p2,q ↪→ Ḃs2−n/p2
∞,q , Ḟs1

p1,q ↪→ Ḃs2
p2,p1

and Ḟs1
p1,q ↪→ Ḟs2

p2,r.

Proposition 3.6. For all q > 0 it holds Ḟs
∞,q ↪→ Ḃs

∞,∞.
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The following statement is a variant of the so-called Nikol’skij representation method for Ȧs
p,q, see [27,

prop. 2.3.2/1] or [32]. It is of self-contained interest, where its part of Ḟs
∞,q, is a main result in this section.

Proposition 3.7. Let 0 < a < b. Let (u j) j∈Z be a sequence in S′ such that

• û j is supported by the compact annulus a2 j
≤ |ξ| ≤ b2 j,

• A := (
∑

j∈Z 2 jsq
∥u j∥

q
p)1/q < ∞ in B-case,

• A := ∥(
∑

j∈Z 2 jsq
|u j|

q)1/q
∥p < ∞ in F-case if p < ∞,

• A := supk∈Z, µ∈Zn

(
2kn

∫
Pk,µ

∑
j≥k 2 jsq

|u j(x)|qdx
)1/q

in F-case if p = ∞.

(i) Then the series
∑

j∈Z u j converges in S′∞ to a limit u satisfying ∥u∥Ȧs
p,q
≤ cA, where the constant c depends only

on n, s, p, q, a and b.

(ii) If in addition s > ( n
p − n)+ in B-case, s > ( n

min(p,q) − n)+ in F-case, the same conclusion holds for a = 0.

Proof. We only prove the F-case with p = ∞, since other cases can be found in, e.g., [11, prop. 4], [20,
prop. 3.4] and [21, props. 2.15, 2.17].

The convergence is obtained since Ḟs
∞,q ↪→ Ḃs

∞,∞, then we prove ∥u∥Ḟs
∞,q
≤ cA. Owing to the support of û j,

there exist m1,m2 ∈ Z (with m2 = ∞ in case a = 0) depending only on a and b such that Qku =
∑k+m2

j=k+m1
Qku j.

We put ũk :=
∑k+m2

j=k+m1
u j (i.e., Qku = Qkũk) and separate the proof into two cases: a > 0 and a = 0.

Step 1: the case a > 0. Let d := min(1, q) and θ > n. By (7) we have

|Qkũk(x)| ≤
∫
Rn

2kn
|γ̌(2k(x − y))ũk(y)|dy

≤ c12k(n/d−n)

( ∫
Rn

2knd
|γ̌(2k(x − y))|d|ũk(y)|d dy

)1/d

≤ c22kn/d
( ∑

w∈Zn

∫
PJ,w

(1 + 2k
|x − y|)−(n+1)−θ

|ũk(y)|d dy
)1/d

,

where γ̌ is the inverse Fourier transform of γ; here we used the fact that γ̌ ∈ S. On the other hand, for
x ∈ PJ,µ and y ∈ PJ,w (µ,w ∈ Zn, J ∈ Z) we have

1 + |w − µ| ≤ 2
√

2n(1 + 2J
|x − y|) ≤ 2

√

2n(1 + 2k
|x − y|) if k ≥ J,

and use [32, lem. 2.6] (see also, e.g., [23, lem. 3.2]), one has

|Qkũk(x)| ≤ c1

( ∑
w∈Zn

(1 + |µ − w|)−(n+1)
∫
Rn

2kn(1 + 2k
|x − y|)−θ|ũk(y)|dχPJ,w (y) dy

)1/d

≤ c2

( ∑
w∈Zn

(1 + |µ − w|)−(n+1)M(|ũk|
dχPJ,w )(x)

)1/d

, (∀x ∈ PJ,µ), (20)

where χPJ,w is the characteristic function on the cube PJ,w and M is the maximal function. Since q
d > 1, we

apply twice the Minkowski’s inequality, then from (20) it holds∫
PJ,µ

∑
k≥J

2ksq
|Qkũk(x)|qdx ≤ c1

∫
Rn

∑
k≥J

2ksq
( ∑

w∈Zn

. . .

)q/d

dx

≤ c1

[ ∑
w∈Zn

(1 + |µ − w|)−(n+1)

( ∫
Rn

∑
k≥J

2ksq
(
M(|ũk|

dχPJ,w )(x)
)q/d

dx
)d/q]q/d

. (21)
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Applying the Fefferman-Stein vector-valued inequality in Lq/d(Rn; ℓq/d(Zn)), see, e.g., [14, thm. A.1, p. 147],
we obtain the bound

c
[ ∑

w∈Zn

(1 + |µ − w|)−(n+1)

( ∫
PJ,w

∑
k≥J

2ksq
|ũk(x)|qdx

)d/q]q/d

. (22)

Now, we easily have |ũk(x)|q ≤ c
∑k+m2

j=k+m1
|u j(x)|q where c := c(m1,m2, q), which implies

∑
k≥J

2ksq
|ũk(x)|q ≤ c1

∑
j≥J+m1

|u j(x)|q
j−m2∑

k= j−m1

2ksq
≤ c2

∑
j≥J+m1

2 jsq
|u j(x)|q.

Also, easily there exist ([2m1 ] + 2)n disjoint dyadic cubes {PJ+m1,wr }
([2m1 ]+2)n

r=1 such that PJ,w ⊂
⋃([2m1 ]+2)n

r=1 PJ+m1,wr .
Then ∫

PJ,w

∑
k≥J

2ksq
|ũk(x)|qdx ≤ c1

([2m1 ]+2)n∑
r=1

∫
PJ+m1 ,wr

∑
j≥J+m1

2 jsq
|u j(x)|qdx ≤ c22−JnAq.

Inserting this estimate into (22); since
∑

w∈Zn (1 + |µ − w|)−(n+1) =
∑

w∈Zn (1 + |w|)−(n+1) < ∞, we get from (21)∫
PJ,µ

∑
k≥J

2ksq
|Qkũk(x)|qdx ≤ c2−JnAq.

Finally, dividing both sides of the last inequality by 2−Jn, and taking the supremum, the result follows.

Step 2: the case a = 0. We start with the definition of the homogeneous Triebel-Lizorkin-type space Ḟs,τ
p,q:

for τ ≥ 0, s ∈ R, p ∈]0,∞[ and q ∈]0,∞], Ḟs,τ
p,q is the set of all f ∈ S′∞ such that

∥ f ∥Ḟs,τ
p,q

:= sup
k∈Z, η∈Zn

2knτ
∥∥∥∥(∑

j≥k

(2 js
|Q j f |)q

)1/q∥∥∥∥
Lp(Pk,η)

< ∞;

see, e.g., [5] or [34]. For these space, let us recall the following two properties:

(P1) Let s > ( n
p − n)+ and b > 0. If a sequence (1 j) j∈Z in S′ satisfies that 1̂ j is supported by the ball |ξ| ≤ b2 j,

then it holds∥∥∥∥∑
j∈Z

1 j

∥∥∥∥
Ḟs,τ

p,q

≤ c sup
k∈Z, µ∈Zn

2knτ
( ∫

Pk,µ

(∑
j≥k

2 jsq
|1 j(x)|q

)p/q

dx
)1/p

,

see [5, thm. 3.2].

(P2) If s ∈ R, v ∈]0,∞[ and q ∈]0,∞], then Ḟs,1/v
v,q = Ḟs

∞,q (equivalent quasi-seminorms), see [14, coro. 5.7] or
[33, prop. 3.1] or [34, 1.4.4].

We now turn to our assertion. Using in the first (P1) with 1 j := u j, τ := 1
v and p := v, where v ∈]0,∞[ will

be chosen later on. Applying in the second (P2), we have

∥∥∥∥∑
j∈Z

u j

∥∥∥∥
Ḟs
∞,q

≤ c sup
k∈Z, µ∈Zn

2kn/v
( ∫

Pk,µ

(∑
j≥k

2 jsq
|u j(x)|q

)v/q

dx
)1/v

, (23)
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where we need the condition s > ( n
v − n)+. We then choose 0 < v < q, and apply Hölder’s inequality with

exponents q
v and q

q−v it holds

∫
Pk,µ

(∑
j≥k

2 jsq
|u j(x)|q

)v/q

dx ≤ 2−kn(1−v/q)

( ∫
Pk,µ

∑
j≥k

2 jsq
|u j(x)|qdx

)v/q

≤ 2−knAv. (24)

Since s > ( n
q − n)+, we choose v such that v := 1 if q ≥ 1 and (1+ s

n )−1 < v < q if 0 < q < 1. Then inserting (24)
into (23), the desired result follows.

The name of homogeneity for the space Ȧs
p,q is due to the following property:

Proposition 3.8. There exist two constants c1, c2 > 0 such that the inequality

c1∥ f ∥Ȧs
p,q
≤ λs−n/p

∥hλ f ∥Ȧs
p,q
≤ c2∥ f ∥Ȧs

p,q

holds for all f ∈ Ȧs
p,q and all λ > 0. Moreover, the expression λs−n/p

∥hλ f ∥Ȧs
p,q

defines an equivalent quasi-seminorm
in Ȧs

p,q.

Proof. See, e.g., [30, rem. 5.1.3/4]. In case Ḟs
∞,q see [2, lem. 1].

For further properties of Ȧs
p,q as well as inhomogeneous counterpart (cf., see Definition 5.2 below), we

quote, e.g., [26, 27, 30, 31].

3.2. Realizations

3.2.1. Generalities
We recall that a quasi-Banach space of distributions E in S′m is a vector subspace of S′m endowed with a

complete quasi-seminorm such that E ↪→ S′m.

Definition 3.9. Let m ∈ N0 ∪ {∞} and k ∈ {0, . . . ,m}. Let E be a quasi-Banach space of distributions in S′m. A
realization of E in S′k is a continuous linear mapping σ : E→ S′k, such that [σ( f )]m = f for all f ∈ E. The image set
σ(E) is called the realized space of E with respect to σ.

In realizations theory, a realization σ is entirely determined by its range, and any quasi-Banach space of
distributions E inS′m has an infinity of realizations inS′k if k < m, in case k = m only the identity is the unique
realization. More explicitly, we have σ( f ) − f ∈ Pm, and we note that in case of an infinity of realizations,
whose commute with translation or dilation have some chances to be unique, cf. [10, props 2.2, 2.4]. We
also have:

Proposition 3.10. Let m ∈ N0 ∪ {∞} and k ∈ {0, . . . ,m}. Let E be a quasi-Banach space of distributions in S′m. If
σ0 : E→ S′k is a realization, then there exists a natural number N (with N = m in case m < ∞), such that for all finite
family (Lα)k≤|α|≤N of continuous linear functionals on E, the following formula defines a realization of E modulo Pk:

σ( f )(x) := σ0( f )(x) +
∑

k≤|α|≤N

Lα( f ) xα.

Conversely, any realization of E in S′k is defined in such a way.

We refer to [7]–[9] for preceding proposition and further properties of realizations.
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3.2.2. The realized spaces
We begin by the following notion:

Definition 3.11. We say that a distribution f ∈ S′ vanishes at the infinity in the weak sense if limλ→0⟨hλ f , φ⟩ = 0
for all φ ∈ S. The set of all such distributions is denoted by C̃0.

For some examples of such distributions, we have f ∈ C̃0 if f ∈ Lp (1 ≤ p < ∞), ∂ℓ f ∈ C̃0 (ℓ = 1, . . . ,n) if
f ∈ L∞ or f ∈ C̃0. A “good” example is given by the Littlewood-Paley decomposition, see Proposition 3.12
below, and other can be found in [4].

On the other hand, we are able to define the realized space ˙̃As
p,q, that is

˙̃As
p,q :=

{
f ∈ S′ν : [ f ]∞ ∈ Ȧs

p,q and f (α)
∈ C̃0, ∀ |α| = ν

}
,

which is endowed with the same quasi-seminorm of Ȧs
p,q. Recall, it is easy to see that f ∈ S′ν implies f (α)

∈ S
′

if |α| = ν since ∂α(S) ⊂ Sν.

Proposition 3.12. Let f ∈ Ȧs
p,q. Then

∑
j∈ZQ j f converges in S′ν. Let us define σ( f ) its sum. Then the mapping

σ : Ȧs
p,q → S

′
ν defined in such a way is a translation and dilatation commuting realization, and ∂ασ( f ) ∈ C̃0 for all

|α| = ν. Furthermore, σ(Ȧs
p,q) = ˙̃As

p,q.

Proof. See, e.g., [10, 21]. In case Ḟs
∞,q, the proof is given in [2, thm. 1]. For the last equality we have

σ(Ȧs
p,q) ⊂ ˙̃As

p,q by the definition. For the converse embedding, if f ∈ ˙̃As
p,q, then ∂α(σ([ f ]∞) − f ) belongs to

C̃0 ∩ P∞ with |α| = ν; but we easily have C̃0 ∩ P∞ = {0}, hence σ([ f ]∞) − f ∈ Pν, and σ([ f ]∞) = f in S′ν.

In Definition 3.9, by taking k = 0 and m = ν, we obtain realizations of Ȧs
p,q inS′ using the Littlewood-Paley

setting. Namely, we have the following assertion:

Proposition 3.13. For all f ∈ Ȧs
p,q we define σi( f ) (i = 1, 2, 3) as the following:

(i) σ1( f ) :=
∑

j∈ZQ j f in case (4),

(ii) σ2( f ) :=
∑

j∈Z

(
Q j f −

∑
|α|<ν

1
α! (Q j f )(α)(0)xα

)
in case (5),

(iii) σ3( f ) :=
∑

j≥1 Q j f +
∑

j≤0

(
Q j f −

∑
|α|<ν

1
α! (Q j f )(α)(0)xα

)
in case (6).

Then σi is a realization of Ȧs
p,q in S′ where all above series converge in S′ such that ∂ασi( f ) ∈ C̃0 (|α| = ν) and

[σi( f )]∞ = f in S′∞.

Proof. We refer to [10, 21]. In case Ḟs
∞,q the proof can be found in [2], in particular, Remarks 5–6 and proof

of Lemma 9 in this reference.

We then obtain realizations σi : Ȧs
p,q → S

′ (i = 1, 2, 3), defined by (i)–(iii) of Proposition 3.13, such that

if f ∈ ˙̃As
p,q then σi([ f ]∞) − f ∈ Pν. (25)

We finish this section by presenting realizations commuting with translations and/or dilations (in the
sense τa ◦ σ = σ ◦ τa, a ∈ Rn, and hλ ◦ σ = σ ◦ hλ, λ > 0) needed for this work:

Proposition 3.14. Let σi (i = 1, 2, 3) be realizations given in (i)–(iii) of Proposition 3.13. Suppose that p < ∞ in
F-case. Then

(i) σ1 commutes with translations (here also p = ∞ in F-case) and dilations,

(ii) σ2 commutes with dilations only,

(iii) σ3 does not commute with translations nor dilations.

Proof. See [10, thms. 4.1, 4.2]. If p = ∞ in F-case, then it has been proved in [2, thm. 1] that σ1 commutes
with the translation.



B. Gheribi, M. Moussai / Filomat 38:13 (2024), 4417–4440 4427

4. Proofs

4.1. Proof of Theorem 2.1

Step 1: proof of (9). Let f ∈ ˙̃As
p,q. Owing to (25), we prove (9) with σi([ f ]∞) (i = 1, 2, 3) instead of f̃ , where

σi are defined in Proposition 3.13. We are reduced to prove∫
Rn

|σi([ f ]∞)(x)|
1 + |x|n+d

dx ≤ c∥[ f ]∞∥Ȧs
p,q

(i = 1, 2, 3), (26)

with the restriction on parameters n, s, p and q given in (4)–(6) and s > ( n
p − n)+. For reasons of clarity, we

will subdivide the proof into several steps.

Substep 1.1: estimate of σ1([ f ]∞) with either ( n
p − n)+ < s < n

p or s = n
p and 0 < q ≤ 1 in B-case (0 < p ≤ 1 in

F-case). We write σ1([ f ]∞) = 11 + 12 where 11 :=
∑

j≥1 Q j f and 12 :=
∑

j≤0 Q j f .

1.1.1: The case 0 < s < n
p and 1 < p < ∞. We have

|12(x)| ≤ ∥[ f ]∞∥Ḃs−n/p
∞,∞

∑
j≤0

2− j(s−n/p)
≤ c1∥[ f ]∞∥Ḃs−n/p

∞,∞
, (27)

then the embedding Ȧs
p,q ↪→ Ḃs−n/p

∞,∞ yields∫
Rn

|12(x)|
1 + |x|n+d

dx ≤ c2∥[ f ]∞∥Ȧs
p,q

since d > 0. We also have

∥11∥p ≤ ∥[ f ]∞∥Ḃs
p,∞

∑
j≥1

2− js
≤ c1∥[ f ]∞∥Ḃs

p,∞
, (28)

thus, by Hölder inequality, we obtain∫
Rn

|11(x)|
1 + |x|n+d

dx ≤ ∥11∥p

( ∫
Rn

1
(1 + |x|n+d)p′ dx

)1/p′

≤ c2∥[ f ]∞∥Ḃs
p,∞
,

and finish by the embedding Ȧs
p,q ↪→ Ḃs

p,∞. Thus, we need the condition (p′ − 1)n + p′d > 0, i.e., d > − n
p . It

holds the desired result since d > 0.

1.1.2: The case n
p − n < s < n

p and 0 < p ≤ 1. We introduce a parameter p1 such that 1 < p1 < n( n
p − s)−1.

We have Ȧs
p,q ↪→ Ȧs−n/p+n/p1

p1,q implies ˙̃As
p,q ↪→

˙̃As−n/p+n/p1
p1,q ; indeed, let ν1 and ν2 be the associated numbers with

respect to (3), respectively. We have ν1 = ν2 = 0 since

s <
n
p

and 0 < s −
n
p
+

n
p1
<

n
p1
.

It suffices now to apply the case 1.1.1 with ˙̃As−n/p+n/p1
p1,q instead of ˙̃As

p,q, then we need the condition (p′1 − 1)n+
p′1d > 0, i.e., d > − n

p1
, which it is satisfied since d > 0. The desired result holds.

1.1.3: The case s = n
p and 0 < q ≤ 1. We treat here the B-case. Trivially, by (7) we have

|σ1([ f ]∞)(x)| ≤
∑
j∈Z

∥Q j f ∥∞ ≤ c∥[ f ]∞∥Ḃn/p
p,q
. (29)
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We conclude that (26) holds since d > 0.

1.1.4: The case s = n
p and 0 < p ≤ 1. Here we see the F-case. We use the estimate

(∑
j

a j

)b
≤

∑
j

ab
j for all a j ≥ 0 and all 0 < b ≤ 1,

then
∑

j∈Z ∥Q j f ∥∞ ≤ (
∑

j∈Z ∥Q j f ∥p∞)1/p, and also use Ḟn/p
p,q ↪→ Ḃ0

∞,p we get

|σ1([ f ]∞)(x)| ≤ c∥[ f ]∞∥Ḟn/p
p,q
. (30)

We again conclude that (26) holds since d > 0.

Substep 1.2: estimate of σ2([ f ]∞) with either s − n
p ∈ R

+
\N0 or s − n

p ∈ N and 0 < q ≤ 1 in B-case (0 < p ≤ 1
in F-case).

1.2.1: The case s− n
p ∈ R

+
\N0. For every integer N we set fN(x) := f (2−Nx); N is at our disposal. We easily

obtain Q j f (x) = Q j−N fN(2Nx). Then, we have

σ2([ f ]∞)(x) =
∑
j∈Z

(
Q j−N fN(2Nx) −

∑
|α|<ν

(Q j−N fN)(α)(0)
(2Nx)α

α!

)

=
∑
k∈Z

(
Qk fN(2Nx) −

∑
|α|<ν

(Qk fN)(α)(0)
(2Nx)α

α!

)
.

We split σ2([ f ]∞) as 13 + 14 where 13 :=
∑

k≥1 . . . and 14 :=
∑

k≤0 . . . We have

|13(x)| ≤
∑
k≥1

(
∥Qk fN∥∞ + c1

∑
|α|<ν

|2Nx||α|∥(Qk fN)(α)
∥∞

)
.

By (7) we also have ∥(Qk fN)(α)
∥∞ ≤ c2k|α|

∥Qk fN∥∞. Thus,

|13(x)| ≤ c2∥[ fN]∞∥Ḃs−n/p
∞,∞

∑
k≥1

(
2−k(s−n/p) + 2−k(s−n/p−ν+1)

∑
|α|<ν

|2Nx||α|
)
.

As s − n
p − ν + 1 > 0, and the fact that ∥[ fN]∞∥Ḃs−n/p

∞,∞
≡ 2−(s−n/p)N

∥[ f ]∞∥Ḃs−n/p
∞,∞

, it holds

|13(x)| ≤ c32−(s−n/p)N
∥[ f ]∞∥Ḃs−n/p

∞,∞

(
1 +

∑
|α|<ν

|2Nx||α|
)
, (31)

where the constant c3 is independent of f , N and x, on the one hand. On the other, to see 14 we introduce a
parameter 0 < b < 1, whose value will be fixed later, and use Taylor’s formula, then we obtain

|14(x)| ≤
∑
k≤0

(
∥Qk fN∥∞ +

∑
|α|<ν

∥(Qk fN)(α)
∥∞|2Nx||α|(α!)−1

)1−b

×

(
ν
∑
|α|=ν

(α!)−1
|2Nx||α|

∫ 1

0
(1 − t)ν−1

∣∣∣(Qk fN)(α)(2Ntx)
∣∣∣ dt

)b

. (32)
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Using the well-known inequality

x ≥ 0, y ≥ 0, a ≥ 0 : (x + y)a
≤ max(1, 2a−1)(xa + ya), (33)

and the fact that ∥(Qk fN)(α)
∥∞ ≤ c2kν

∥Qk fN∥∞ (|α| = ν), we get

|14(x)| ≤ c1∥[ fN]∞∥Ḃs−n/p
∞,∞

∑
k≤0

2k(n/p−s)(1−b)

(
1 +

∑
|α|<ν

2k|α|
|2Nx||α|

)1−b(
2k(ν+n/p−s)

|2Nx|ν
)b

≤ c2∥[ fN]∞∥Ḃs−n/p
∞,∞
|2Nx|νb

(
1 +

∑
|α|<ν

|2Nx||α|(1−b)

)∑
k≤0

2k(νb+n/p−s). (34)

Then we need the condition νb + n
p − s > 0. Hence, the number b must satisfy

1
ν

(
s −

n
p

)
< b < 1. (35)

Thus, as in (31), we obtain

|14(x)| ≤ c32−(s−n/p)N
∥[ f ]∞∥Ḃs−n/p

∞,∞
|2Nx|νb

(
1 +

∑
|α|<ν

|2Nx||α|(1−b)
)
, (36)

where the constant c3 is independent of f , N and x.

• Observe that (36) is also valid when we take s = n
p and 1 < q ≤ ∞ in B-case (1 < p ≤ ∞ in F-case)

i.e., ν = 1, see the estimate of 16 in Substep 1.3 below.

We turn to the estimate of σ2([ f ]∞). We choose N := N(x) ∈ Z such that 2−N
≤ |x| < 2−N+1 (i.e., |x| ∼ 2−N),

then from (31) and (36), it holds

|σ2([ f ]∞)(x)| ≤ c|x|s−n/p
∥[ f ]∞∥Ȧs

p,q
,

where the constant c is independent of f and x. Hence, (26) is satisfied since d > s − n
p .

1.2.2: The case s − n
p ∈ N and 0 < q ≤ 1 in B-case (0 < p ≤ 1 in F-case). Applying again Taylor’s formula,

we get

|σ2([ f ]∞)(x)| ≤ ν
∑
k∈Z

∑
|α|=ν

(α!)−1
|x||α|

∫ 1

0
(1 − t)ν−1

∣∣∣(Qk f )(α)(tx)
∣∣∣ dt.

As ∑
k∈Z

|(Qk f )(α)(tx)| ≤
∑
k∈Z

∥(Qk f )(α)
∥∞ ≤ c1∥[ f ]∞∥Ḃν

∞,1

(see (7)), and by the embeddings

Ḃs
p,q ↪→ Ḃν∞,q ↪→ Ḃν

∞,1 in B-case, Ḟs
p,q ↪→ Ḃν∞,p ↪→ Ḃν

∞,1 in F-case, (37)

i.e., Ȧs
p,q ↪→ Ḃν

∞,1, (recall that ν = s − n
p ), we have

|σ2([ f ]∞)(x)| ≤ c2|x|ν∥[ f ]∞∥Ȧs
p,q
, (38)

where the constant c2 is independent of f and x. Now, (26) is obtained since d > s − n
p .
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Substep 1.3: estimate of σ3([ f ]∞) with s − n
p ∈ N0 and 1 < q ≤ ∞ in B-case (1 < p ≤ ∞ in F-case).

Recall that here ν = s − n
p + 1 ≥ 1. As above we split σ3([ f ]∞) as 15 + 16 where 15 :=

∑
k>0 Qk f and

16 :=
∑

k≤0

(
Qk f −

∑
|α|<ν

1
α! (Qk f )(α)(0)xα

)
.

1.3.1: The case s = n
p . Here p < ∞, since by assumption s > 0. We introduce a parameter p1 satisfying

max(p, 1) < p1 < ∞, we then first have∥∥∥∥∑
k>0

Qk f
∥∥∥∥

p1
≤

∑
k>0

2−kn/p1 (2kn/p1∥Qk f ∥p1 ) ≤ c∥[ f ]∞∥Ḃn/p1
p1 ,∞
. (39)

For 15, combining (39) with Hölder inequality, the embedding Ȧn/p
p,q ↪→ Ḃn/p1

p1,∞ (which is true in case q = ∞,
see Proposition 3.5) and the fact that d > 0, it follows∫

Rn

|15(x)|
1 + |x|n+d

dx ≤ c1

∥∥∥∥∑
k>0

Qk f
∥∥∥∥

p1

( ∫
Rn

(
1

1 + |x|n+d

)p′1

dx
)1/p′1

≤ c2∥[ f ]∞∥Ȧn/p
p,q
. (40)

To estimate 16, we proceed as in the case 1.2.1 for 14, thus by (35) and (36), we get

|16(x)| ≤ c|x|b∥[ f ]∞∥Ḃ0
∞,∞
, (41)

where 0 < b < 1. Choosing now 0 < b < min(1, d) in (41) and using the embedding Ȧn/p
p,q ↪→ Ḃ0

∞,∞, thus∫
Rn

|16(x)|
1 + |x|n+d

dx ≤ c1∥[ f ]∞∥Ḃ0
∞,∞

∫
Rn

|x|b

1 + |x|n+d
dx ≤ c2∥[ f ]∞∥Ȧn/p

p,q
. (42)

Hence, (40) and (42) yield the desired estimate (26).

1.3.2: The case s − n
p =: m ∈N. We observe that the estimate∑

k>0

∥Qk f ∥∞ =
∑
k>0

2−km2km
∥Qk f ∥∞ ≤ c∥[ f ]∞∥Ḃm

∞,∞

gives

|15(x)| ≤ c∥[ f ]∞∥Ḃm
∞,∞
. (43)

The estimate for 16, which is the more difficult one, relies on the case 1.2.1. We consider the following two
cases:
• Assume that |x| < 1, then we introduce an integer N ≥ 1 such that |x| ∼ 2−N. Thus, by (35) with

m
m+1 < b < 1 and by (36), we get

|16(x)| ≤ c|x|m∥[ f ]∞∥Ḃm
∞,∞
≤ c∥[ f ]∞∥Ḃm

∞,∞
. (44)

• Assume now |x| ≥ 1. Let us define an integer N ≥ 0 such that |x| ∼ 2N. We set fN(x) := f (2Nx), and use
the equality (for k ≤ 0)

Qk f (x) = Qk+N fN(2−Nx) = Q j fN(2−Nx) with j := k +N ≤ N,

then, we can write 16 = 17 + 18 where

17(x) :=
∑
j<0

(
Q j fN(2−Nx) −

∑
|α|<ν

(Q j fN)(α)(0)
(2−Nx)α

α!

)
,

18(x) :=
∑

0≤ j≤N

(
Q j fN(2−Nx) −

∑
|α|<ν

(Q j fN)(α)(0)
(2−Nx)α

α!

)
.
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For 17, we have as in 14 (see (35) with m
m+1 < b < 1 and (36)),

|17(x)| ≤ c|x|m∥[ f ]∞∥Ḃm
∞,∞
. (45)

To estimate 18, we use an inequality similar to (32) with 0 < b1 < 1 instead of b, that is

|18(x)| ≤
∑

0≤ j≤N

(
∥Q j fN∥∞ +

∑
|α|<ν

∥(Q j fN)(α)
∥∞|2−Nx||α|(α!)−1

)1−b1

×

(
ν
∑
|α|=ν

(α!)−1
|2−Nx||α|

∫ 1

0
(1 − t)ν−1

∣∣∣(Q j fN)(α)(2−Ntx)
∣∣∣ dt

)b1

.

We get

|18(x)| ≤ c1∥[ fN]∞∥Ḃm
∞,∞

∑
0≤ j≤N

2 j(νb1−m)

(
1 +

∑
|α|<ν

2 j|α|(1−b1)

)

≤ c2∥[ fN]∞∥Ḃm
∞,∞

( ∑
0≤ j≤N

2 j(νb1−m) +
∑

0≤ j≤N

2 jb1

)
. (46)

Now, we choose b1 such that

νb1 −m < 0 (i.e.,
∑

0≤ j≤N

2 j(νb1−m)
≤

∑
j≥0

2 j(νb1−m) = c < ∞) (47)

where the constant c is independent of N. Using the following elementary inequality∑
0≤ j≤N

2 jb1 ≤ c12Nb1 ≤ c2|x|b1

(the constants c1, c2 depend only on b1 and n), and ∥[ fN]∞∥Ḃm
∞,∞
≤ c|x|m∥[ f ]∞∥Ḃm

∞,∞
, then (46) becomes

|18(x)| ≤ c3|x|m(1 + |x|b1 )∥[ f ]∞∥Ḃm
∞,∞
. (48)

Summarizing, from (43)–(45) and (48), the resulting estimate reduces to∫
Rn

|σ3([ f ]∞)(x)|
1 + |x|n+d

dx ≤ c∥[ f ]∞∥Ḃm
∞,∞

( ∫
Rn

1
1 + |x|n+d

dx +
∫
|x|≥1

|x|m(1 + |x|b1 )
1 + |x|n+d

dx
)
.

Thus, we need the condition m+b1 < d. Then, from this condition and (47) (recall that ν = m+1), we choose
b1 satisfying

0 < b1 < min
( m
m + 1

, d −m
)
,

and obtain the desired estimate (26) for σ3.

Step 2: proof of (10). By Proposition 3.14, we have σ1([τ−x0 f ]∞)(x) = σ1([ f ]∞)(x + x0), x0 ∈ Rn. In (26), we
change f by τ−x0 f and take into account that ∥ · ∥Ȧs

p,q
is translation invariant, then∫

Rn

|σ1([ f ]∞)(x)|
1 + |x − x0|

n+d
dx ≤ c∥[ f ]∞∥Ȧs

p,q
,

with the restriction on parameters n, s, p and q given in (i) of Proposition 3.13 (i.e., (4)). We deduce the
desired estimate by (25) since σ1([ f ]∞) − f ∈ P0 = {0}.
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4.2. Proof of Theorem 2.4

Let f ∈ ˙̃As
p,q. We subdivide the proof into several steps, where, as in the preceding proof, by (25) we use

the realizations σi (i = 1, 2, 3) defined in (i)–(iii) of Proposition 3.13.
Step 1: proof of (i). By (26), it is clear that∫

Q1(0)
|σi([ f ]∞)(x)|dx ≤ c1

∫
Rn

|σi([ f ]∞)(x)|
1 + |x|n+d

dx ≤ c2∥[ f ]∞∥Ȧs
p,q
.

Also, clearly we have |mQ1(0)
(
σi([ f ]∞)

)
| ≤ c∥[ f ]∞∥Ȧs

p,q
. Now, these two inequalities give∫

Rn

|σi([ f ]∞)(x) −mQ1(0)
(
σi([ f ]∞)

)
|

1 + |x|n+d
dx ≤ c1∥[ f ]∞∥Ȧs

p,q

(
1 +

∫
Rn

1
1 + |x|n+d

dx
)
≤ c2∥[ f ]∞∥Ȧs

p,q
, (49)

and then the desired estimate (11) holds.

Step 2: proof of (ii). Owing to Proposition 3.14, we only proceed with realizations commuting with
dilations σi (i = 1, 2). By replacing f by f (λ ·), λ > 0, in (49), and using the equality σi([h1/λ f ]∞)(x) =
σi([ f ]∞)(λx), and by Proposition 3.8, we then get∫

Rn

|σi([ f ]∞)(x) −mQλ(0)
(
σi([ f ]∞)

)
|

λn+d + |x|n+d
dx ≤ cλs−d−n/p

∥[ f ]∞∥Ȧs
p,q

(i = 1, 2). (50)

The desired inequality (12).

Step 3: proof of (iii). By (50) with σ1 and τ−x0 f (x0 ∈ Rn) instead of f , and by the fact that σ1 commutes
with translations, then this case can be done as in the proof of Theorem 2.1/Step 2. We omit details.

4.3. Proof of Corollary 2.5
To prove (13) with f instead of f̃ under conditions (5)–(6), we deal with realizations σi (i = 2, 3). We

change f by τ−x0 h1/λ f = f (λ · +x0), λ > 0, x0 ∈ Rn, and we take into account that σi([τ−x0 h1/λ f ]∞) =
τ−x0 h1/λ f + ci,λ,x0 where ci,λ,x0 ∈ C, cf. (25). Thus, as mQ1(0)

(
τ−x0 h1/λ f

)
= mQλ(x0) f and mQ1(0)

(
ci,λ,x0

)
= ci,λ,x0 , we

have

σi([τ−x0 h1/λ f ]∞) −mQ1(0)
(
σi([τ−x0 h1/λ f ]∞)

)
= τ−x0 h1/λ f −mQλ(x0) f . (51)

Then, using Theorem 2.4/(i) with a suitable change of variables, and the equivalence quasi-seminorm

∥[τ−x0 h1/λ f ]∞∥Ȧs
p,q
= ∥[h1/λ f ]∞∥Ȧs

p,q
≡ λs−n/p

∥[ f ]∞∥Ȧs
p,q
, (52)

we obtain the desired estimate.

4.4. Proof of Theorem 2.6

Let f ∈ ˙̃As
p,q. Here also, by (25) we use the realizations σi (i = 1, 2, 3) given in Proposition 3.13.

Step 1: proof of (i). We will prove (16) in several steps, where we will present explicitly the constant
which appears in its right side.

Substep 1.1: 0 < p1 ≤ 1. We first see the case p1 = 1. As above choosing a real number d such that
d > (s − n

p )+, then by (11) it holds

∫
Q1(0)

∣∣∣ f̃ (x) −mQ1(0) f̃
∣∣∣ dx ≤ c1

∫
Q1(0)

∣∣∣ f̃ (x) −mQ1(0) f̃
∣∣∣

1 + |x|n+d
dx ≤ c2∥[ f ]∞∥Ȧs

p,q
. (53)
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In the second, assume that 0 < p1 < 1. We set v := 1
p1

. Then by Hölder inequality with exponents v and v′,
we get( ∫

Q1(0)

∣∣∣ f̃ (x) −mQ1(0) f̃
∣∣∣p1 dx

)1/p1

≤ 2n(1−p1)/p1

∫
Q1(0)

∣∣∣ f̃ (x) −mQ1(0) f̃
∣∣∣ dx,

which leads to apply the first case (i.e., when p1 = 1) and obtain the desired estimate with the constant
c22n(1−p1)/p1 .

Substep 1.2: 1 < p1 < ∞. We separate the argument according to σi (i = 1, 2, 3). We will use systematically
the inequality (33).

1.2.1: Estimate of σ1([ f ]∞). Recall that σ1([ f ]∞) = 11 + 12 where 11 :=
∑

j≥1 Q j f and 12 :=
∑

j≤0 Q j f .
• If s = n

p and 0 < q ≤ 1 in B-case (0 < p ≤ 1 in F-case), we use (29) and (30), in B-case and in F-case,
respectively. Then we have∣∣∣σ1([ f ]∞)(x) −mQ1(0)

(
σ1([ f ]∞)

) ∣∣∣p1
≤ (2c1)p1−1

∥[ f ]∞∥
p1−1

Ȧn/p
p,q

∣∣∣σ1([ f ]∞)(x) −mQ1(0)
(
σ1([ f ]∞)

) ∣∣∣
≤ (2c1)p1−1

∥[ f ]∞∥
p1−1

Ȧn/p
p,q

| f̃ (x) −mQ1(0) f̃ |,

hence, it suffices to apply (53) and obtain the result with the constant (2c1)1−1/p1 c2 ≤ c3.
• If s < n

p and p1 ≤ p < ∞, we apply Hölder inequality (with exponents v := p
p1

and v′), also as s > 0 and
2n/p1−n/p < 2n, we have

∥11∥Lp1 (Q1(0)) ≤ 2n/p1−n/p
( ∫
Q1(0)

∣∣∣11(x)
∣∣∣pdx

)1/p

≤ 2nc∥[ f ]∞∥Ḃs
p,∞
, (54)

cf. (28), then the embedding Ȧs
p,q ↪→ Ḃs

p,∞ yields the result.
• If s < n

p , p < p1 < ∞ and n
p − s < n

p1
< n

p , we have (cf. (7))

∥Q j f ∥p1 ≤ ∥Q j f ∥p/p1
p ∥Q j f ∥1−p/p1

∞ ≤ 2− j(n/p1−n/p+s)(c1)1−p/p1∥[ f ]∞∥Ḃs
p,∞
.

Using the elementary inequality
∑

j≥1 2− jβ
≤

1
β log 2 (∀β > 0), it holds

∥11∥Lp1 (Q1(0)) ≤ c2(c1)1−p/p1
(

n
p1
−

n
p + s

)−1
∥[ f ]∞∥Ḃs

p,∞
.

• If s < n
p , p < p1 < ∞ and n

p − s = n
p1
< n

p (here q ≤ p1 in B-case), we have

∥11∥Lp1 (Q1(0)) ≤

∥∥∥∥∑
j≥1

|Q j f |
∥∥∥∥

p1
≤ ∥[ f ]∞∥Ḟ0

p1 ,1
,

thus, since Ḟs
p,q ↪→ Ḟ0

p1,1
the last estimate is bounded by c∥[ f ]∞∥Ḟs

p,q
, and we obtain the result in F-case.

However, in B-case, we apply the embedding Bn/p−n/p1
p,q ↪→ Lp1 (with p1 ≥ 1, p < p1 and q ≤ p1) cf. Remark

2.8 and [27, p. 36], where Bn/p−n/p1
p,q is the inhomogeneous Besov space, thus by using an assertion similar to

Proposition 3.7 for Bn/p−n/p1
p,q cf. [32, thm. 3.6], we get that ∥11∥Lp1 (Q1(0)) is bounded by

c1

∥∥∥∥∑
j≥1

Q j f
∥∥∥∥

Bn/p−n/p1
p,q

≤ c2

(∑
j≥1

(2 js
∥Q j f ∥p)q

)1/q

≤ c2∥[ f ]∞∥Ḃs
p,q
.
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The different constants here depend only on n, s, p, q since p1 = n( n
p − s)−1.

•We now see 12 if s < n
p . By (27) we obtain

∥12∥Lp1 (Q1(0)) ≤ c1∥[ f ]∞∥Ḃs−n/p
∞,∞

( ∫
Q1(0)

dx
)1/p1

≤ c22n/p1∥[ f ]∞∥Ȧs
p,q
.

On the other hand, since∫
Q1(0)

∣∣∣σ1([ f ]∞)(x)
∣∣∣ dx ≤ c

∫
Q1(0)

∣∣∣σ1([ f ]∞)(x)
∣∣∣

1 + |x|n+d
dx,

then by (26) and the fact that 2n/p1 < 2n we have( ∫
Q1(0)

∣∣∣mQ1(0)
(
σ1([ f ]∞)

) ∣∣∣p1 dx
)1/p1

= 2n/p1
∣∣∣mQ1(0)

(
σ1([ f ]∞)

) ∣∣∣ ≤ c2n
∥[ f ]∞∥Ȧs

p,q
. (55)

Hence (16) is proved for σ1.

1.2.2: Estimate of σ2([ f ]∞). As above, we have σ2([ f ]∞) = 13 + 14, where

13 :=
∑
j≥1

(
Q j f −

∑
|α|<ν

1
α!

(Q j f )(α)(0)xα
)

and 14 is defined in the same way but replacing j ≥ 1 by j ≤ 0.
Assume first s − n

p ∈ R
+
\N0. To estimate ∥13∥Lp1 (Q1(0)), thus ∥

∑
j≥1 Q j f ∥Lp1 (Q1(0)) can be treated as in (54) if

p1 ≤ p; however, if p1 > p, we have∥∥∥∥∑
j≥1

Q j f
∥∥∥∥

Lp1 (Q1(0))
≤

∥∥∥∥∑
j≥1

Q j f
∥∥∥∥p/p1

p

(∑
j≥1

∥Q j f ∥∞

)1−p/p1

r := min(1, p)

≤

(
(3/2)([p/2] + 1)

)n/p−n/p1

(∑
j≥1

∥Q j f ∥rp

)p/(rp1)(∑
j≥1

2 jn/p
∥Q j f ∥p

)1−p/p1

(cf. (7))

≤ c1∥[ f ]∞∥Ḃs
p,∞

(∑
j≥1

2− jsr
)p/(rp1)(∑

j≥1

2− j(s−n/p)

)1−p/p1

≤ c2∥[ f ]∞∥Ḃs
p,∞
.

To continue with the second term in 13, we have( ∫
Q1(0)

∣∣∣∣∑
j≥1

∑
|α|<ν

(Q j f )(α)(0)
xα

α!

∣∣∣∣p1

dx
)1/p1

≤ c1

∑
|α|<ν

( ∫
Q1(0)
|x|p1 |α|dx

)1/p1 ∑
j≥1

∥Q j f (α)
∥∞

≤ c22n/p1∥[ f ]∞∥Ḃs
p,∞

∑
j≥1

2 j(n/p−s+ν−1)
≤ c32n

∥[ f ]∞∥Ȧs
p,q
,

since n
p − s + ν − 1 < 0 and

∫
Q1(0) |x|

p1 |α|dx ≤
∫
Q1(0) dx ≤ 2n. We now see ∥14∥Lp1 (Q1(0)); by (34) with N = 0, we

obtain

∥14∥Lp1 (Q1(0)) ≤ c1∥[ f ]∞∥Ḃs−n/p
∞,∞

( ∫
Q1(0)
|x|νbp1

(
1 +

∑
|α|<ν

|x||α|(1−b)
)p1

dx
)1/p1

≤ c22n/p1∥[ f ]∞∥Ḃs−n/p
∞,∞
≤ c22n

∥[ f ]∞∥Ḃs−n/p
∞,∞
,
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where the number b satisfies the condition (35), and we finish by the embedding Ȧs
p,q ↪→ Ḃs−n/p

∞,∞ .
Second, if s − n

p ∈ N and 0 < q ≤ 1 in B-case (0 < p ≤ 1 in F-case), we apply (38) and obtain
∥σ2([ f ]∞)∥Lp1 (Q1(0)) ≤ 2n/p1 c∥[ f ]∞∥Ȧs

p,q
(see also (37)).

Finally, the estimate of
( ∫
Q1(0) |mQ1(0)

(
σ2([ f ]∞)

)
|
p1 dx

)1/p1
can be done similar to (55). The desired estimate

is obtained with a constant c > 1 independent of p1.

1.2.3: Estimate of σ3([ f ]∞). Here q > 1 in B-case and p > 1 in F-case. Assume that s − n
p ∈N; this case can

be done similar to the preceding substep when s − n
p ∈ R

+
\N0 and will be omitted. We now see the case

s = n
p . Recall that the assumption on s implies that p < ∞. Here σ3([ f ]∞) = 15 + 16 where 15, 16 are given in

the proof of Theorem 2.1/Substep 1.3. By (41) we get

∥16∥Lp1 (Q1(0)) ≤ c1

( ∫
Q1(0)
|x|bp1 dx

)1/p1

∥[ f ]∞∥Ḃ0
∞,∞
≤ c22n/p1∥[ f ]∞∥Ȧn/p

p,q

where 0 < b < 1 and 2n/p1 < 2n. Now, if p1 > p (recall that p1 > 1), by (7) it holds

∥15∥Lp1 (Q1(0)) ≤
(
(3/2)([p/2] + 1)

)n/p−n/p1
∑
k≥1

2k(n/p−n/p1)
∥Qk f ∥p

≤ c1([p/2] + 1)n/p
∥[ f ]∞∥Ḃn/p

p,∞

∑
k≥1

2−kn/p1 ≤ c2p1([p/2] + 1)n/p
∥[ f ]∞∥Ȧn/p

p,q
;

if p1 ≤ p, using Hölder inequality (with exponents v := p
p1

and v′), we have

∥15∥Lp1 (Q1(0)) ≤ 2n/p1−n/p
∥15∥Lp(Q1(0))

≤ 2n/p1

∑
k≥1

2−kn/p(2kn/p
∥Qk f ∥p) ≤ c12n/p1∥[ f ]∞∥Ḃn/p

p,∞
≤ c22n

∥[ f ]∞∥Ȧn/p
p,q
.

Also, the estimate of
( ∫
Q1(0) |mQ1(0)

(
σ3([ f ]∞)

)
|
p1 dx

)1/p1
can be done similar to (55). By these estimates we

obtain the desired result for σ3([ f ]∞) with a constant of type

c1p1([p/2] + 1)n/p + c22n = c3p1 with c3 > 1 .

Step 2: proof of (ii). The realizations σi (i = 1, 2) commute with dilations, we then proceed as in the proof
of Theorem 2.4/Step 2.

Step 3: proof of (iii). Here as the proof of Theorem 2.1/Step 2 since the realization σ1 commutes with
translations.

4.5. Proof of Corollary 2.9

By Proposition 3.13 and (25) we have the following three cases:
– If either ( n

p − n)+ < s < n
p or s = n

p and q ≤ 1 in B-case (p ≤ 1 in F-case), then ν = 0 and σ1 f = f . This
case has been given in Theorem 2.6/(iii).

– If s = n
p and q > 1 in B-case (p > 1 in F-case), then ν = 1 and σ3 f − f = c ∈ C.

– If either n
p < s < 1 + n

p or s = 1 + n
p and q ≤ 1 in B-case (p ≤ 1 in F-case), then ν = 1 and σ2 f − f = c ∈ C.

It suffices to apply Theorem 2.6/(i) with a suitable change of variables and the equivalence quasi-
seminorm, cf. (51)–(52).
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4.6. Proof of Theorem 2.12
By Remark 2.11 there exists a constant c > 1 such that

1
|Qλ(x0)|

∫
Qλ(x0)

∣∣∣ f (x) −mQλ(x0) f
∣∣∣p1 dx ≤

(
cp1λ

s−n/p
∥[ f ]∞∥Ȧs

p,q

)p1
=

(
c1p1

)p1
, (56)

where c1 := cλs−n/p
∥[ f ]∞∥Ȧs

p,q
, for all f ∈ ˙̃As

p,q, all λ > 0, all x0 ∈ Rn and all 1 ≤ p1 < ∞. Now, the argument
is similar to the “famous” proof given in [29], since by (56) we have the correspondent inequality to
formula (13)/page 145 in this reference.

5. A general remarks

5.1. Optimality of the condition
As mentioned before, we study the optimality of the given condition d > (s − n

p )+ in Theorem 2.1. We
first see the case d = 0.

(I). Let us define f (x) := eix1 , x ∈ Rn, which satisfies Q j f (x) = γ(2− j, 0, . . . , 0)eix1 , then [ f ]∞ ∈ Ḃ0
∞,1. We

apply the following assertion proved in, e.g., [10]:

Lemma 5.1. Let K be a compact subset of Rn
\{0}. Every bounded function f such that supp f̂ ⊂ K belongs to C̃0.

As f̂ = cδ(1,0,...,0) (Dirac distribution), then f ∈ ˙̃B0
∞,1. Now clearly∫

Rn
(1 + |x|n)−1

| f (x)|dx =
∫
Rn

(1 + |x|n)−1dx = ∞.

(II). Assume that 0 < q ≤ ∞, 0 < p ≤ ∞ (p < ∞ in F-case) and s > ( n
p − n)+. Let us introduce γ1 a real

valued and C∞ radial function supported by the ball |ξ| ≤ 1
5 . We set ψ̂ := γ1 ∗ γ1. We have ψ ≥ 0 and

supp ψ̂ ⊂ {ξ : |ξ| ≤ 2
5 }. Let us define a function f by

f (x) :=
∑
j≥1

a jψ(2− jx) (x ∈ Rn),

where (a j) j≥1 is a positive sequence satisfying(∑
j≥1

(
a j2− j(s−n/p)

)t)1/t

< ∞, where t := q in B-case, 0 < t < p in F-case. (57)

By Proposition 3.7 and (57) we get [ f ]∞ ∈ Ȧs
p,q; indeed, it is clear in B-case, however in F-case we

introduce a parameter p1 such that t < p1 < p and 1
p1
> 1

n ( n
p − s), we put s1 := s− n

p +
n
p1

(the assumption on s
implies s1 > ( n

p1
− n)+), then we use the embeddings Ḃs1

p1,t
↪→ Ḟs1

p1,t
↪→ Ḟs

p,q.

To prove that f (α)
∈ C̃0 for |α| = ν, we first consider the case s − n

p <N0 or s − n
p ∈N0 and q > 1 in B-case

(p > 1 in F-case). Then, it suffices to recall that in [10, p. 483] it was proved that for all φ ∈ S, there exists a
constant c := c(φ) > 0 such that

|⟨hλ f (α), φ⟩| ≤ cλν−s+n/p
∥[ f ]∞∥Ȧs

p,q
, ∀λ > 0,

which tends to 0 with λ → 0; recall that ν − s + n
p > 0. We note that the last estimate has been also proved

in [21, p. 173] under the condition s − n
p < N0, in which, with the condition s − n

p ∈ N0 and q > 1 in B-case
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(p > 1 in F-case) can be done complete similarly. Second, we consider the case s − n
p ∈ N0 and q ≤ 1 in

B-case (p ≤ 1 in F-case); here ν − s + n
p = 0. We observe that Q j f = 0 if j ≥ 0 since f̂ is supported by the ball

|ξ| ≤ 1
5 , then for a fixed |α| = ν we set

1k :=
∑

−k≤ j≤−1

Q j f (α) (k = 1, 2, . . .).

By (7) we have ∥Q j f (α)
∥∞ ≤ c2 jν

∥Q j f ∥∞ for all j ∈ Z and all |α| = ν. Then

∥1k∥∞ ≤ c1

∑
−k≤ j≤−1

2 jν
∥Q j f ∥∞ ≤ c1∥[ f ]∞∥Ḃs−n/p

∞,1
≤ c2∥[ f ]∞∥Ȧs

p,q
; (58)

we used the embedding Ȧs
p,q ↪→ Ḃs−n/p

∞,1 which is observed before (see (37)). Hence 1k is a bounded function,

on the one hand. On the other, clearly 1̂k is supported by 2−k−1
≤ |ξ| ≤ 1

5 , then Lemma 5.1 yields 1k ∈ C̃0.
Since f (α) =

∑
j≤−1 Q j f (α) in S′∞, and as

∑
j∈Z ∥Q j f (α)

∥∞ ≤ c∥[ f ]∞∥Ȧs
p,q

(can be obtained as in (58)), then it holds

lim
k→+∞

∥ f (α)
− 1k∥∞ ≤ lim

k→+∞

∑
j≤−k−1

∥Q j f (α)
∥∞ = 0.

Now, for an arbitrary fixed ε > 0 there exists a positive integer kε such that

|⟨hλ f (α), φ⟩| ≤ ∥ f (α)
− 1k∥∞∥φ∥1 + |⟨hλ1k, φ⟩| ≤ ε∥φ∥1 + |⟨hλ1k, φ⟩|

holds for all k ≥ kε, all φ ∈ S and all λ > 0. We then obtain limλ→0⟨hλ f (α), φ⟩ = 0. Hence we obtain f (α)
∈ C̃0,

and we conclude that f ∈ ˙̃As
p,q.

We turn to choose (a j) j≥1 and d as the following:

(i) in case either s− n
p <N0 or s− n

p ∈N0 and q ≤ 1 in B-case (p ≤ 1 in F-case), we take −n < d < s− n
p and

a j := 2 jr where d < r < s − n
p ,

(ii) in case s − n
p ∈ N0 and q > 1 in B-case (p > 1 in F-case), we take −n < d = s − n

p and a j := j−r2 jd where
1
t < r ≤ 1 (t is defined in (57)).

Then, the condition (1) is false for f with the chosen d. Indeed, let x0 , 0 be a fixed number such that
ψ(x0) > 0, then by continuity there exist βi := βi(x0) > 0 (i = 1, 2) such that ψ(x) > 0 for β1 ≤ |x| ≤ β2. Also,
the assumption n + d > 0 gives:

for all j ≥ 1, if β1 ≤ 2− j
|x| ⇒ 1 + |x|n+d

≤

(
1 + β−(n+d)

1

)
|x|n+d.

On the other hand, for all fixed N ∈N it holds f (x) ≥
∑N

j=1 a jψ(2− jx), then

G :=
∫
Rn

| f (x)|
1 + |x|n+d

dx ≥
N∑

j=1

a j

∫
β1≤2− j |x|≤β2

ψ(2− jx)
1 + |x|n+d

dx

≥ β−1
3

N∑
j=1

a j

∫
β1≤2− j |x|≤β2

ψ(2− jx)
|x|n+d

dx (β3 := 1 + β−(n+d)
1 )

≥ β−1
3

( ∫
β1≤|y|≤β2

ψ(y)
|y|n+d

dy
) N∑

j=1

a j2− jd = c1

N∑
j=1

a j2− jd, (59)
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where c1 is independent of N. Letting N→∞we conclude G = ∞.
In case (i) (with exception of s − n

p ≤ −1) we can take d such that ν − 1 < d < s − n
p , then the condition

(1) becomes also false for f̃ := f + u f (∀u f ∈ Pν) cf. (8), indeed, owing to (59) it suffices to observe that∫
Rn (1 + |x|n+d)−1

|u f (x)|dx < ∞.

(III). We now consider the counterpart for Ḟs
∞,q with s > 0 and 0 < q < ∞, (recall that in Theorem 2.1 the

condition s > ( n
∞
− n)+ is reduced to s > 0). We only prove the embedding ˙̃Bs

∞,q ↪→
˙̃Fs
∞,q, one then can adapt

the reasoning in (II) given for Ḃs
∞,q. Indeed, we easily have∫

Pk,µ

∑
j≥k

2 jsq
|Q j f (x)|qdx ≤ 2−kn

∑
j≥k

2 jsq
∥Q j f ∥q∞ ≤ 2−kn

∥[ f ]∞∥
q
Ḃs
∞,q
,

then, we get Ḃs
∞,q ↪→ Ḟs

∞,q. Let now ν1 and ν2 be the associated numbers to Ḟs
∞,q and Ḃs

∞,q with respect to (3),
respectively. We have ν1 = [s] + 1. However, ν2 = [s] + 1 if (s <N) or (s ∈N and q > 1), and ν2 = s if (s ∈N
and 0 < q ≤ 1). In all cases we have ν2 ≤ ν1. Then, for all f ∈ ˙̃Bs

∞,q, we have f (α)
∈ C̃0 (∀|α| = ν2) implies that

f (α)
∈ C̃0 for all |α| = ν1, (cf. see the example just after Definition 3.11). Then f ∈ ˙̃Fs

∞,q. Hence the desired
embedding follows.

5.2. Results for inhomogeneous spaces
We start by recalling the definition of inhomogeneous Besov and Triebel-Lizorkin spaces.

Definition 5.2. Let s ∈ R.

(i) Let 0 < p, q ≤ ∞. The Besov space Bs
p,q is the set of all f ∈ S′ such that

∥ f ∥Bs
p,q := ∥ρ0 ∗ f ∥p +

(∑
j≥1(2 js

∥Q j f ∥p)q
)1/q

< ∞, where ρ̂0 := ρ.

(ii) Let 0 < p < ∞ and 0 < q ≤ ∞. The Triebel-Lizorkin space Fs
p,q is the set of all f ∈ S′ such that

∥ f ∥Fs
p,q := ∥ρ0 ∗ f ∥p +

∥∥∥(∑ j≥1(2 js
|Q j f |)q

)1/q∥∥∥
p < ∞.

(iii) Let 0 < q < ∞. The space Fs
∞,q is the set of all f ∈ S′ such that

∥ f ∥Fs
∞,q := ∥ρ0 ∗ f ∥∞ + sup

k∈N, µ∈Zn

(
2kn

∫
Pk,µ

∑
j≥k

2 jsq
|Q j f (x)|qdx

)1/q

< ∞,

(see [14, (12.8)]).

We denote by As
p,q for Bs

p,q or Fs
p,q. The relation between As

p,q and Ȧs
p,q is given by the following well-known

statement.

Proposition 5.3. Let 0 < p, q ≤ ∞ and s > ( n
p − n)+. Then As

p,q is the set of all f ∈ Lp such that [ f ]∞ ∈ Ȧs
p,q.

Moreover the expression ∥ f ∥p + ∥[ f ]∞∥Ȧs
p,q

defines an equivalent quasi-norm in As
p,q. Here, A and Ȧ are B-spaces or

F-spaces simultaneously.

Proof. See, e.g., [31, thm. 2.3.3, p. 98]. In case Fs
∞,q see [2, lem. 4].

Remark 5.4. With assumptions of Theorem 2.1, we have As
p,q ⊂

˙̃As
p,q. Indeed; if 1 ≤ p < ∞, the assertion

follows by Lp ↪→ C̃0; if 0 < p < 1, we have As
p,q ↪→ L1 since s > n

p − n, and again it follows by L1 ↪→ C̃0; if
p = ∞ in F-case, we have ν = [s] + 1 ≥ 1 the associated number to Ḟs

∞,q with respect to (3), let us now take

f ∈ Fs
∞,q, as Fs

∞,q ↪→ L∞ (see [2, lem. 4]) we get f (α)
∈ C̃0 for all |α| = ν (cf. see the example just after Definition

3.11), i.e., f ∈ ˙̃Fs
∞,q. Now using Proposition 5.3, inequalities (9)–(13) and (16)–(19) are valid if we replace ˙̃As

p,q

by As
p,q (with p < ∞ in F-case), also similarly for (9), (11) and (16) by replacing ˙̃Fs

∞,q by Fs
∞,q.
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5.3. An application to Morrey spaces
The Morrey spaceMu

r (0 < r ≤ u ≤ ∞) is the set of all functions f ∈ Lloc
r such that

∥ f ∥Mu
r

:= sup
Q
|Q|1/u−1/r

( ∫
Q
| f (x)|r dx

)1/r

< ∞,

with the supremum is taken over all cubes Q inRn, cf. [34, sect. 1.3.2]. As mentioned before, the presence of
the polynomials causes that Ȧs

p,q can not be embedded inMu
r . However, in realized spaces one can obtain

the following result:

Theorem 5.5. Let 0 < p < ∞, 0 < q ≤ ∞ and s > ( n
p − n)+. Suppose that (4) is satisfied. Let 0 < p1 < ∞ be a real

number such that (14)–(15) are satisfied if 1 < p1 < ∞. We put 1
u := 1

p −
s
n . Then it holds ˙̃As

p,q ↪→M
u
p1

.

Proof. In Theorem 2.6/(iii) we have proved(
1
λn

∫
Qλ(x0)

∣∣∣σ1([ f ]∞)(x) −mQλ(x0)
(
σ1([ f ]∞)

) ∣∣∣p1 dx
)1/p1

≤ cλs−n/p
∥[ f ]∞∥Ȧs

p,q

(σ1 is defined in Proposition 3.13) for all f ∈ ˙̃As
p,q, all λ > 0 and all x0 ∈ Rn. Now, applying (33) and (55) since

mQλ(x0)
(
σ1([ f ]∞)

)
= mQ1(0)

(
σ1([τ−x0 h1/λ f ]∞)

)
and using the equivalence quasi-seminorm, cf. (52), we obtain(

1
λn

∫
Qλ(x0)

∣∣∣σ1([ f ]∞)(x)
∣∣∣p1 dx

)1/p1

≤ cλs−n/p
∥[ f ]∞∥Ȧs

p,q
.

This gives ∥ f ∥Mu
p1
≤ c∥[ f ]∞∥Ȧs

p,q
since (25), and the desired result.

If we take u = p1 in the preceding theorem, and use the equalityMp1
p1
= Lp1 (see [34, 1.4.3]), we obtain

the following interesting embedding between realized spaces and Lebesgue spaces:

Corollary 5.6. Let 1 ≤ p < ∞ and 1 < p1 < ∞ be such that p < p1. Let 0 < q ≤ ∞ (with 0 < q ≤ p1 in B-case).
Then it holds ˙̃An/p−n/p1

p,q ↪→ Lp1 .

In the same spirit, we present an embedding between ˙̃As
p,q and the Campanato space Lp,θ, where Lp,θ

(1 ≤ p < ∞, 0 ≤ θ < ∞) is the set of all functions f ∈ Lloc
p (modulo constants) such that

∥ f ∥Lp,θ := sup
Q

(
|Q|−θ/n

∫
Q
| f (x) −mQ f |p dx

)1/p

< ∞,

with the supremum is taken over all cubes Q in Rn, cf. [25] and [34].

Theorem 5.7. Let 0 < p < ∞, 0 < q ≤ ∞ and s > ( n
p − n)+. Suppose that (4) is satisfied. Assume that (5)–(6) hold

with ν = 1, i.e., either ( n
p − n)+ < s < 1 + n

p or s = 1 + n
p and q ≤ 1 in B-case (p ≤ 1 in F-case). Let 1 ≤ p1 < ∞ be a

real number such that (14)–(15) are satisfied if 1 < p1 < ∞. We put θ := n + p1(s − n
p ). Then it holds ˙̃As

p,q ↪→ L
p1,θ.

Proof. Using Corollary 2.9, it is the same preceding proof.

In this sense, we can use the different properties of Lp,θ as Lp,n = BMO (1 ≤ p < ∞), ..etc, see [25].
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[8] G. Bourdaud, Ce qu’il faut savoir sur les espaces de Besov, Preprint, Paris, 2009.
[9] G. Bourdaud, Realizations of homogeneous Sobolev spaces, Complex Var. Elliptic Equ. 56 (2011), 857–874.

[10] G. Bourdaud, Realizations of homogeneous Besov and Lizorkin-Triebel spaces, Math. Nachr. 286 (2013), 476–491.
[11] G. Bourdaud, M. Moussai, W. Sickel, Composition operators in Lizorkin-Triebel spaces, J. Funct. Anal. 259 (2010), 1098–1128.
[12] L. Brandolese, Application of the realization of homogeneous Sobolev spaces to Navier-Stokes, SIAM J. Math. Anal. 37 (2005), 673–683.
[13] C. Fefferman, E.M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137–193.
[14] M. Frazier, B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), 34–170.
[15] L. Grafakos, Modern Fourier analysis, Springer, New York, 2009.
[16] B. Jawerth, Some observations on Besov and Lizorkin-Triebel spaces, Math. Scand. 40 (1977), 94–104.
[17] F. John, L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426.
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