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Abstract. One of the most fundamental problems in numerical mathematics is the estimation of the zeros
of a polynomial. This kind of study for polynomials and regular functions of a quaternionic variable has
been carried out by many authors in the recent past. In this paper, we build a framework that uses the
zero sets of a regular product and the extended Schwarz’s lemma to deduce zero inclusion regions of
polynomials and regular functions with quaternionic coefficients located on only one side of the powers of
the quaternionic variable. The results obtained for this particular subclass of regular functions lead to the
generalisation of other results that are known in the relevant literature.

1. Introduction and preliminaries

It is a topic of interest in mathematics as well as in practical domains like physical systems to investigate
polynomial zeros and their regional location in the plane using different methods from geometric function
theory. A significant portion of the classical content in geometric function theory consists of various
methods for finding bounds for the zeros of a polynomial. These techniques are equally significant for
developing strategies for using various approaches in contemporary articles. A significant amount of
research has been done on the regions that include all the zeros of a polynomial; these regions are typically
circular or annular. Eneström and Kakeya [14] were the first to contribute in this direction. They gave a
classical solution to the problem when the coefficients of a polynomial are constrained. Following that,
several related studies giving the distribution of the zeros of a restricted coefficient polynomial in the plane
occurred in the literature, a good overview of which can be found in the comprehensive books of Marden
[14] and Milovanović et al. [18].

ByH, we denote the noncommutative division ring of quaternions. It consists of elements of the form
q = x0 + x1i + x2j + x3k, where x0, x1, x2, x3 ∈ R and the imaginary units i, j, k satisfy

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.
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Every element q = x0 + x1i + x2j + x3k ∈H is composed by the real part Re(q) = x0 and the imaginary part
Im(q) = x1i + x2j + x3k.

The conjugate of q is denoted by q and is defined as q = x0 − x1i − x2j − x3k and the norm of q is

|q| =
√

qq =
√

x2
0 + x2

1 + x2
2 + x2

3. The inverse of each non zero element q ∈H is given by q−1 = |q|−2q.
For r > 0, we define the ball B(0, r) = {q ∈H; |q| < r}. By Bwe denote the open unit ball inH centered at

the origin, i.e.,

B =
{
q = x0 + x1i + x2j + x3k : x2

0 + x2
1 + x2

2 + x2
3 < 1

}
,

and by S the unit sphere of purely imaginary quaternions, i.e.,

S =
{
q = x1i + x2j + x3k : x2

1 + x2
2 + x2

3 = 1
}
.

The angle between two quaternions q1 = x0 + x1i + x2j + x3k and q2 = y0 + y1i + y2j + y3k is given by

∡(q1, q2) = cos−1

(
x0y0 + x1y1 + x2y2 + x3y3

|q1||q2|

)
.

Notice that if I ∈ S, then I2 = −1. Thus, for any fixed I ∈ S, we define

CI = {x + Iy : x, y ∈ R},

which can be identified with a complex plane. The real axis belongs CI for every I ∈ S and so a real
quaternion q = x0 belongs to CI for any I ∈ S. For any non-real quaternion q ∈ H \ R, there exist, and are
unique x, y ∈ R with y > 0 and I ∈ S such that q = x + Iy.

We refer the reader to [3], [5], [7]–[9], [13] and the reference therein, for definitions and properties of
quaternions and many aspects of the theory of quaternionic regular functions.

The following definition of regularity for functions of a quaternionic variable was introduced in [8] by
Gentili and Struppa, who were inspired by a work of Cullen [4] on analytic intrinsic functions of quaternions:

Definition 1.1. Let U be an open set in H. A real differentiable function f : U → H is said to be left slice
regular or simply as slice regular if, for every I ∈ S, its restriction fI of f to the complex plane CI satisfies

∂I f (x + Iy) :=
1
2

(
∂
∂x
+ I

∂
∂y

)
fI(x + Iy) = 0.

Since for all n ≥ 1 and for all I ∈ S, we have

1
2

(
∂
∂x
+ I

∂
∂y

)
(x + Iy)n = 0,

it follows by definition that the monomial P(q) = qn is regular. Because addition and right multiplication
by a constant preserves regularity, all polynomials of the form

T(q) =
n∑
ν=0

qνaν, aν ∈H, ν = 0, 1, 2, . . . ,n, (1)

with coefficients on the right and indeterminate on the left are regular.
Given two quaternionic power series f (q) =

∑
∞

ν=0 qνaν and 1(q) =
∑
∞

ν=0 qνbν with radii of convergence
greater than R, we define the regular product of f and 1 as the series

( f ∗ 1)(q) :=
∞∑
ν=0

qνcν,
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where cν =
∑ν

k=0 akbν−k for all ν. Further, as observed in [5] and [8] for each quaternionic power series
f (q) =

∑
∞

ν=0 qνaν, there exists a ball

B(0,R) =
{
q ∈H : |q| < R

}
,

such that f converges absolutely and uniformly on each compact subset of B(0,R) and where the sum
function of f is regular.

Polynomials with quaternionic coefficients located on only one side of the variable were also investigated
in [10] and [11]. It is observed (e.g., see [5], [10]) that the zeros of a polynomial of type (1) are either isolated
or spherical. This theory of quaternions is by now very well developed in many directions, and we refer
the interested reader to [26] for the basic features of quaternionic functions. Nowadays, quaternions are
not only part of contemporary mathematical studies such as algebra, analysis, geometry, etc., but they are
also widely used in computer graphics, control theory, signal processing, physics, and fluid dynamics.

By using some useful tools from the theory of slice regular functions, Gentili and Stoppato [9, Theorem
3.2] (see also [7]) gave a necessary and sufficient condition for a regular quaternionic power series to have
a zero at a point in the form of the following result:

Theorem 1.1. Let f (q) =
∑
∞

ν=0 qνaν be a given quaternionic power series with radius of convergence R, and let
p ∈ B(0,R). Then f (p) = 0 if and only if there exists a quaternionic power series 1(q) with radius of convergence R
such that

f (q) = (q − p) ∗ 1(q).

This extends to quaterniomic power series, the theory presented in [13] for polynomials. The following
result which completely describes the zero sets of a regular product of two polynomials in terms of the zero
sets of the two factors is given in [13] (see also [7] and [9]).

Theorem 1.2. For two quaternionic polynomials f and 1, their regular product ( f ∗q)(q0) = 0 if and only if f (q0) = 0
or f (q0) , 0 implies 1

(
f (q0)−1q0 f (q0)

)
= 0.

Gentili and Struppa [8] introduced a maximum modulus theorem for regular functions, which includes
convergent power series and polynomials in the form of the following result.

Theorem 1.3 (Maximum Modulus Theorem). Let B = B(0, r) be a ball inH with centre 0 and radius r > 0, and
let f : B→H be a regular function. If | f | has a relative maximum at a point a ∈ B, then f is a constant on B.

Recently, Gardner and Taylor [6] used Theorem 1.3 and extended Schwarz’s lemma from the complex
to the quaternionic setting as follows:

Theorem 1.4. Let f (q) =
∑
∞

ν=0 qνaν be regular in |q| ≤ R, where the coefficients aν, 0 ≤ ν < ∞ and variable q
are quaternions. Suppose f (0) = 0, then

| f (q)| ≤
M|q|

R
for |q| ≤ R,

where M = max
|q|=R
| f (q)|.

It is noteworthy that Niven provided the Fundamental Theorem of Algebra (see [23], [24]) for regular
polynomials with coefficients in H from an algebraic perspective. As a result, all polynomial zeros were
identified in terms of their factorization, for reference see [25]. Thus it became an interesting perspective to
think about the regions containing all the zeros of a regular polynomial of quaternionic variable. Recently,
there has been a lot of activity in the study of mathematical objects related to regular functions of a
quaternionic variable and zero bounds of polynomials; there are many research papers published in this
regard, and different approaches have been taken for different purposes. Most of these recent works deal
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with the generalizations and extensions of the zero bounds of polynomials with restricted quaternionic
coefficients, including various generalizations of the Eneström-Kakeya theorem. To mention here some of
them, we refer the interested reader to [2], [6], [15], [16], [17], [20], [22], [27].

This paper aims to establish zero-inclusion regions for a polynomial of type (1) and zero-free regions for
some special regular functions of a quaternionic variable with restricted coefficients. The obtained results
also lead to several generalizations of various findings from the relevant literature in complex cases.

2. Main results

We first construct a ring-shaped region containing all the zeros of a quaternionic polynomial with
coefficients located on only one side of the variable, using the zero sets of a regular product and the
extended Schwarz’s lemma.

Theorem 2.1. Let T(q) =
∑n
ν=0 qνaν be a polynomial of degree n with quaternionic coefficients aν, ν = 0, 1, 2, . . . ,n.

If t1 > t2 ≥ 0 can be found such that

max
|q|=ϱ

∣∣∣∣∣∣∣
n+1∑
ν=0

qn−ν+2(t1t2aν + (t1 − t2)aν−1 − aν−2)

∣∣∣∣∣∣∣ ≤M1, (2)

and

max
|q|=ϱ

∣∣∣∣∣∣∣
n+2∑
ν=1

qν(t1t2aν + (t1 − t2)aν−1 − aν−2)

∣∣∣∣∣∣∣ ≤M2, (3)

for some ϱ > 0 (a−2 = a−1 = an+1 = an+2 = 0), then all the zeros of T(q) lie in the ring

min
(

t1t2|a0|ϱ

M2
, ϱ

)
≤ |q| ≤ max

(
M1

ϱ|an|
,

1
ϱ

)
.

Remark 2.1. Let T(q) =
∑n
ν=0 qνaν be a polynomial of degree n (where q is a quaternionic variable) with non

negative real coefficients. If for some real numbers t1 and t2 with t1 > t2 ≥ 0,

t1t2aν + (t1 − t2)aν−1 − aν−2 ≥ 0, ν = 1, 2, . . . ,n + 1 (a−1 = an+1 = 0),

then from (2) for |q| = ρ = 1/t1, we get∣∣∣∣∣∣∣
n+1∑
ν=0

qn−ν+2(t1t2aν + (t1 − t2)aν−1 − aν−2)

∣∣∣∣∣∣∣
≤

n+1∑
ν=0

(t1t2aν + (t1 − t2)aν−1 − aν−2)
1

tn−ν+2
1

= an =M1 (say),

and, therefore, from Theorem 2.1, we conclude that all the zeros of T(q) lie in

|q| ≤ max
(

M1

ϱ|an|
,

1
ϱ

)
=

1
ϱ
= t1.

which is an earlier result given by Mir and Ahmad [22, Theorem 2.2].

Using Theorem 2.1 we can prove a very general result, which includes several extensions of the well-
known Eneström-Kakeya Theorem in quaternionic setting.
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Theorem 2.2. Let T(q) =
∑n
ν=0 qνaν be a polynomial of degree n with quaternionic coefficients aν, ν = 0, 1, 2, . . . ,n.

If t1 > t2 ≥ 0 can be found such that

max
|q|=ϱ

∣∣∣∣∣∣∣
n+1∑
ν=0

qn−ν+1
[
t1t2aν + (t1 − t2)aν−1 − aν−2

]∣∣∣∣∣∣∣ ≤M3, (4)

and

max
|q|=ϱ

∣∣∣∣∣∣∣
n+2∑
ν=1

qν−1
[
t1t2aν + (t1 − t2)aν−1 − aν−2

]∣∣∣∣∣∣∣ ≤M4, (5)

for some ϱ > 0 (a−2 = a−1 = an+2 = an+1 = 0), then all the zeros of T(q) lie in the ring

min
(

t1t2|a0|ϱ

M4
, ϱ

)
≤ |q| ≤ max

(
M3

|an|
,

1
ϱ

)
.

We now discuss some consequences of Theorem 2.2. Taking t2 = 0, we get the following result as a
special case of Theorem 2.2.

Corollary 2.1. Let T(q) =
∑n
ν=0 qνaν be a polynomial of degree n with quaternionic coefficients aν, ν = 0, 1, 2, . . . ,n.

If for some positive t and ϱ, we have

max
|q|=ϱ

∣∣∣qnta0 + qn−1(ta1 − a0) + · · · + (tan − an−1)
∣∣∣ ≤M,

then all the zeros of T(q) lie in

|q| ≤ max
(

M
|an|

,
1
ϱ

)
. (6)

Remark 2.2. If T(q) =
∑n
ν=0 qνaν is a polynomial of degree n (where q is a quaternionic variable) with real

coefficients and satisfying

tnan ≤ tn−1an−1 ≤ · · · ≤ tλ+1aλ+1 ≤ tλaλ ≥ tλ−1aλ−1 ≥ · · · ≥ ta1 ≥ a0,

where 0 ≤ λ ≤ n and t > 0. Then for ϱ = 1/t, we get from (6) with a−1 = 0, that

max
|q|= 1

t

∣∣∣∣∣∣∣
n∑
ν=0

qn−ν(taν − aν−1)

∣∣∣∣∣∣∣ ≤
n∑
ν=0

|taν − aν−1|

tn−ν =M (say).

Further note that

1
ϱ
= t =

∣∣∣∣∣∣∣
n∑
ν=0

taν − aν−1

antn−ν

∣∣∣∣∣∣∣ ≤
n∑
ν=0

|taν − aν−1|

|an|tn−ν =
M
|an|

.

It follows from Corollary 2.1, that all the zeros of T(q) lie in

|q| ≤
n∑
ν=0

|taν − aν−1|

|an|tn−ν . (7)

Now,

n∑
ν=0

|taν − aν−1|

|an|tn−ν =

λ∑
ν=0

taν − aν−1

|an|tn−ν +

n∑
ν=λ+1

aν−1 − tav

|an|tn−ν

=
t
|an|

{ (
2tλaλ

tn − an

)
+

1
tn (|a0| − a0)

}
.
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Thus, from (7), it follows that all the zeros of T(q) lie in

|q| ≤
t
|an|

{(2tλaλ
tn − an

)
+

1
tn

(
|a0| − a0

)}
,

which for λ = n, gives the following generalization of a result of Tripathi [27].

Corollary 2.2. Let T(q) =
∑n
ν=0 qνaν be a polynomial of degree n (where q is a quaternionic variable) with real

coefficients and satisfying

tnan ≥ tn−1an−1 ≥ · · · ≥ ta1 ≥ a0, (8)

for some t > 0. Then all the zeros of T(q) lie in

|q| ≤
tnan + |a0| − a0

tn−1|an|
.

Remark 2.3. The above Corollary 2.2 extends a result of Joyal et al. [12] from complex to the quaternionic
setting when t = 1. For t = 1, Corollary 2.2 reduces to a result of Tripathi [27] (see also [19, 21]). If, in
addition to t = 1, we assume a0 > 0 in Corollary 2.2, we recover a recent result obtained by Carney et al. [2,
Theorem 8].

If we apply Remark 2.2 with t = 1 and λ = 0 to the polynomial qn
∗ T

(
1/q

)
, we get the following result:

Corollary 2.3. Let T(q) =
∑n
ν=0 qνaν be a polynomial of degree n (where q is a quaternionic variable) with real

coefficients and satisfying

an ≥ an−1 ≥ · · · ≥ a1 ≥ a0 > 0,

then T(q) does not vanish in

|q| <
a0

2an − a0
.

It is of interest to construct a framework to establish bounds for the zeros of a quaternionic polynomial
when the monotonicity of the moduli of its quaternionic coefficients gets flipped at some stage between the
first and last coefficients. In this direction, we derive a region consisting of a non-central disc that contains
all the zeros of a polynomial with quaternionic coefficients.

Theorem 2.3. Let T(q) =
∑n
ν=0 qνaν be a polynomial of degree n with quaternionic coefficients aν, ν = 0, 1, 2, . . . ,n,

and satisfying

ϱ|an| ≥ |an−1| ≥ · · · ≥ |aλ| ≤ |aλ−1| ≤ · · · ≤ |a1| ≤ |a0|

for some ϱ ≥ 1 and 0 ≤ λ ≤ n − 1. Let b be any non-zero quaternion such that ∡(aν, b) ≤ θ ≤ π/2 for some θ and for
ν = 0, 1, 2, . . . ,n. Then all the zeros of T(q) lie in

|q + ϱ − 1| ≤ ϱ(cosθ + sinθ) +
2
|an|

{(
|a0| − |aλ|

)
cosθ + sinθ

n−1∑
ν=0

|aν|
}
.

Remark 2.4. Taking ϱ = 1 and λ = 0 in Theorem 2.3, we recover a result of Carney et al. [2, Theorem 10].

Remark 2.5. The essence of Theorem 2.3 lies in its flexibility. It is applicable to a larger class of polynomials
of a quaternionic variable and weakens the hypothesis of various known results. For example, in the
following cases: a) the monotonic condition of the moduli of the quaternionic coefficients gets flipped at
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some stage in between the first and last components; b) the monotonic requirement is not met by the moduli
of the first two coefficients.

The zero inclusion regions, which are discs centred at the origin, cannot be obtained in these situations by
using the result of Carney et al. [2, Theorem 11]. We have constructed a framework to derive generalizations
of the aforementioned result of Carney et al. and establish zero inclusion regions consisting of discs that
are not centred at the origin. This framework unifies and simplifies the derivation of these generalizations,
obtaining new as well as old results in this process.

Finally, we construct a zero-free region in the form of a disc for the relevant sub class of power series
regular in the ball B(0,R), where R > 0. In this direction, we prove the following result which as a
consequence gives the quaternionic analogue of a result due to Aziz and Mohammad [1].

Theorem 2.4. Let f (q) =
∑
∞

ν=0 qνaν be a regular power series in the quaternionic variable q, i.e., f (q) =
∑
∞

ν=0 qνaν
for all q ∈ B(0,R), with complex coefficients such that Re(aν) = αν, Im(aν) = βν for ν = 0, 1, 2, . . . . If for some
non-negative real numbers ϱ1 and ϱ2, we have

ϱ1 + α0 ≥ tα1 ≥ t2α2 ≥ · · · (α0 > 0)

and

ϱ2 + β0 ≥ tβ1 ≥ t2β2 ≥ · · · (β0 ≥ 0),

where 0 < t < R, then f (q) does not vanish in

|q| <
t
√
α2

0 + β
2
0

2(ϱ1 + ϱ2) + (α0 + β0)
.

Taking ϱ1 = (τ1 − 1)α0 and ϱ2 = (τ2 − 1)β0, with τ1 ≥ 1 and τ2 ≥ 1 in Theorem 2.4, we get the following
result:

Corollary 2.4. Let f (q) =
∑
∞

ν=0 qνaν be a regular power series in the quaternionic variable q, i.e., f (q) =
∑
∞

ν=0 qνaν,
for all q ∈ B(0,R) with complex coefficients such that Re(aν) = αν, Im(aν) = βν for ν = 0, 1, 2, . . .. If for some τ1 ≥ 1
and τ2 ≥ 1, we have

0 < τ1α0 ≥ tα1 ≥ t2α2 ≥ · · · and 0 ≤ τ2β0 ≥ tβ1 ≥ t2β2 ≥ · · · ,

where 0 < t < R, then f (q) does not vanish in

|q| <
t
√
α2

0 + β
2
0

(2τ1 − 1)α0 + (2τ2 − 1)β0
.

Remark 2.6. Taking βν = 0 for ν = 0, 1, 2, . . . , and τ1 = 1 in Corollary 2.4, we get the quaternionic analogue
of a result due to Aziz and Mohammad [1].

Corollary 2.4 provides a range of zero-free regions for power series of a quaternionic variable when
the parameters are appropriately chosen. Using τ1 = τ2 = 1 in Corollary 2.4 and noting that α0 + β0 ≤√

2(α2
0 + β

2
0), we get the following result:

Corollary 2.5. Let f (q) =
∑
∞

ν=0 qνaν be a regular power series in the quaternionic variable q, i.e., f (q) =
∑
∞

ν=0 qνaν
for all q ∈ B(0,R), with complex coefficients such that Re(aν) = αν, Im(aν) = βν for ν = 0, 1, 2, . . . . If for 0 < t < R,
we have

0 < α0 ≥ tα1 ≥ t2α2 ≥ · · · and 0 ≤ β0 ≥ tβ1 ≥ t2β2 ≥ · · · ,

then f (q) does not vanish in

|q| <
t
√

2
.
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3. Proofs of the main results

Proof of Theorem 2.1. Consider the product

F(q) = (t1 − q) ∗ (t2 + q) ∗ T(q)

= (t1t2 + q(t1 − t2) − q2) ∗ (a0 + qa1 + q2a2 + · · · + qnan)

= t1t2a0 + q[t1t2a1 + (t1 − t2)a0] + q2[t1t2a2 + (t1 − t2)a1 − a0] + · · ·

+ qn[t1t2an + (t1 − t2)an−1 − an−2] + qn+1[(t1 − t2)an − an−1]

− qn+2an. (9)

Let G(q) = qn+2
∗ F

(
1/q

)
= −an + P(q), so that

|G(q)| ≥ |an| − |P(q)|, (10)

where

P(q) = q[(t1 − t2)an − an−1] + q2[t1t2an + (t1 − t2)an−1 − an−2] + · · ·

+ qn[t1t2a2 + (t1 − t2)a1 − a0] + qn+1[t1t2a1 + (t1 − t2)a0] + qn+2t1t2a0.

Clearly, P(0) = 0 and by (2), |P(q)| ≤M1 for |q| = ϱ. Therefore, it follows by Theorem 1.4, that

|P(q)| ≤
M1|q|
ϱ

for |q| ≤ ϱ,

which on using in (10), gives

|G(q)| ≥ |an| −
M1|q|
ϱ

, for |q| ≤ ϱ.

Hence, if |q| < min
(
ϱ|an|/M1, ϱ

)
, then G(q) , 0. In other words, all the zeros of G(q) lie in

|q| ≥ min
(
ϱ|an|

M1
, ϱ

)
.

As F(q) = qn+2
∗ G

(
1/q

)
, it follows that all the zeros of F(q) lie in

|q| ≤ max
(

M1

ϱ|an|
,

1
ϱ

)
.

Since by Theorem 1.1, the only zeros of F(q) = (t1 − q) ∗ (t2 + q) ∗ T(q) are q = t1, q = −t2 and the zeros of T(q),
it follows that all the zeros of T(q) lie in

|q| ≤ max
(

M1

ϱ|an|
,

1
ϱ

)
. (11)

Again, from (9), we have

|F(q)| ≥ t1t2|a0| − |H(q)|, (12)

where

|H(q)| = − qn+2an + qn+1
[
(t1 − t2)an − an−1

]
+ qn

[
t1t2an + (t1 − t2)an−1 − an−2

]
+ · · · + q

[
t1t2a1 + (t1 − t2)a0

]
.
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Clearly H(0) = 0 and by (3), H(q) ≤M2 for |q| ≤ ϱ. Therefore, it follows by Theorem 1.4, that

|H(q)| ≤
M2|q|
ϱ

for |q| ≤ ϱ,

which on using in (12) gives

|F(q)| ≥ t1t2|a0| −
M2|q|
ϱ

for |q| ≤ ϱ.

Hence, if |q| < min
(
t1t2|a0|ϱ/M2, ϱ

)
, then F(q) , 0. In other words, all the zeros of F(q) lie in

|q| ≥ min
(

t1t2|a0|ϱ

M2
, ϱ

)
.

By Theorem 1.1, the only zeros of F(q) = (t1 − q) ∗ (t2 + q) ∗ T(q) are q = t1, q = −t2 and the zeros of T(q), we
conclude that all the zeros of T(q) lie in

|q| ≥ min
(

t1t2|a0|ϱ

M2
, ϱ

)
. (13)

The desired result follows by combining (11) and (13).

Proof of Theorem 2.2. From (2) and (4), we have

max
|q|=ϱ

∣∣∣∣∣∣∣
n+1∑
ν=0

qn−ν+2(t1t2aν + (t1 − t2)aν−1 − aν−2)

∣∣∣∣∣∣∣
= ϱmax

|q|=ϱ

∣∣∣∣∣∣∣
n+1∑
ν=0

qn−ν+1(t1t2aν + (t1 − t2)aν−1 − aν−2)

∣∣∣∣∣∣∣
≤ ϱM3 =M1 (say).

It follows from Theorem 2.1, by replacing M1 by ϱM3, that all the zeros of T(q) lie in

|q| ≤ max
(

M3

|an|
,

1
ϱ

)
. (14)

Next, we have from (3) and (5), that

max
|q|=ϱ

∣∣∣∣∣∣∣
n+2∑
ν=1

qν(t1t2aν + (t1 − t2)aν−1 − aν−2)

∣∣∣∣∣∣∣
= ϱmax

|q|=ϱ

∣∣∣∣∣∣∣
n+2∑
ν=1

qν−1(t1t2aν + (t1 − t2)aν−1 − aν−2)

∣∣∣∣∣∣∣
≤ ϱM4 =M2 (say).

It again follows from Theorem 2.1, by replacing M2 by ϱM4, that all the zeros of T(q) lie in

|q| ≥ min
( t1t2|a0|

M4
, ϱ

)
. (15)

The desired result follows by combining (14) and (15).
This completes the proof of Theorem 2.2.

In the proof of Theorem 2.3, we need the following auxiliary result due to Carney et al. [2, Lemma 12].
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Lemma 3.1. Let q1, q2 ∈ H, where q1 = α1 + β1i + γ1j + δ1k and q2 = α2 + β2i + γ2j + δ2k, ∡(q1, q2) ≤ 2θ and
|q1| ≤ |q2|. Then

|q2 − q1| ≤ (|q2| − |q1|) cosθ + (|q2| + |q1|) sinθ.

Proof of Theorem 2.3. Consider the polynomial

(1 − q) ∗ T(q) = −qn+1an + qn(an − an−1) + · · · + q(a1 − a0) + a0

= −qn(q + ϱ − 1)an + ψ(q),

where

ψ(q) = qn(ϱan − an−1) + qn−1(an−1 − an−2) + · · · + q(a1 − a0) + a0.

For |q| = 1, we get on using the given hypothesis and Lemma 3.1, that

|ψ(q)| =

∣∣∣∣∣∣∣qn(ϱan − an−1) +
n−1∑
ν=1

qν(aν − aν−1) + a0

∣∣∣∣∣∣∣
≤ (ϱ|an| − |an−1|) cosθ + (ϱ|an| + |an−1|) sinθ

+

n−1∑
ν=1

{∣∣∣|aν| − |aν−1|
∣∣∣ cosθ + (|aν| + |aν−1|) sinθ

}
+ |a0|

= (ϱ|an| − |an−1|) cosθ + (ϱ|an| + |an−1|) sinθ +
λ∑
ν=1

(|aν−1| − |aν|) cosθ

+

n−1∑
ν=λ+1

(|aν| − |aν−1|) cosθ +
n−1∑
ν=1

(|aν| + |aν−1|) sinθ + |a0|

= |a0|(1 − cosθ − sinθ) + 2(|a0| − |aλ|) cosθ + 2 sinθ
n−1∑
ν=0

|aν|

+ ϱ|an|(cosθ + sinθ),

i.e.,

|ψ(q)| ≤ 2(|a0| − |aλ|) cosθ + 2 sinθ
n−1∑
ν=0

|aν| + ϱ|an|(cosθ + sinθ),

since θ ∈ [0, π/2]. Notice that, we have

max
|q|=1

∣∣∣∣∣∣qn
∗ ψ

(
1
q

)∣∣∣∣∣∣ = max
|q|=1

∣∣∣∣∣∣qnψ

(
1
q

)∣∣∣∣∣∣ = max
|q|=1

∣∣∣∣∣∣ψ
(

1
q

)∣∣∣∣∣∣ = max
|q|=1

∣∣∣ψ(q)
∣∣∣ ,

it is clear that qn
∗ ψ

(
1/q

)
has the same bound on |q| = 1 as ψ, that is∣∣∣∣∣∣qn

∗ ψ

(
1
q

)∣∣∣∣∣∣ =
∣∣∣∣∣∣qnψ

(
1
q

)∣∣∣∣∣∣
≤ 2(|a0| − |aλ|) cosθ + 2 sinθ

n−1∑
ν=0

|aν| + ϱ|an|(cosθ + sinθ) for |q| = 1.



G. V. Milovanović, A. Mir / Filomat 38:13 (2024), 4791–4804 4801

Since qn
∗ ψ

(
1/q

)
is a polynomial and so is regular in |q| ≤ 1, it follows by Theorem 1.3, that∣∣∣∣∣∣qnψ

(
1
q

)∣∣∣∣∣∣ ≤ 2(|a0| − |aλ|) cosθ + 2 sinθ
n−1∑
ν=0

|aν| + ϱ|an|(cosθ + sinθ)

for |q| ≤ 1. Hence,∣∣∣∣∣∣ψ
(

1
q

)∣∣∣∣∣∣ ≤ 1
|q|n

{
2(|a0| − |aλ|) cosθ + 2 sinθ

n−1∑
ν=0

|aν| + ϱ|an|(cosθ + sinθ)
}

for |q| ≤ 1. Equivalently, for |q| ≥ 1, we have

∣∣∣ψ(q)
∣∣∣ ≤ {

2(|a0| − |aλ|) cosθ + 2 sinθ
n−1∑
ν=0

|aν| + ϱ|an|(cosθ + sinθ)
}
|q|n. (16)

For |q| ≥ 1, we get on using (16), that∣∣∣(1 − q) ∗ T(q)
∣∣∣ = ∣∣∣ψ(q) − qn(q + ϱ − 1)an

∣∣∣
≥ |q|n|an|q + ϱ − 1| − |ψ(q)|

≥ |q|n|an|

[
|q + ϱ − 1| −

1
|an|

[
2(|a0| − |aλ|) cosθ + 2 sinθ

n−1∑
ν=0

|aν|
]

+ ϱ(cosθ + sinθ)
}
.

Hence, if

∣∣∣q + ϱ − 1
∣∣∣ > 2
|an|

[
(|a0| − |aλ|) cosθ + sinθ

n−1∑
ν=0

|aν|
]
+ ϱ(cosθ + sinθ),

then |(1 − q) ∗ T(q)| > 0, that is (1 − q) ∗ T(q) , 0. Further, notice that

∣∣∣q + ϱ − 1
∣∣∣ > 2
|an|

[
(|a0| − |aλ|) cosθ + sinθ

n−1∑
ν=0

|aν|
]
+ ϱ(cosθ + sinθ),

implies that |q| > 1, since θ ∈ [0, π/2].
By Theorem 1.2, the only zeros of (1 − q) ∗ T(q) = 0 are q = 1 and the zeros of T(q), therefore T(q) , 0 for

∣∣∣q + ϱ − 1
∣∣∣ > 2
|an|

[
(|a0| − |aλ|) cosθ + sinθ

n−1∑
ν=0

|aν|
]
+ ϱ(cosθ + sinθ).

In other words, all the zeros of T(q) lie in

∣∣∣q + ϱ − 1
∣∣∣ ≤ 2
|an|

[
(|a0| − |aλ|) cosθ + sinθ

n−1∑
ν=0

|aν|
]
+ ϱ(cosθ + sinθ).

This completes the proof of Theorem 2.3.
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Proof of Theorem 2.4. Consider the power series

F(q) = (t − q) ∗ f (q) = (t − q) ∗ (a0 + qa1 + q2a2 + · · · )

= ta0 − q
∞∑
ν=1

qν−1(aν−1 − taν),

= ta0 + q(ϱ1 + iϱ2) − q
[
(ϱ1 + α0 − tα1) + i(ϱ2 + β0 − tβ1)

+

∞∑
ν=2

qν−1
{
(αν−1 − tαν) + i(βν−1 − tβν)

}]
= ta0 + q(ϱ1 + iϱ2) − ψ(q),

where

ψ(q) = q
{
(ϱ1 + α0 − tα1) + i(ϱ2 + β0 − tβ1) +

∞∑
ν=2

qν−1
[
(αν−1 − tαν) + i(βν−1 − tβν)

]}
.

Since the series f is absolutely convergent in B(0,R) and 0 < t < R, the series F is also convergent. For |q| = t,
we get on using the given hypothesis, that

|ψ(q)| ≤ t
[
|(ϱ1 + α0 − tα1) + i(ϱ2 + β0 − tβ1)|

+

∞∑
ν=2

tν−1
|(αν−1 − tαν) + i(βν−1 − tβν)|

]
≤ t

[
|(ϱ1 + α0 − tα1) + (ϱ2 + β0 − tβ1)|

+

∞∑
ν=2

tν−1
|(αν−1 − tαν) + (βν−1 − tβν)|

]
= t(ϱ1 + α0 + ϱ2 + β0).

Since ψ(0) = 0 and ψ(q) is regular in |q| ≤ t, it follows by Theorem 1.4, that

|ψ(q)| ≤ (ϱ1 + α0 + ϱ2 + β0)|q| for |q| ≤ t.

This implies

|F(q)| = |ta0 + q(ϱ1 + iϱ2) − ψ(q)|
≥ |ta0 + q(ϱ1 + iϱ2)| − |ψ(q)|
≥ t|a0| − (ϱ1 + ϱ2)|q| − (ϱ1 + α0 + ϱ2 + β0)|q| for |q| ≤ t.

Hence, if

|q| < min
(

t|a0|

2(ϱ1 + ϱ2) + α0 + β0
, t
)
,

then F(q) , 0. In other words, all the zeros of F(q) lie in

|q| ≥ min
(

t|a0|

2(ϱ1 + ϱ2) + α0 + β0
, t
)
. (17)
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Since α0 > 0 and β0 ≥ 0, it is easy to see that

t|a0|

2(ϱ1 + ϱ2) + α0 + β0
≤ t,

which on using in (17), implies that F(q) does not vanish in

|q| <
t|a0|

2(ϱ1 + ϱ2) + α0 + β0
. (18)

By Theorem 1.1, the only zeros of F(q) are q = t and the zeros of f (q), it follows that f (q) does not vanish in
the disc defined by (18).

This completes the proof of Theorem 2.4.

4. Conclusion

The classical and fundamental approaches dealing with the regional location of zeros in regular functions
have their own intrinsic value in geometric function theory. They play an equally significant role in
contemporary studies that address these kinds of issues. In this paper, we study the properties of zeros of
quaternionic polynomials and regular functions with coefficients located on only one side of the quaternionic
variable. We obtain zero free regions for this subclass of regular functions and extend some important results
for polynomials in the quaternionic variable to the case of power series.
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[11] D. Janovská, G. Opfer, The classification and the computation of the zeros of quaternionic two-sided polynomials, Numer. Math.
115 (2010) 81–100.

[12] A. Joyal, G. Labelle, Q.I. Rahman, On the location of zeros polynomials, Canad. Math. Bull.10 (1967) 53–63.
[13] T.Y. Lam, A First Course in Noncommutative Rings, Springer, New York, 1991.
[14] M. Marden, Geometry of Polynomials, Math. Surveys, vol. 3, 1966.
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