Filomat 38:13 (2024), 4485–4493 https://doi.org/10.2298/FIL2413485L

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Boundedness of derivatives and φ**-normal functions**

Banarsi Lala,[∗] **, Virender Singh^b**

^aDepartment of Mathematics, School of Sciences, Cluster University of Jammu, Jammu-180001, India ^bDepartment of Mathematics, University of Jammu, Jammu-180006, India

Abstract. The aim of this paper is to study the families of normal and φ -normal functions on the unit disk D, and to generalize some normal function criteria of Xu and Qiu [*An avoidance criterion for normal functions, C. R. Math 349(2011), 1159-1160*] and Yang [*A note on the avoidance criterion for normal functions, Anal. Math. Phys. 10, 35(2020)*] to the case where derivatives are bounded from above on zero sets.

1. Introduction and Main Results

For the sake of convenience we shall denote by M(*D*) the family of all functions meromorphic in a domain *D* in C. A subfamily $\mathcal F$ of $M(D)$ is said to be normal in *D*, in the sense of Montel, if every sequence of elements of $\mathcal F$ contains a subsequence which converges locally uniformly in *D* with respect to the spherical metric to a meromorphic function or ∞ . One of the key results of normal families is the Marty's theorem which says that a subfamily of $\mathcal F$ of $\mathcal M(D)$ is normal in *D* if and only if the family $\{f^*: f \in \mathcal F\}$ of the corresponding spherical derivatives $f^{\#} := \frac{|f'|}{|f'|}$ $\frac{|\mathcal{V}|}{1+|f|^2}$ is locally bounded in *D*.

A meromorphic function *f* on unit disc D is said to be *normal* in D if and only if the family $\mathcal{F} := \{f \circ \tau :$ $\tau \in \mathcal{T}$ is normal in D, where $\mathcal T$ denotes the set of all conformal self maps of D.

The starting point for this paper is the following two results due to Y. Xu and H. Qiu [9]:

Theorem A *Let f be a meromorphic function in the unit disc* \mathbb{D} , ψ_1 , ψ_2 *and* ψ_3 *be three functions meromorphic in* D *and continuous on closure of* D *such that* $\psi_i \neq \psi_i$ ($1 \leq i \leq j \leq 3$) *on the unit circle* $|z| = 1$ *. If* $f(z) \neq \psi_i(z)$ (*i* = 1, 2, 3) *in* D, then *f is normal*.

Theorem B Let f be a meromorphic function in the unit disc \mathbb{D} , ψ_1 , ψ_2 and ψ_3 be three functions meromor*phic in* \Box *and continuous on closure of* \Box *such that* $\psi_i \neq \psi_j$ ($1 \leq i < j \leq 3$) *on the unit circle* $|z| = 1$ *, and let* l_1, l_2, l_3 *(possibly* +∞*) be three positive integers with* 1/*l*¹ + 1/*l*² + 1/*l*³ < 1*. If all the zeros of f*(*z*) − ψ*i*(*z*) *have multiplicity at least* l_i *for i* = 1, 2, 3 *in* \mathbb{D} *, then f is normal.*

Often a theorem which assuming that a function does not vanish or vanishes to sufficiently large multiplicities can be strengthened by assuming that whenever it vanishes, their derivatives are bounded

²⁰²⁰ *Mathematics Subject Classification*. Primary 30D45; Secondary 30D35.

Keywords. Normal function, φ-normal function, Normal family, Spherical derivative, Nevanlinna theory .

Received: 04 July 2022; Revised: 04 November 2023; Accepted: 30 December 2023

Communicated by Miodrag Mateljevic´

^{*}Corresponding author: Banarsi Lal

Email addresses: banarsiverma644@gmail.com (Banarsi Lal), virendersingh2323@gmail.com (Virender Singh)

from above on zero sets. Here, in this paper we prove the following criterion for a normal function under a boundedness condition of the derivatives and hence obtain a generalization of above-mentioned results of Xu and Qiu:

Theorem 1.1. *Let f be a meromorphic function in the unit disc* D *and let M* > 0 *be a constant. Assume that there are*

- 1. *positive integer* l_1, l_2, \cdots, l_q (possibly +∞) satisfying $\sum_{j=1}^q 1/l_j < q-2$,
- 2. *meromorphic functions* $\psi_1, \psi_2, \cdots, \psi_q$ *in* $\mathbb D$, continuous on closure of $\mathbb D$ such that $\psi_i(z) \neq \psi_j(z)$ $(1 \leq i < j \leq q)$ *on the unit circle* $|z| = 1$ *, and*
- 3. *sets* $A_f = \bigcup_{i=1}^{q}$ $f_{j=1}^q \{z \in \mathbb{D} : f(z) = \psi_j(z) \neq \infty\}$ and $B_f = \cup_j^q$ *j*=1 {*z* ∈ D : *f*(*z*) = ψ*j*(*z*) = ∞} *such that*

$$
|f^{(k)}(z)| \le M \text{ on } A_f \qquad , \qquad \left| \left(\frac{1}{f}\right)^{(k)}(z) \right| \le M \text{ on } B_f
$$

for all $k = 1, 2, \cdots, l_i - 1$.

Then f is normal in D*.*

One of the most important results characterizing normal functions in terms of their spherical derivatives was due to Lehto and Virtanen [4]. They modified Marty's criterion for a normal family to give a criterion for a function to be normal: *A necessary and su*ffi*cient condition for a meromorphic function f on unit disc* D *to be normal is*

$$
\sup_{z\in\mathbb{D}}(1-|z|^2)f^{\#}(z)<\infty.
$$

Clearly, if *f* is a normal function on \mathbb{D} , then there exist a constant C_f (depending on *f*) such that $(1 - |z|^2)f^{#}(z)$ < C_f for each $z \in \mathbb{D}$. Recently, L. Yang [10] improved Theorem A for the families of meromorphic functions and obtained a constant C that depends only on the three fixed omitted meromorphic functions. Precisely, he proved:

Theorem C *Let* ψ_1, ψ_2 *and* ψ_3 *be three functions meromorphic in the unit disc* **D** *and continuous on closure of* D such that $\psi_i \neq \psi_j$ ($1 \leq i < j \leq 3$) on the unit circle $|z| = 1$. Let F be a subfamily of $M(D)$ such that $f(z) \neq \psi_i(z)$ (*i* = 1, 2, 3) *in* D, for all $f \in \mathcal{F}$. Then there exists a constant C such that

$$
(1-|z|^2)f^{\#}(z) \leq C
$$

for each $z \in \mathbb{D}$ *and* $f \in \mathcal{F}$ *.*

Remark. It is worthwhile to mention the conclusion of Theorem C is nothing but the definition of uniformly normal family (see [6]). That is, if there is a constant *C* such that

$$
\sup_{z\in\mathbb{D}}(1-|z|^2)f^*(z)
$$

for each $z \in D$ and $f \in \mathcal{F}$, then $\mathcal F$ is uniformly normal family in D .

We prove the following improvement of Theorem C to the case where omitted functions are allowed to vary with the functions in family $\mathcal F$ and satisfy a condition on the spherical distance:

Theorem 1.2. *Let* $\mathcal F$ *be a subfamily of* $\mathcal M(D)$ *and* $\epsilon > 0$ *. Assume that for each* $f \in \mathcal F$ *there exists meromorphic* f *functions* a_f , b_f , c_f (possibly +∞) such that $f \neq a_f$, b_f , c_f in D and

$$
min\{\sigma(a_f(z), b_f(z)), \sigma(b_f(z), c_f(z)), \sigma(c_f(z), a_f(z))\} \ge \epsilon
$$

in $\mathbb D$, where σ denotes the spherical metric on extended complex plane $\overline{\mathbb C}$. Then $\mathcal F$ is uniformly normal family in $\mathbb D$.

Finally, we extend Theorem *C*forφ−normal functions, a concept that was an extension of normal function introduced by Aulaskari and Rattya [1] with the help of smoothly increasing function $\varphi : [0,1) \to (0,\infty)$ satisfying $\varphi(r)(1 - r) \rightarrow \infty$ as $r \rightarrow 1^{-}$, and

$$
\mathcal{R}_a(z) := \frac{\varphi(|a+z/\varphi(|a|))}{\varphi(|a|)} \to 1, \ \ |a| \to 1^-,
$$

uniformly on compact subsets of C. For such function φ , a meromorphic function f on unit disc D is said to be φ*-normal* if

$$
\sup_{z\in\mathbb{D}}\frac{f^{\#}(z)}{\varphi(|z|)}<\infty.
$$

Clearly, if F is a subfamily of $M(D)$ such that each function in F is a φ -normal function, then for each $f \in \mathcal{F}$, there exist a constant *C^f* such that sup *z*∈D $\frac{f^*(z)}{\varphi(|z|)} < C_f$ for each $z \in \mathbb{D}$. Now, we give the following definition:

Definition 1.3. Let $\mathcal F$ be a subfamily of $\mathcal M(\mathbb D)$. If there exist a constant C such that

$$
\sup_{z \in D} \frac{f^*(z)}{\varphi(|z|)} < C
$$

for each $z \in D$ *and* $f \in \mathcal{F}$ *, then* \mathcal{F} *is uniformly* φ *-normal family in* D *.*

Theorem 1.4. Let $\varphi : [0,1) \to (0,\infty)$ be a smoothly increasing function, $\mathcal F$ be a subfamily of $\mathcal M(\mathbb D)$ and let $M > 0$ *be a constant. Assume that there are*

- 1. *positive integer* l_1, l_2, \cdots, l_q (possibly +∞) satisfying $\sum_{j=1}^q 1/l_j < q-2$,
- $2.$ *meromorphic functions* ψ_{1f} , ψ_{2f} , \cdots , ψ_{qf} ($f \in \mathcal{F}$) in $\mathbb D$, positive constant ϵ such that $\sigma(\psi_{if}(z), \psi_{jf}(z)) \ge \epsilon$ (1 \le $i < j \le q$) for all $z \in D$, where σ denotes the spherical metric on extended complex plane \overline{C} , and

 $\overline{}$

f

I

3. *sets* $A_f = \bigcup_{i=1}^{q}$ $f_{j=1}^q \{z \in \mathbb{D} : f(z) = \psi_{jf}(z) \neq \infty\}$ and $B_f = \cup_j^q$ $f_{j=1}^q$ {*z* ∈ **D** : *f*(*z*) = ψ_{*jf*}(*z*) = ∞} *such that* $|f^{(k)}(z)| \leq M\varphi^k(|z|)$ *on* A_f , $\begin{array}{c} \hline \end{array}$ $\sqrt{1}$ $\setminus^{(k)}$ (*z*) $\begin{array}{c} \hline \end{array}$ $\leq M\varphi^{k}(|z|)$ *on* B_{f}

for all $k = 1, 2, \cdots, l_j - 1$ *.*

Then F *is uniformly* φ*-normal family in* D*.*

2. Proof of the Main Results

We assume that the reader is familiar with the basic notions used in Value distribution theory of meromorphic functions such as $T(r, f)$, $m(r, f)$, $N(r, f)$, $o(T(r, f))$ etc. For deeper insight one can refer to [3]. Further for the proof of our main results we require the following lemmas.

Lemma 2.1. *(Zalcman's Lemma)* [11] Let $\mathcal F$ be a subfamily of $\mathcal M(D)$. Then $\mathcal F$ is not normal in D if and only if there *exist*

- *a real number r:* $r < 1$ *.*
- *points* z_n *:* $|z_n| < r$,
- *positive numbers* ρ_n *:* $\rho_n \to 0$,

• *functions* $f_n \in \mathcal{F}$

such that

$$
g_n(\zeta) = f_n(z_n + \rho_n \zeta)
$$

converges locally uniformly with respect to the spherical metric to $q(\zeta)$ *, where* $q(\zeta)$ *is a non-constant meromorphic function on* C*.*

Lemma 2.2. *(Lohwater-Pommerenke Theorem)[5] A function f meromorphic in* D *is a normal function if and only* if there do not exist sequences $\{z_n\}$ and $\{\rho_n\}$ with $z_n \in \mathbb{D}$, and $\rho_n > 0$, $\rho_n \to 0$ such that $g_n(\zeta) = f(z_n + \rho_n \zeta)$ converges *uniformly on each compact subset of* C *to a function* 1(ζ*), where* 1(ζ) *is a non-constant meromorphic function.*

Lemma 2.3. *(Simultaneous rescaling version of Zalcman's Lemma) [2] Let p be a natural number and* $\mathcal{F} \subseteq (\mathcal{M}(\mathbb{D}))^p$. *Assume that there exist* $j_0 \in \{1, \cdots, p\}$ *such that the family* $\pi_{j_0}(\mathcal{F})$ *of projections is not normal at* $z_0 \in \mathbb{D}$ *. Then there* exist sequences $\{f_n\}=\{(f_{1,n},\dots,f_{p,n})\}\subseteq\mathcal{F}$, $\{z_n\}\subset\mathbb{D}$ with $z_n\to z_0$ and positive numbers $\{\rho_n\}$ with $\rho_n\to 0$ and *such that for all* $j = 1, \dots, p$ *the sequences* $\{g_{j,n}\}\$ *defined by*

$$
g_{j,n} := f_{j,n}(z_n + \rho_n \zeta)
$$

converge to functions 1*^j* ∈ M(C) ∪ {∞} *locally uniformly in* C *(with respect to the spherical metric) where at least one of the functions* q_1, \dots, q_p *is not constant.*

Lemma 2.4. [2] Let $\mathcal{F} \subseteq (\mathcal{M}(\mathbb{D}))^2$ be a family of pairs of meromorphic functions in \mathbb{D} and $\epsilon > 0$. Assume that

 $\sigma(a(z), b(z)) \geq \epsilon$, for all $(a, b) \in \mathcal{F}$ and all $z \in \mathbb{D}$.

Then the families $\{a : (a, b) \in \mathcal{F}\}$ *and* $\{b : (a, b) \in \mathcal{F}\}$ *are normal in* \mathbb{D} *.*

Proof. [Proof of Theorem 1.2.] Suppose that $\mathcal F$ is not uniformly normal in D . Then we can find sequences ${f_{\nu}} \subset \mathcal{F}$, ${a_{f_{\nu}}}$, ${b_{f_{\nu}}}$, ${c_{f_{\nu}}} \subseteq \mathcal{M}(\mathbb{D}) \cup \{\infty\}$ and ${z_{\nu}} \subset \mathbb{D}$ such that

 $\min{\{\sigma(a_{f_v}(z), b_{f_v}(z)), \sigma(b_{f_v}(z), c_{f_v}(z)), \sigma(c_{f_v}(z), a_{f_v}(z))\}} \geq \epsilon$

and

$$
(1-|z_{\nu}|^2)f_{\nu}^{\#}(z_{\nu}) \to \infty \text{ as } \nu \to \infty.
$$

Since

$$
(1-|z_{\nu}|)f_{\nu}^{\#}(z_{\nu})=\frac{1-|z_{\nu}|^2}{1+|z_{\nu}|}f_{\nu}^{\#}(z_{\nu})\geq \frac{1}{2}(1-|z_{\nu}|^2)f_{\nu}^{\#}(z_{\nu}),
$$

it follows that

$$
(1-|z_v|)f_v^{\#}(z_v) \to \infty \text{ as } \nu \to \infty.
$$
 (1)

We define

$$
g_{\nu}(z) := f_{\nu}(z_{\nu} + (1 - |z_{\nu}|)z)
$$

and

$$
a_{g_v}(z):=a_{f_v}(z_v+(1-|z_v|)z), b_{g_v}(z):=b_{f_v}(z_v+(1-|z_v|)z), c_{g_v}(z):=c_{f_v}(z_v+(1-|z_v|)z)
$$

for $z \in D$. Then by (1), we have

$$
g_{\nu}^{\#}(0)=(1-|z_{\nu}|)f_{\nu}^{\#}(z_{\nu})\to\infty \text{ as }\nu\to\infty.
$$

Thus by Marty's theorem, it follows that $\{q_v\}$ is not normal at the origin.

Consider the family of quadruples $\widehat{\mathcal{F}} = \left\{ (g_\nu, a_{g_\nu}, b_{g_\nu}, c_{g_\nu}) : \nu \in \mathbb{N} \right\}$. Since $\pi_1(\widehat{\mathcal{F}}) = \{g_\nu\}$ fails to normal at the origin, Lemma 2.3 guarantees the existence of subsequences $\big\{ \{g_\nu\}, \left\{a_{g_\nu}\right\}, \left\{b_{g_\nu}\right\}, \left\{c_{g_\nu}\right\} \big\} \subset \widehat{\mathcal{F}}$ (for the sake

of simplicity, we take the same sequences), points $w_v \to 0$, positive numbers $\rho_v \to 0$ such that q_v omits *a_{gν}, b_{gν}, c_{gν} and*

$$
\min{\{\sigma(a_{g_v}(z), b_{g_v}(z)), \sigma(b_{g_v}(z), c_{g_v}(z)), \sigma(c_{g_v}(z), a_{g_v}(z))\}} \geq \epsilon
$$
\n(2)

for all $z \in \mathbb{D}$ and all ν and such that the sequences $\{G_v\}$, $\{A_v\}$, $\{B_v\}$ and $\{C_v\}$ defined by

$$
G_{\nu}(\xi) := g_{\nu}(w_{\nu} + \rho_{\nu}\xi),
$$

$$
A_{\nu}(\xi) := a_{g_{\nu}}(w_{\nu} + \rho_{\nu}\xi), \ B_{\nu}(\xi) := b_{g_{\nu}}(w_{\nu} + \rho_{\nu}\xi), \ C_{\nu}(\xi) := c_{g_{\nu}}(w_{\nu} + \rho_{\nu}\xi)
$$

converge locally uniformly in C to functions $G, A, B, C \in \mathcal{M}(\mathbb{C}) \cup \{\infty\}$, respectively, not all of which are constant. Further, Lemma 2.4 ensures that the families $\{a_{g_v}\}$, $\{b_{g_v}\}$ and $\{c_{g_v}\}$ are normal, and so by Lemma 2.1 we find that *A*, *B* and *C* are constant and consequently *G* is non-constant. On the other hand, q_v omits *a_{gv}, b_{gv}, c_{gv}, we have by Hurwitz's theorem, G omits three distinct constant <i>A, B* and *C*. Hence, by Picard's theorem, *G* is constant. This is a contradiction. \Box

Proof. [Proof of Theorem 1.4.] Suppose that $\mathcal F$ is not uniformly φ -normal family on D. Then there exist sequences $\{f_v\} \subset \mathcal{F}$, $\{z_v\} \subset \mathbb{D}$ and

- positive integer *l*₁, *l*₂, \cdots , *l*_{*q*} (posibbly +∞) satisfying $\sum_{j=1}^{q} 1/l_j < q 2$,
- meromorphic functions $\psi_{1f_v}, \psi_{2f_v}, \cdots, \psi_{qf_v}$ ($f \in \mathcal{F}$) in \mathbb{D} , positive constant ϵ such that $\sigma(\psi_{if_{\nu}}(z), \psi_{jf_{\nu}}(z)) \ge \varepsilon$ $(1 \le i < j \le q)$ for all $z \in \mathbb{D}$, and

• sets
$$
A_{f_v} = \bigcup_{j=1}^q \{z \in \mathbb{D} : f_v(z) = \psi_{jf_v}(z) \neq \infty\}
$$
 and $B_{f_v} = \bigcup_{j=1}^q \{z \in \mathbb{D} : f_v(z) = \psi_{jf_v}(z) = \infty\}$ with $|f_v^{(k)}(z)| \leq M\varphi^k(|z|)$ $z \in A_{f_v}$, $|(\frac{1}{f_v})^{(k)}(z)| \leq M\varphi^k(|z|)$ $z \in B_{f_v}$ $(1 \leq k \leq l_j - 1)$

such that

$$
\frac{f_v^{\#}(z_v)}{\varphi(|z_v|)} \to \infty \text{ as } \nu \to \infty.
$$
\n(3)

Passing to a subsequence (if necessary), we may assume that $z_v \to z_0 \in \overline{D}$. We consider the following cases:

Case 1. $|z_0| = 1$. Consider the family

$$
\left\{g_{\nu}(z) := f_{\nu}\left(z_{\nu} + \frac{z}{\varphi(|z_{\nu}|)}\right), \ z \in \mathbb{D}\right\}.
$$

Since $\varphi : [0, 1) \to (0, \infty)$ is a smoothly increasing function satisfying $\varphi(r)(1 - r) \to \infty$ as $r \to 1^-$, we can assume that $\varphi(r)(1-r) \ge 1$ for all $r \in [0, 1)$. Using this and $|z_v| \to 1^-$, we conclude that for v sufficiently large

$$
\varphi(|z_v|)(1-|z_v|) \geq 1.
$$

Therefore,

$$
\left|z_{\nu} + \frac{z}{\varphi(|z_{\nu}|)}\right| \le |z_{\nu}| + \frac{|z|}{\varphi(|z_{\nu}|)} < |z_{\nu}| + \frac{1}{\varphi(|z_{\nu}|)} \le |z_{\nu}| + (1 - |z_{\nu}|) = 1
$$

for each $z \in D$, so that the function q_v is well-defined in D, for all v . Now, by using (3), we get

$$
g_{\nu}^{\#}(0) = \frac{f_{\nu}^{\#}(z_{\nu})}{\varphi(|z_{\nu}|)} \to \infty \text{ as } \nu \to \infty,
$$

Thus Marty's theorem implies that $\{g_\nu\}$ is not normal at 0. By Lemma 2.1, we can find a subsequence of $\{g_\nu\}$, one may take $\{g_\nu\}$ itself, $\{v_\nu\} \subset \mathbb{D}$ with $v_\nu \to 0$, positive numbers σ_ν with $\sigma_\nu \to 0$ such that

$$
G_{\nu}(\xi) := g_{\nu}(v_{\nu} + \sigma_{\nu}\xi) = f_{\nu}\left(z_{\nu} + \frac{v_{\nu} + \sigma_{\nu}\xi}{\varphi(|z_{\nu}|)}\right)
$$

locally uniformly with respect to the spherical metric to *G*(ξ), where *G*(ξ) is a non-constant meromorphic function on $\mathbb C$. Therefore, on every compact subset of $\mathbb C$ that contains no poles of G , $G^{(j)}_\nu$ converges uniformly to *G*^(*j*) for all *j* ∈ **N**. Similarly, on every compact subset of **C** containing no zeros of *G*, $(1/G_v)^{(j)}$ converges uniformly to $(1/G)^{(j)}$ for all $j \in \mathbb{N}$. Also, Lemma 2.4 ensures that $\{\psi_{jf_v}\}_{v \geq 1}$ is a normal family on $\mathbb D$ and so passing to a subsequence, we assume that $\{\psi_{jf_v}\}_{v\geq 1}$ converges spherically uniformly on $\mathbb C$ to a meromorphic function ψ_j (or ∞) for all $j = 1, 2, \ldots, q$. Thus

$$
\psi_{jf_\nu}\left(z_\nu + \frac{v_\nu + \sigma_\nu\xi}{\varphi(|z_\nu|)}\right) \to \psi_j(z_0)
$$

spherically locally uniformly on C. Now, we claim:

- 1. For any $j \in \{1, 2, \dots, q\}$, if $\psi_j(z_0) \neq \infty$, then all the zeros of $G \psi_j(0)$ have multiplicity at least *l*_j.
- 2. For some $j \in \{1, 2, ..., q\}$, if $\psi_j(z_0) = \infty$, then all the poles of *G* have multiplicity at least l_j .

Suppose that $\psi_j(0) \neq \infty$ and for any fixed *j*, let ξ_0 be a zero $G(\xi) - \psi_{jf_v}(0)$. Then *G* is holomorphic at ξ₀. By Hurwitz's theorem there exist a sequence of points $\xi_{\nu} \to \xi_0$ such that for all ν sufficiently large, $\psi_{jf_v}\left(z_v+\frac{v_v+\sigma_v\xi_v}{\varphi(|z_v|)}\right)\neq\infty$ and

$$
0 = G_{\nu}(\xi_{\nu}) - \psi_{jf_{\nu}} \left(z_{\nu} + \frac{v_{\nu} + \sigma_{\nu} \xi_{\nu}}{\varphi(|z_{\nu}|)} \right) = f_{\nu} \left(z_{\nu} + \frac{v_{\nu} + \sigma_{\nu} \xi_{\nu}}{\varphi(|z_{\nu}|)} \right) - \psi_{jf_{\nu}} \left(z_{\nu} + \frac{v_{\nu} + \sigma_{\nu} \xi_{\nu}}{\varphi(|z_{\nu}|)} \right)
$$

\n
$$
\Rightarrow f_{\nu} \left(z_{\nu} + \frac{v_{\nu} + \sigma_{\nu} \xi_{\nu}}{\varphi(|z_{\nu}|)} \right) = \psi_{jf_{\nu}} \left(z_{\nu} + \frac{v_{\nu} + \sigma_{\nu} \xi_{\nu}}{\varphi(|z_{\nu}|)} \right), \text{ for sufficiently large } \nu.
$$

By hypothesis, we have

$$
\left| f_{\nu}^{(k)} \left(z_{\nu} + \frac{v_{\nu} + \sigma_{\nu} \xi_{\nu}}{\varphi(|z_{\nu}|)} \right) \right| \le M \varphi^{k} \left(\left| z_{\nu} + \frac{v_{\nu} + \sigma_{\nu} \xi_{\nu}}{\varphi(|z_{\nu}|)} \right| \right) \tag{4}
$$

for *v* sufficiently large and $k = 1, 2, \cdots, l_j - 1$. Now,

$$
G_{\nu}^{(k)}(\xi_{\nu}) = \left(\frac{\sigma_{\nu}}{\varphi(|z_{\nu}|)}\right)^{k} \left|f_{\nu}^{(k)}\left(z_{\nu} + \frac{v_{\nu} + \sigma_{\nu}\xi_{\nu}}{\varphi(|z_{\nu}|)}\right)\right|
$$

$$
\leq \left(\frac{\sigma_{\nu}}{\varphi(|z_{\nu}|)}\right)^{k} M \varphi^{k} \left(\left|z_{\nu} + \frac{v_{\nu} + \sigma_{\nu}\xi_{\nu}}{\varphi(|z_{\nu}|)}\right|\right)
$$

$$
= \sigma_{\nu}^{k} M \left[\frac{\varphi\left(\left|z_{\nu} + \frac{v_{\nu} + \sigma_{\nu}\xi_{\nu}}{\varphi(|z_{\nu}|)}\right|\right)}{\varphi(|z_{\nu}|)}\right]^{k}.
$$

Since

$$
\frac{\varphi\left(\left|z_\nu + \frac{v_\nu + \sigma_\nu \xi_\nu}{\varphi(|z_\nu|)}\right|\right)}{\varphi(|z_\nu|)} \to 1 \text{ as } \nu \to \infty,
$$

we have

$$
G^{(k)}(\xi_0)=\lim_{\nu\to\infty}G^{(k)}_\nu(\xi_\nu)=\lim_{\nu\to\infty}\sigma^k_\nu M\left[\frac{\varphi\left(\left|z_\nu+\frac{v_\nu+\sigma_\nu\xi_\nu}{\varphi(|z_\nu|)}\right|\right)}{\varphi(|z_\nu|)}\right]^k=0
$$

for all $k = 1, 2, \cdots, l_j - 1$. Thus ξ_0 is a zero of $G - \psi_{if_v}(0)$ of multiplicity at least l_j . This proves claim (1).

Suppose that $\psi_j(z_0) = \infty$. Then, on every compact subset of D that contains no zeros of $\psi_{j f_\nu}(z)$, $1/\psi_{jf_\nu}\left(z_\nu+\frac{v_\nu+\sigma_\nu\xi}{\varphi(|z_\nu|)}\right)$ converges locally uniformly to 0 with respect to Euclidean metric. Let η_0 be a zero of 1/*G*. Then by Hurwitz's theorem there exist a sequence of points $\eta_v \to \eta_0$ such that for all v sufficiently large, $\psi_{jf_v}\left(z_v + \frac{v_v + \sigma_v \eta_v}{\varphi(|z_v|)}\right) = \infty$ and

$$
0 = \frac{1}{G_{\nu}(\eta_{\nu})} - \frac{1}{\psi_{jf_{\nu}}(z_{\nu} + \frac{v_{\nu} + \sigma_{\nu} \eta_{\nu}}{\varphi(|z_{\nu}|)})} = \frac{1}{f_{\nu}(z_{\nu} + \frac{v_{\nu} + \sigma_{\nu} \eta_{\nu}}{\varphi(|z_{\nu}|)})} - \frac{1}{\psi_{jf_{\nu}}(z_{\nu} + \frac{v_{\nu} + \sigma_{\nu} \eta_{\nu}}{\varphi(|z_{\nu}|)})}
$$

$$
\Rightarrow \frac{1}{f_{\nu}(z_{\nu} + \frac{v_{\nu} + \sigma_{\nu} \eta_{\nu}}{\varphi(|z_{\nu}|)})} = \frac{1}{\psi_{jf_{\nu}}(z_{\nu} + \frac{v_{\nu} + \sigma_{\nu} \eta_{\nu}}{\varphi(|z_{\nu}|)})}
$$

$$
\Rightarrow f_{n}\left(z_{\nu} + \frac{v_{\nu} + \sigma_{\nu} \eta_{\nu}}{\varphi(|z_{\nu}|)}\right) = \psi_{jf_{n}}\left(z_{\nu} + \frac{v_{\nu} + \sigma_{\nu} \eta_{\nu}}{\varphi(|z_{\nu}|)}\right).
$$

By hypothesis, we have

$$
\left| \left(\frac{1}{f_{\nu}} \right)^{(k)} \left(z_{\nu} + \frac{v_{\nu} + \sigma_{\nu} \eta_{\nu}}{\varphi(|z_{\nu}|)} \right) \right| \leq M \varphi^{k} \left(\left| z_{\nu} + \frac{v_{\nu} + \sigma_{\nu} \eta_{\nu}}{\varphi(|z_{\nu}|)} \right| \right)
$$

for all *v* sufficiently large and $k = 1, 2, \dots, l_j - 1$. Thus by applying the same argument as in claim (1), we find that η_0 is a zero of 1/*G* of multiplicity at least *l_j*. Hence η_0 is a pole of *G* of multiplicity at least *l_j*, This proves claim (2).

Since, by assumption on spherical distance, $\psi_1(z_0)$, $\psi_2(z_0)$, \cdots , $\psi_q(z_0)$ are *q*-distinct points in extended complex plane, applying Second fundamental theorem of Nevanlinna to *G*, we obtain

$$
(q-2)T(r,G) \le \sum_{i=1}^q \overline{N}\left(r, \frac{1}{G-\psi_j(z_0)}\right) + o(T(r,G))
$$

$$
\le \sum_{j=1}^q \frac{1}{l_j} N\left(r, \frac{1}{G-\psi_j(z_0)}\right) + o(T(r,G))
$$

$$
\le \sum_{j=1}^q \frac{1}{l_j} T(r,G) + o(T(r,G)).
$$

That is,

$$
\left[(q-2) - \sum_{j=1}^q \frac{1}{l_j} \right] T(r, G) \le o(T(r, G))
$$

which is a contradiction to the fact that \sum^q *j*=1 $\frac{1}{l_i} < q-2.$

Case 2. $0 \le |z_0| < 1$. Since φ is increasing, the following inequality

$$
\frac{f_v^{\#}(z_v)}{\varphi(0)} \ge \frac{f_v^{\#}(z_v)}{\varphi(|z_v|)}
$$
\n
$$
(5)
$$

must holds for every positive integer ν . From (3) and (5), we find that

$$
f_{\nu}^{\#}(z_{\nu}) \to \infty \text{ as } \nu \to \infty,
$$

and so by Marty's theorem, $\{f_v\}_{v=v}^{\infty}$ $\sum_{\nu=1}^{\infty}$ is not normal at *z*₀. By Lemma 2.1, there exist a subsequence of f_{ν} , one may take f_v itself, $\{u_v\} \subset \mathbb{D}$ with $u_v \to z_0$ and positive numbers ρ_v with $\rho_v \to 0$ such that

$$
F_{\nu}(\eta) := f_{\nu}(u_{\nu} + \rho_{\nu}\eta)
$$

locally uniformly with respect to the spherical metric to F , where $F(\eta)$ is a non-constant meromorphic function on $\mathbb C$. Therefore, on every compact subset of $\mathbb C$ that contains no poles of F , $F^{(j)}_\nu$ converges uniformly to $F^{(j)}$ for all $j \in \mathbb{N}$. Similarly, on every compact subset of $\mathbb C$ containing no zeros of F , $(1/F_v)^{(j)}$ converges uniformly to $(1/F)^{(j)}$ for all $j \in \mathbb{N}$. Now, by applying the same argument as in Case 1, we get

- 1. For any $j \in \{1, 2, \dots, q\}$, if $\psi_j(z_0) \neq \infty$, then all the zeros of $F \psi_j(z_0)$ have multiplicity at least l_j .
- 2. For some $j \in \{1, 2, ..., q\}$, if $\psi_j(z_0) = \infty$, then all the poles of *F* have multiplicity at least l_j .

Again, by applying Second fundamental theorem of Nevanlinna to *F* and $\psi_i(z_0)(1 \leq j \leq q)$ with assumption $\sum_{i=1}^{q}$ *j*=1 $\frac{1}{l_j}$ < *q* − 2 , we get a contradiction.

This completes the proof of the Theorem 1.4. \Box

Proof. [**Proof of Theorem 1.1.**] Suppose that *f* is not normal in D. By Lemma 2.2, there exists a sequence $\{z_n\} \subset \mathbb{D}$ and positive numbers $\{\rho_n\}$ with $\rho_n \to 0$ such that

$$
g_n(\xi) := f(z_n + \rho_n \xi)
$$

converges uniformly on each compact subset of $\mathbb C$ to a non-constant meromorphic function $g(\xi)$ on $\mathbb C$. Passing to a subsequence (if necessary) we assume that $z_n \to z_0 \in \overline{D}$. If $z_0 \in \mathbb{D}$, then we have

$$
g_n(\xi) = f(z_n + \rho_n \xi) \to f(z_0).
$$

This implies that $q(\xi) \equiv f(z_0)$, which is not possible since q is non constant meromorphic function on \mathbb{C} . Thus we must have $|z_0| = 1$.

We omit the rest of the proof of Theorem 1.1 as it almost relies on the same argument used in Theorem 1.4. \Box

3. Compliance with Ethical Standards

- Conflicts of Interest: The authors declare that they have no conflict of interest.
- Data Availability Statement: Data Sharing is not applicable to this article.
- Authors received no specific grant/funding for the research, authorship or publication of this article
- This article does not contain any studies with human participants or animals performed by any of the authors.

4. Acknowledgement

The authors are grateful to the referee for their valuable comments and suggestions which have enhanced the quality of the paper.

References

- [1] A. Aulaskari and J. Rattya, Properties of meromorphic φ-normal function, J. Michigan. Math., **60** (2011), 93-111.
- [2] J. Grahl and S. Nevo, Exceptional functions wandering on the sphere and normal families, Israel J. Math. **202** (2014), 21-34.
- [3] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
- [4] O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math., **97** (1957), 47-65.
- [5] A.J. Lohwater and Ch. Pommerenke, On normal meromorphic functios, Ann. Acad. Sci. Fenn. Ser. I Math., (1973), 12pp.
- [6] X.C. Pang, Normal families and normal functions of meromorphic functions, Chinese Ann. Math., **21A** (2000), 601-604.
- [7] H.L. Royden, A criterion for the normality of a family of meromorphic functions, Ann. Acad. Sci. Fenn. Series A. I. Mathematica, **10** (1985), 499-500.
- [8] J. L. Schiff, Normal Families, Springer-Verlag, New York, 1993.
- [9] Y. Xu and H.L. Qiu, An avoidance criterion for normal functions, C.R. Math., **349** (2011), 1159-1160.
- [10] L. Yang, A note on the avoidance criterion for normal functions, Analysis and Mathematical Physics, (2020), 10:35.
- [11] L. Zalcman, A heuristic principle in complex function theory, Amer. Math. Monthly, **82** (1975), 813-817.