
Filomat 38:13 (2024), 4495–4509
https://doi.org/10.2298/FIL2413495H

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Two classes of modulus-based methods for solving linear
complementarity problems

Maryam Bashirizadeha,, Masoud Hajariana,∗

aDepartment Applied Mathematics, Faculty of Mathematical Sciences, Shahid Beheshti University, Tehran, Iran.

Abstract. This study focuses on developing efficient numerical methods to solve linear complementarity
problems (LCP). There are many problems in various fields like engineering, economics, and science that
lead to an LCP. Modulus-based methods are powerful computational tools for solving such problems. In
this paper, the schemes for solving LCPs are based on modulus. The new methods utilize two initial
guesses and update each of the initial guesses in separate steps. Convergence of new methods is expressed
under special conditions when the system matrix is an H+-matrix. Also, the presented numerical results
confirm the efficiency of the new techniques compared to the modulus-based and two-step modulus-based
methods.

1. Introduction

In the process of solving many scientific, engineering, economic, and computing problems, solving a
linear complementarity problem is inevitable [3, 9, 16, 24, 36]. Therefore, it is very important to present
and evaluate efficient numerical methods to solve these problems. The linear complementarity problem
for the given matrix A ∈ Rn×n and vector q ∈ Rn denoted by LCP(q,A) is to find a vector z ∈ Rn, so that the
following conditions are met:

z ≥ 0, w := Az + q ≥ 0, zTw = 0. (1)

For solving LCP, methods are divided into two categories: direct methods and iterative methods. Iterative
methods are well suited for solving LCP(q, A), especially when the system matrix is large and sparse. Iter-
ative methods for solving LCPs were first proposed by Cryer [10] and many researchers followed his work
[11, 18, 20, 27, 34, 41]. Then in 1980 Bokhon [35] presented the modulus splitting method. Based on this
approach, modified modulus [13] and extrapolated modulus methods [19] were proposed. In 2010 Bai [2]
introduced a general structure called modulus-based methods, these approaches cover the previous mod-
ulus methods. Modulus-based methods have become a powerful tool for solving LCPs. Today, we widely
see the presentation of new methods based on this technique. For example, two-step, two-sweep, two-step
two-sweep, general two-sweep, and preconditioner methods are of this category [7, 21, 26, 31, 32, 38, 42].
Also, multisplitting methods that were initially proposed to solve systems of linear equations have been

2020 Mathematics Subject Classification. Primary 90C33; Secondary 65F10.
Keywords. Linear complementarity problem, Modulus-based, H+-matrix, LCP
Received: 28 October 2022; Revised: 07 November 2023; Accepted: 12 February 2024
Communicated by Predrag Stanimirović
* Corresponding author: Masoud Hajarian
Email addresses: m_bashirizadeh@sbu.ac.ir (Maryam Bashirizadeh), m_hajarian@sbu.ac.ir (Masoud Hajarian)

M. Bashirizadeh, M. Hajarian / Filomat 38:13 (2024), 4495–4509 4496

developed to solve LCPs [4, 6, 12, 44]. Convergence analysis of modulus-based methods is often discussed
when the system matrix is an H+-matrix or a positive definite matrix[23, 43, 45].
In addition to solve LCP, modulus-based methods have been used to solve different branches of com-
plementarity problems, including nonlinear complementarity problems [21, 39, 45, 47], horizontal linear
complementary problems [15, 30, 46], implicit complementarity [25], quasi-complementary problems [33],
and second-order cone linear complementary problems [28]. Considering the importance of these tech-
niques in solving linear complementarity problems, this paper focuses on modulus-based iterative methods
for solving linear complementarity problems. So far, many valuable works have been done in this field
[22, 29, 40]. The aim of this paper is to introduce new classes of efficient modulus-based methods that
have a significant advantage in terms of CPU time and iteration steps (IT) compared to the modulus-based
method presented by Bai [2] and the two-step modulus-based method introduced by Zhang [42]. New
techniques have two initial guesses, each of which is updated separately. One initial vector is updated in

the first step and another initial vector is updated in the second step. By defining the vector X =
[
v
v

]
∈ R2n

the convergence of the presented methods under certain conditions is proved in a different way from the
previous methods. The presented numerical results confirm the efficiency of the new methods.
The subsequent sections of this paper include the following:
Section 2: Basic concepts, lemmas, and theorems.
Section 3: Description of new modulus-based methods.
Section 4: Discussion on convergence and relevant theorems.
Section 5: Presentation of numerical results.
Section 6: Concluding.

2. Preliminaries

This section is organized in a way to express the fundamental concepts, lemmas, and theorems that are
utilized throughout the article. A matrix A = (ai j) ∈ Rn×n is called [1, 8, 37]

• A nonnegative matrix if for all i and j, ai j ≥ 0.

• A Z-matrix if ai j ≤ 0 for all i , j.

• An M−matrix if A is a Z-matrix and nonsingular such that A−1
≥ 0.

• An H-matrix if its comparison matrix ⟨A⟩ (if i = j then ai j = |ai j|, if i , j then ai j = −|ai j|) is an M-matrix.

• An H+-matrix if A is an H-matrix with positive diagonal entries.

For any two matrices A,H ∈ Rn×n if A ≥ H(A > H) then A −H ≥ 0 (A −H > 0). Also, we have |AH| ≤ |A||H|.
We denote the spectral radius and the absolute value of A by ρ(A) and |A| = (|ai j|), respectively.
Let A = F − G be the splitting of matrix A ∈ Rn×n if [8, 14, 43]

• ⟨F⟩ − |G| is an M-matrix, then the splitting is an H-splitting.

• F is a nonsingular M-matrix and G ≥ 0, then the splitting is an M-splitting.

• ⟨A⟩ = ⟨F⟩ − |G|, then the splitting is an H-compatible splitting.

Lemma 2.1. [8, 28] For any nonnegative matrix K and any vectors u, v ∈ Rn such that u ⩽ v, the inequality Ku ⩽ Kv
holds.

Lemma 2.2. [17] Assume that A = D − B is an H-matrix. Then the following statements hold

• A is nonsingular and |A−1
| ≤ ⟨A⟩−1.

• |D| is nonsingular and ρ(|D|−1
|B|) < 1.

M. Bashirizadeh, M. Hajarian / Filomat 38:13 (2024), 4495–4509 4497

Lemma 2.3. [8] Let A be a Z-matrix. Then the following statements are equivalent

• A is an M-matrix.

• There exists a positive vector x, such that Ax > 0.

Lemma 2.4. [5] Let A be an H+-matrix. Then the LCP(q,A) has a unique solution z∗.

Lemma 2.5. [23] For a nonnegative matrix A ∈ Rn×n, if there exists a positive vector x ∈ Rn such that Ax < x, then
ρ(A) < 1.

Lemma 2.6. [2] Let A = F − G be a splitting of the matrix A ∈ Rn×n,Λ be a positive diagonal matrix and γ be a
positive constant. For the LCP(q,A), the following statements hold true:

• If (z, ω) is a solution of the LCP(q,A), then x =
1
2
γ(z −Λ−1ω), with |x| =

1
2
γ(z + Λ−1ω), satisfies the implicit

fixed-point equation

(Λ + F)x = Gx + (Λ − A)|x| − γq. (2)

• If x satisfies the implicit fixed-point equation (2), then

z = γ−1(|x| + x), ω = γ−1Λ(|x| − x),

is a solution of the LCP(q,A).

3. Modulus-based methods for solving LCP(q,A)

This section introduces two new classes of modulus-based methods for solving LCP(q,A). Modulus-
based technique was first presented by Bai [2] as follows. For any initial guess x(0), and k = 0, 1, ... until the
iteration sequence

{
z(k)
}

converges, the computation involves solving:

(Λ + F)x(k+1) = Gx(k) + (Λ − A)|x(k)
| − γq,

and subsequently setting

z(k+1) = (
1
γ

)(|x(k+1)
| + x(k+1)),

where A = F − G is a splitting of matrix A ∈ Rn×n, Λ be a positive diagonal matrix and γ be a positive
constant, as stated in Lemma 2.6.
We propose two classes of modulus-based iteration methods for solving LCP(q,A), by using two splittings
A = F1 − G1 = F2 − G2 of matrix A ∈ Rn×n.

Method 3.1. Modulus-based matrix splitting iteration method I for LCP(q,A).
For any given two initial guesses x(0), y(0)

∈ Rn, and k=0,1,2,... until the iteration sequence
{
z(k)
}

is convergent,
compute{

(Λ + F1)y(k+1) = G1y(k) + (Λ − A)|x(k)
| − γq,

(Λ + F2)x(k+1) = G2y(k+1) + (Λ − A)|x(k)
| − γq, (3)

and set

z(k+1) = (
1
γ

)(|x(k+1)
| + x(k+1)).

M. Bashirizadeh, M. Hajarian / Filomat 38:13 (2024), 4495–4509 4498

Method 3.2. Modulus-based matrix splitting iteration method II for LCP(q,A).
For any given two initial guesses x(0), y(0)

∈ Rn and k=0,1,2,... until the iteration sequence
{
z(k)
}

is convergent,
compute{

(Λ + F1)y(k+1) = G1y(k) + (Λ − A)|x(k)
| − γq,

(Λ + F2)x(k+1) = G2y(k+1) + (Λ − A)|y(k+1)
| − γq, (4)

and set
z(k+1) = (

1
γ

)(|x(k+1)
| + x(k+1)).

Remark 3.3. With different choices for the splittings, various methods can be obtained from the presented methods.
In fact, the proposed methods provide general structures. For example, if we put:{

F1 =
1
α (D − βL), G1 =

1
α ((1 − α)D + (α − β)L + αU),

F2 =
1
α (D − βU), G2 =

1
α ((1 − α)D + (α − β)U + αL),

(5)

then we obtain accelerated over-relaxation modulus-based method I and II (MAOR I and MAOR II). In addition,
whenever (α, β) = (α, α), (α, β) = (1, 1), and (α, β) = (1, 0), it will be obtained successive over-relaxation modulus-
based method I and II (MSOR I and MSOR II), Gauss-Seidel modulus-based method I and II (MGS I and MGS II),
and Jacobi modulus-based method I and II (MJ I and MJ II), respectively.

4. Convergence results

In this section, we discuss the convergence of the proposed methods when the system matrix is an
H+-matrix.
Also, we consider Λ be a positive diagonal matrix, γ be a positive constant,

D = dia1(A), e(k)
y = y(k)

− y∗, e(k)
x = x(k)

− x∗.

Theorem 4.1. Let A ∈ Rn×n be an H+-matrix, A = F1 − G1 = F2 − G2 be two H-compatible splittings of A (i.e.,
⟨A⟩ = ⟨F1⟩ − |G1| = ⟨F2⟩ − |G2|). For any two initial guesses x(0), y(0)

∈ Rn, Method 3.1 is convergent if any of the
following conditions are met:

• Λ ≥ D.

• A positive vector v ∈ Rn exists such that |B|v < Λv < Dv.

Proof. Let (x∗, y∗) be the solution of (3) and satisfies the implicit fixed point equations{
y∗ = (Λ + F1)−1G1y∗ + (Λ + F1)−1(Λ − A)|x∗| − γq,
x∗ = (Λ + F2)−1G2y∗ + (Λ + F2)−1(Λ − A)|x∗| − γq. (6)

As (Λ + Fi), (i = 1, 2) are H+-matrices, by Lemma 2.2 and Equations (3), (6), we obtain
|e(k+1)

y | ⩽ (Λ + ⟨F1⟩)−1
|G1||e

(k)
y | + (Λ + ⟨F1⟩)−1

|Λ − A||e(k)
x |,

|e(k+1)
x | ⩽ (Λ + ⟨F2⟩)−1

|G2|(Λ + ⟨F1⟩)−1
|G1||e

(k)
y |+

(Λ + ⟨F2⟩)−1(|Λ − A| + |G2|(Λ + ⟨F1⟩)−1
|Λ − A|)|e(k)

x |,

(7)

or ∣∣∣∣∣∣
[
e(k+1)

y

e(k+1)
x

]∣∣∣∣∣∣ ≤ E

∣∣∣∣∣∣
[
e(k)

y

e(k)
x

]∣∣∣∣∣∣ , (8)

M. Bashirizadeh, M. Hajarian / Filomat 38:13 (2024), 4495–4509 4499

where

E =
[

(Λ + ⟨F1⟩)−1
|G1| (Λ + ⟨F1⟩)−1

|Λ − A|
(Λ + ⟨F2⟩)−1

|G2|(Λ + ⟨F1⟩)−1
|G1| (Λ + ⟨F2⟩)−1(|Λ − A| + |G2|(Λ + ⟨F1⟩)−1

|Λ − A|)

]
∈ R2n×2n. (9)

To demonstrate the convergence of Method 3.1, it suffices to show that ρ(E) < 1. Now, let’s consider the
following two cases.

1. When Λ ≥ D.
As ⟨A⟩ is an M-matrix, by Lemma 2.3 there exists a positive vector v ∈ Rn such that ⟨A⟩v > 0.

Let X =
[
v
v

]
∈ R2n, as E is a nonnegative matrix and X is a positive vector, based on Lemma 2.5, if

EX < X, then ρ(E) < 1. By direct operation, we obtain

EX =
[

(Λ + ⟨F1⟩)−1(|G1| + Λ − ⟨A⟩)v
(Λ + ⟨F2⟩)−1[|G2|(Λ + ⟨F1⟩)−1(|G1| + Λ − ⟨A⟩) + Λ − ⟨A⟩]v

]

=

[
(I − 2(Λ + ⟨F1⟩)−1

⟨A⟩)v
(Λ + ⟨F2⟩)−1[|G2|(I − 2(Λ + ⟨F1⟩)−1

⟨A⟩) + Λ − ⟨A⟩]v

]
.

(10)

Also, we have

(I − 2(Λ + ⟨F1⟩)−1
⟨A⟩)v < v, (11)

by using Lemma 2.1

(Λ + ⟨F2⟩)−1[|G2|(I − 2(Λ + ⟨F1⟩)−1
⟨A⟩) + Λ − ⟨A⟩]v

⩽ (Λ + ⟨F2⟩)−1[|G2|v + Λv − ⟨A⟩v]

= (I − 2(Λ + ⟨F2⟩)−1
⟨A⟩)v < v.

(12)

Thus EX <
[
v
v

]
= X. Lemma 2.5 implies that ρ(E) < 1.

2. When there is a positive vector v ∈ Rn such that |B|v < Λv < Dv.

Let X =
[
v
v

]
then we have

EX =
[

(Λ + ⟨F1⟩)−1(|G1| + |Λ − A|)v
(Λ + ⟨F2⟩)−1[|G2|(Λ + ⟨F1⟩)−1(|G1| + |Λ − A|) + |Λ − A|]v

]

=

[
(I − 2(Λ + ⟨F1⟩)−1(Λ − |B|))v

(Λ + ⟨F2⟩)−1[|G2|(I − 2(Λ + ⟨F1⟩)−1(Λ − |B|)) + |Λ − A|]v

]
.

(13)

Similarly, as

(I − 2(Λ + ⟨F1⟩)−1(Λ − |B|))v < v, (14)

and

(Λ + ⟨F2⟩)−1[|G2|(I − 2(Λ + ⟨F1⟩)−1(Λ − |B|)) + |Λ − A|]v

⩽ (Λ + ⟨F2⟩)−1[|G2|v + |Λ − A|v]

= (I − 2(Λ + ⟨F2⟩)−1(Λ − |B|))v < v.

(15)

Hence EX < X, i.e., ρ(E) < 1. The proof is completed.

M. Bashirizadeh, M. Hajarian / Filomat 38:13 (2024), 4495–4509 4500

Theorem 4.2. Suppose that A is an H+-matrix, A = F1 −G1 = F2 −G2 are two H-compatible splittings of A, and Λ
is a positive diagonal matrix. For any initial two guesses x(0), y(0), Method 3.2 is convergent if any of the following
conditions are met:

• Λ ≥ D.

• A positive vector v ∈ Rn exists such that |B|v < Λv < Dv.

Proof. Similar to the proof of Theorem 4.1, let (x∗, y∗) be the solution of (4) and satisfy the implicit fixed point
equations{

y∗ = (Λ + F1)−1G1y∗ + (Λ + F1)−1(Λ − A)|x∗| − γq,
x∗ = (Λ + F2)−1G2y∗ + (Λ + F2)−1(Λ − A)|y∗| − γq. (16)

From (4) and (16)
|e(k+1)

y | ⩽ (Λ + ⟨F1⟩)−1
|G1||e

(k)
y | + (Λ + ⟨F1⟩)−1

|Λ − A||e(k)
x |,

|e(k+1)
x | ⩽ (Λ + ⟨F2⟩)−1(|G2| + |Λ − A|)(Λ + ⟨F1⟩)−1

|G1||e
(k)
y |+

(Λ + ⟨F2⟩)−1(|G2| + |Λ − A|)(Λ + ⟨F1⟩)−1
|Λ − A||e(k)

x |,

(17)

or ∣∣∣∣∣∣
[
e(k+1)

y

e(k+1)
x

]∣∣∣∣∣∣ ≤ Ê

∣∣∣∣∣∣
[
e(k)

y

e(k)
x

]∣∣∣∣∣∣ , (18)

where

Ê =
[

(Λ + ⟨F1⟩)−1
|G1| (Λ + ⟨F1⟩)−1

|Λ − A|
(Λ + ⟨F2⟩)−1(|G2| + |Λ − A|)(Λ + ⟨F1⟩)−1

|G1| (Λ + ⟨F2⟩)−1(|G2| + |Λ − A|)(Λ + ⟨F1⟩)−1
|Λ − A|

]
. (19)

We only need to verify the validity of ρ(Ê) < 1. Obviously, Ê ≥ 0. Now, let’s consider the following two
cases.

1. If Λ ≥ D.
Similar to the proof of Theorem 4.1 there exists a positive vector v, such that ⟨A⟩v > 0. Assume that

X =
[
v
v

]
, by straightforward calculations

ÊX =
[

(Λ + ⟨F1⟩)−1(|G1| + |Λ − A|)v
(Λ + ⟨F2⟩)−1(|G2| + |Λ − A|)(Λ + ⟨F1⟩)−1(|G1| + |Λ − A|)v

]

=

[
(I − 2(Λ + ⟨F1⟩)−1

⟨A⟩)v
(I − 2(Λ + ⟨F2⟩)−1

⟨A⟩)(I − 2(Λ + ⟨F1⟩)−1
⟨A⟩)v

]
<

[
v
v

]
= X.

(20)

Then ρ(Ê < 1).
2. If there exists a positive vector v ∈ Rn such that |B|v < Λv < Dv, then the following holds.

ÊX =
[

(Λ + ⟨F1⟩)−1(|G1| + |Λ − A|)v
(Λ + ⟨F2⟩)−1(|G2| + |Λ − A|)(Λ + ⟨F1⟩)−1(|G1| + |Λ − A|)v

]

=

[
(I − 2(Λ + ⟨F1⟩)−1(Λ − |B|))v

(I − 2(Λ + ⟨F2⟩)−1(Λ − |B|))(I − 2(Λ + ⟨F1⟩)−1(Λ − |B|))v

]
<

[
v
v

]
= X.

(21)

M. Bashirizadeh, M. Hajarian / Filomat 38:13 (2024), 4495–4509 4501

Hence, ρ(Ê) < 1. The proof is completed.

Theorem 4.3. Let A = D − B be an H+-matrix (D = dia1(A)), A = F1 − G1 = F2 − G2 be two splittings of A,

λ = ρ(D−1
|B|), and Λ be a positive diagonal matrix that met Λ ≥

1
2α

D. The MAOR I iteration method is convergent
when one of the following conditions are met.

1. 0 ⩽ β ⩽ α,
1

2α
D ⩽ Λ <

1
α

D, λ <
1
2
,

1
2(1 − λ)

< α <
3

2(1 + λ)
.

2. 0 ⩽ β ⩽ α, Λ ≥
1
α

D, λ < 1, 0 < α <
2

1 + λ
.

3. 0 < α ⩽ β, Λ ≥
1
α

D, λ <
1

2β
, 2βλ < α < 2 − 2βλ.

4. 0 < α ⩽ β,
1

2α
D ⩽ Λ <

1
α

D, λ <
1

4β
,

4βλ + 1
2

< α <
3 − 4βλ

2
.

Proof. Let
F̃i = Λ + ⟨Fi⟩ = Λ +

1
α (D − β|Li|) i = 1, 2,

G̃i = |Gi| + |Λ − A|

⩽ |Λ − 1
αD| +

β

α
|Li| +

2
α

[
|1 − α|D + |α − β||Li| + α|Ui|

]
,

(22)

where Fi and Gi are defined in (5). Denote

Qi = (Λ + ⟨Fi⟩)−1(|Gi| + |Λ − A|) = I − (F̃i)−1Si, i = 1, 2 (23)

where

Si = Λ +
(1 − 2|1 − α|)D

α
−

2|α − β|
α
|Li| − 2|Ui| − |Λ −

1
α

D| −
2β
α
|Li|. (24)

Obviously, F̃i (i = 1, 2) are M-matrices and based on the proof of Theorem 4.3 in [38], Si ≥ K (i = 1, 2), where

• If 0 ⩽ β ⩽ α,
1

2α
D ⩽ Λ <

1
α

D, λ <
1
2
,

1
2(1 − λ)

< α <
3

2(1 + λ)
, then K =

1 − 2|1 − α|
α

D − 2|B|, and K is

an M-matrix.

• If 0 ⩽ β ⩽ α, Λ ≥
1
α

D, λ < 1, 0 < α <
2

1 + λ
, then K =

2 − 2|1 − α|
α

D − 2|B|, and K is an M-matrix.

• If 0 < α ⩽ β, Λ ≥
1
α

D, λ <
1

2β
, 2βλ < α < 2 − 2βλ, then K =

2 − 2|1 − α|
α

D −
4β
α
|B|, and K is an

M-matrix.

• If 0 < α ⩽ β,
1

2α
D ⩽ Λ <

1
α

D, λ <
1

4β
,

4βλ + 1
2

< α <
3 − 4βλ

2
, then K =

1 − 2|1 − α|
α

D −
4β
α
|B|, and K

is an M-matrix.

Since in each of the mentioned cases, the matrix K is an M-matrix, then for each of the conditions 1-4, by
Lemma 2.3, there is a positive vector v such that Kv > 0. Thus, we have Qiv < v (i = 1, 2).
Now, we define

R = (Λ + ⟨F2⟩)−1[|G2|(Λ + ⟨F1⟩)−1(|G1| + |Λ − A|) + |Λ − A|]

= I − (F̃2)−1[|G2|Q1 + |Λ − A|].
(25)

M. Bashirizadeh, M. Hajarian / Filomat 38:13 (2024), 4495–4509 4502

In each of conditions 1-4, we demonstrated that for matrix Q1, there exists a positive vector v such that
Q1v < v. Which implies,

Rv = v − (F̃2)−1[|G2|Q1 + |Λ − A|]v

= v − (F̃2)−1[|G2|Q1v + |Λ − A|v]

⩽ v − (F̃2)−1[|G2|v + |Λ − A|v]

= v − (F̃2)−1[|G2| + |Λ − A|]v
= v −Q2v < v.

(26)

Based on the proof of Theorem 4.1, it is sufficient to confirm the validity of ρ(E) < 1, where E is defined

in (9). Let’s suppose X =
[
v
v

]
. Consequently, EX =

[
Q1v
Rv

]
<

[
v
v

]
= X. In other words, EX < X. As E is a

nonnegative matrix based on the Lemma 2.5, ρ(E) < 1. Thus, the proof is completed.

Theorem 4.4. Let A = D − B be an H+-matrix (D = dia1(A)), A = F1 − G1 = F2 − G2 be two splittings of A,

λ = ρ(D−1
|B|), andΛ be a positive diagonal matrix that metΛ ≥

1
2α

D. The MAOR II iteration method is convergent
when one of the following conditions is satisfied.

1. 0 ⩽ β ⩽ α,
1

2α
D ⩽ Λ <

1
α

D, λ <
1
2
,

1
2(1 − λ)

< α <
3

2(1 + λ)
.

2. 0 ⩽ β ⩽ α, Λ ≥
1
α

D, λ < 1, 0 < α <
2

1 + λ
.

3. 0 < α ⩽ β, Λ ≥
1
α

D, λ <
1

2β
, 2βλ < α < 2 − 2βλ.

4. 0 < α ⩽ β,
1

2α
D ⩽ Λ <

1
α

D, λ <
1

4β
,

4βλ + 1
2

< α <
3 − 4βλ

2
.

Proof. In the proof of Theorem 4.3, we defined Qi (i = 1, 2) and demonstrated that Qi (i = 1, 2) are M-
matrices.
Let P = Q2Q1 = (I − (F̃2)−1S2)(I − (F̃1)−1S1), where F̃i, Qi, and Si (i = 1, 2) are defined in (22), (23), and (24).
According to the proof of Theorem 4.2, it is sufficient to demonstrate that ρ(Ê) < 1 (Ê is defined in (19)).
From the proof of Theorem 4.3, for conditions 1-4, a positive vector v related to matrix K exists such that

Qiv < v (i = 1, 2). Thus Pv = (Q2Q1)v < v. Let X =
[
v
v

]
then ÊX =

[
Q1v
Pv

]
<

[
v
v

]
= X. Hence ÊX < X.

Based on Lemma 2.5, since Ê is a nonnegative matrix, we have ρ(Ê) < 1. The proof is finished.

5. Numerical experiments

In order to check the adequacy of the proposed numerical methods, this section reports the three items,
the CPU time, iteration steps (IT), and residual norm for the new methods, the modulus-based method
(MSOR) [2], and the two-step modulus-based method (TSMSOR) [42]. In fact, this section numerically
compares the new modulus schemes with the previous two efficient methods by presenting two examples
related to the LCP. Numerical calculations of this section are performed in Matlab R2018a on a PC with an
Intel(R), Core(TM), 2.80 GHz CPU, and 16.00 GB memory. The norm of absolute residual vectors (RES) is
calculated from the following equation

RES(z(k)) :=∥ min(Az(k) + q, z(k)) ∥2 .

In our numerical computations, Λ =
1

2α
D and initial vectors are x(0) = y(0) = [1, 0, 1, 0, ...]T. The condition

for terminating the operation is that RES(z(k)) ⩽ 10−5 or IT > 104. Tables 2-13 show that the efficiency of the
presented methods in terms of CPU time and iteration steps (IT).

M. Bashirizadeh, M. Hajarian / Filomat 38:13 (2024), 4495–4509 4503

Table 1: Methods.

Abbreviation Description
MSOR The modulus-based successive overrelaxation method

TSMSOR The two-step modulus-based successive overrelaxation method
MSOR I The modulus-based successive overrelaxation method I
MSOR II The modulus-based successive overrelaxation method II

Example 5.1. [2] Consider the LCP(q,A), such that q = −Az∗ ∈ Rn,A ∈ Rn×n is given by A = Â + ηI (η ≥ 0),
where Â = Tridia1(−I,T,−I) ∈ Rn×n is a block-tridiagonal matrix and T = tridia1(−1, 4,−1) ∈ Rm×m is a tridiagonal
matrix. Let I ∈ Rm×m be the identity matrix, m be a prescribed positive integer (n = m2), and z∗ = (1, 2, 1, 2, ...)T

∈ Rn

be the unique solution of the LCP(q,A).

Example 5.2. [2] Assume LCP(q,A), in which A = Â + ηI (η ≥ 0) ∈ Rn×n, q = −Az∗ ∈ Rn, and

Â = Tridia1(−0.5I,T,−1.5I) ∈ Rn×n, z∗ = (1, 2, 1, 2, ...)T
∈ Rn.

Note that, I ∈ Rm×m is a identity matrix, Â is a block-tridiagonal matrix, and T = tridia1(−0.5, 4,−1.5) ∈ Rm×m (n =
m2) is a tridiagonal matrix.

Table 2: Numerical results for Example 5.1 with η = 0.3, α = 1
m=40 m=60 m=80

method CPU IT RES CPU IT RES CPU IT RES
MSOR 0.014203 202 9.9533e-06 0.041059 265 9.6548e-06 0.087162 313 9.3994e-06
TSMSOR 0.014991 145 9.557e-06 0.038901 149 9.9922e-06 0.062515 152 9.635e-06
MSOR I 0.0074389 69 9.6383e-06 0.019085 73 8.7244e-06 0.032044 75 8.8927e-06
MSOR II 0.0060319 63 8.5995e-06 0.017948 66 8.9132e-06 0.029976 68 8.7172e-06

Table 3: Numerical results for Example 5.1 with η = 0.5, α = 1
m=40 m=60 m=80

method CPU IT RES CPU IT RES CPU IT RES
MSOR 0.0088783 175 8.9822e-06 0.036766 206 9.7829e-06 0.068805 216 9.8297e-06
TSMSOR 0.0086499 93 9.355e-06 0.024855 95 9.7163e-06 0.045385 97 9.0636e-06
MSOR I 0.0060772 45 9.4156e-06 0.012775 47 9.1266e-06 0.021676 48 9.7012e-06
MSOR II 0.0076159 41 9.2514e-06 0.011992 43 8.4389e-06 0.019876 44 8.7074e-06

Table 4: Numerical results for Example 5.1 with η = 0.7, α = 1
m=40 m=60 m=80

method CPU IT RES CPU IT RES CPU IT RES
MSOR 0.010206 147 9.229e-06 0.027551 158 9.4626e-06 0.064813 162 9.5505e-06
TSMSOR 0.0079852 69 9.8907e-06 0.019922 71 9.1928e-06 0.041699 72 9.2264e-06
MSOR I 0.0036563 34 9.2702e-06 0.011246 36 6.8984e-06 0.01888 36 9.8932e-06
MSOR II 0.0034142 32 6.4082e-06 0.0098037 33 7.0732e-06 0.015924 34 6.3822e-06

M. Bashirizadeh, M. Hajarian / Filomat 38:13 (2024), 4495–4509 4504

Table 5: Numerical results for Example 5.1 with η = 3.5, α = 1
m=40 m=60 m=80

method CPU IT RES CPU IT RES CPU IT RES
MSOR 0.0027169 44 8.6675e-06 0.0058596 45 8.1691e-06 0.0081555 45 9.6728e-06
TSMSOR 0.0018238 21 5.8533e-06 0.0040521 21 7.384e-06 0.0062207 21 8.6479e-06
MSOR I 0.0015698 19 4.8774e-06 0.0034413 19 6.0469e-06 0.0056848 19 7.0267e-06
MSOR II 0.00095067 12 4.6499e-06 0.002375 12 5.8758e-06 0.0038594 12 6.898e-06

Table 6: Numerical results for Example 5.1 with η = 4, α = 1
m=40 m=60 m=80

method CPU IT RES CPU IT RES CPU IT RES
MSOR 0.0017749 40 9.754e-06 0.0044807 41 8.8566e-06 0.0073955 42 7.4072e-06
TSMSOR 0.0013835 19 7.3784e-06 0.0035522 19 9.2882e-06 0.0057737 20 5.3299e-06
MSOR I 0.001333 18 9.9184e-06 0.0035424 19 5.4304e-06 0.0055199 19 6.3119e-06
MSOR II 0.0009714 12 2.6845e-06 0.0024541 12 3.3819e-06 0.0037494 12 3.9594e-06

Table 7: Numerical results for Example 5.2 with η = 0, α = 1
m=40 m=60 m=80

method CPU IT RES CPU IT RES CPU IT RES
MSOR 0.013199 362 9.2868e-06 0.049045 534 8.2085e-06 0.1297 706 8.2807e-06
TSMSOR 0.015807 260 9.7408e-06 0.054206 359 9.7217e-06 0.1254 455 9.3162e-06
MSOR I 0.0082556 102 9.5735e-06 0.020914 141 9.3453e-06 0.049532 179 8.1879e-06
MSOR II 0.0062241 98 9.7146e-06 0.020326 137 7.5949e-06 0.048455 173 9.5097e-06

Table 8: Numerical results for Example 5.2 with η = 1.5, α = 1
m=40 m=60 m=80

method CPU IT RES CPU IT RES CPU IT RES
MSOR 0.0079819 221 9.9758e-06 0.02866 318 8.4362e-06 0.074263 414 8.3525e-06
TSMSOR 0.0026056 40 9.8988e-06 0.0064847 41 9.401e-06 0.012097 42 8.0885e-06
MSOR I 0.0014357 20 9.0126e-06 0.0037352 21 7.2587e-06 0.0068463 22 4.8954e-06
MSOR II 0.0015195 21 5.5619e-06 0.0035743 21 9.9306e-06 0.0066503 22 6.9076e-06

Table 9: Numerical results for Example 5.2 with η = 2, α = 1
m=40 m=60 m=80

method CPU IT RES CPU IT RES CPU IT RES
MSOR 0.0056108 190 9.5561e-06 0.028226 267 9.9078e-06 0.05659 343 8.8948e-06
TSMSOR 0.0021659 32 9.7419e-06 0.0060596 33 8.3303e-06 0.0099434 33 9.8878e-06
MSOR I 0.0014027 19 5.4095e-06 0.0033454 19 6.7773e-06 0.0064628 19 7.9697e-06
MSOR II 0.0012554 17 7.7318e-06 0.0031051 18 5.4474e-06 0.0057595 18 7.7406e-06

Table 12: Numerical results for Example 5.1 with η = 3.5

α 0.8 0.9 0.95 1.1 1.15 1.2
m method

CPU 0.0010915 0.0014209 0.0017426 0.0061626 0.021346 0.093148
MSOR IT 18 24 32 137 487 2082

RES 8.0541e-06 8.6027e-06 7.8723e-06 9.77e-06 9.6719e-06 9.6719e-06

M. Bashirizadeh, M. Hajarian / Filomat 38:13 (2024), 4495–4509 4505

CPU 0.0010162 0.0012625 0.0014888 0.0054068 0.080815 0.78486
50 TSMSOR IT 9 12 15 62 1030 10000

RES 8.1703e-06 3.5731e-06 7.5305e-06 9.3028e-06 9.9506e-06 530.3494

CPU 0.0016954 0.0018042 0.00176 0.001688 0.0017189 0.0018935
MSOR I IT 16 18 19 18 18 20

RES 6.6153e-06 7.185e-06 5.0884e-06 7.9623e-06 9.211e-06 2.6353e-06

CPU 0.0015877 0.0015133 0.0012532 0.0015623 0.0016836 0.0020135
MSOR II IT 15 13 12 15 18 21

RES 4.7957e-06 2.8448e-06 2.7972e-06 7.6473e-06 4.837e-06 6.8795e-06
CPU 0.0034036 0.0034782 0.0084237 0.015862 0.069159 0.29493

MSOR IT 19 25 32 140 636 2896
RES 4.6438e-06 5.7715e-06 9.5697e-06 9.7618e-06 9.5786e-06 9.7433e-06

CPU 0.0024455 0.0028201 0.0038403 0.012015 0.20916 1.7876
70 TSMSOR IT 10 12 15 63 1172 10000

RES 1.846e-06 4.2932e-06 9.0608e-06 9.3241e-06 9.9496e-06 755.8766

CPU 0.003621 0.0039744 0.0042917 0.0041269 0.0040158 0.0041891
MSOR I IT 16 18 19 19 19 20

RES 8.0885e-06 8.5842e-06 6.0751e-06 3.9848e-06 5.1501e-06 3.2168e-06

CPU 0.0034044 0.002949 0.0028256 0.0034181 0.0039029 0.0044569
MSOR II IT 15 13 12 15 18 21

RES 6.9885e-06 4.1617e-06 4.0076e-06 9.2558e-06 5.8741e-06 8.3775e-06
CPU 0.0044449 0.0061094 0.0070129 0.026873 0.13217 0.61288

MSOR IT 19 25 33 142 780 3711
RES 6.1297e-06 6.6259e-06 7.0732e-06 9.6644e-06 9.4569e-06 9.7062e-06

CPU 0.0040929 0.0046067 0.0058149 0.020064 0.36385 2.9039
90 TSMSOR IT 10 12 16 64 1242 10000

RES 2.4323e-06 4.9088e-06 4.1577e-06 8.8064e-06 9.9897e-06 981.2911

CPU 0.0058035 0.0064307 0.0066506 0.006735 0.0066679 0.0071236
MSOR I IT 16 18 19 19 19 20

RES 9.4233e-06 9.7853e-06 6.9226e-06 4.8531e-06 6.3728e-06 3.7436e-06

CPU 0.0055862 0.0050182 0.0046303 0.0059046 0.0064255 0.0074793
MSOR II IT 15 13 12 16 18 21

RES 9.1813e-06 5.4787e-06 5.2177e-06 3.8897e-06 6.7538e-06 9.6457e-06

Table 13: Numerical results for Example 5.2 with η = 3.5

α 0.8 0.9 0.95 1.1 1.15 1.2
m method

CPU 0.0011779 0.0020656 0.0026346 0.01968 0.42468 0.44467
MSOR IT 22 38 56 396 10000 10000

RES 4.8084e-06 6.926e-06 9.3849e-06 8.2941e-06 6.0353 0.021466

M. Bashirizadeh, M. Hajarian / Filomat 38:13 (2024), 4495–4509 4506

CPU 0.0010359 0.0012458 0.0015832 0.0059311 0.029062 0.80006
50 TSMSOR IT 9 12 16 68 371 10000

RES 4.3112e-06 6.7146e-06 6.2631e-06 9.5973e-06 9.7555e-06 499.5819

CPU 0.0016805 0.0017601 0.0017686 0.0017679 0.0019381 0.002216
MSOR I IT 17 19 19 19 21 24

RES 7.8918e-06 6.7311e-06 8.4167e-06 7.7204e-06 8.6589e-06 7.9348e-06

CPU 0.0016289 0.0016188 0.0013688 0.0012033 0.0012854 0.0014046
MSOR II IT 17 15 14 11 12 14

RES 6.3169e-06 3.7295e-06 3.2904e-06 4.3575e-06 5.25e-06 4.4195e-06
CPU 0.0032136 0.0048193 0.0072019 0.058198 1.0172 1.0152

MSOR IT 22 38 57 538 10000 10000
RES 6.7985e-06 8.6173e-06 9.3184e-06 9.5697e-06 319.7292 221.9894

CPU 0.0024762 0.0027987 0.0035058 0.013215 0.085615 1.7646
70 TSMSOR IT 9 12 16 70 480 10000

RES 6.3853e-06 8.0803e-06 7.562e-06 8.2442e-06 9.7698e-06 709.7413

CPU 0.0040719 0.0040687 0.0041507 0.0041543 0.0046666 0.0048573
MSOR I IT 18 19 20 19 22 24

RES 4.2258e-06 8.051e-06 4.6503e-06 9.3375e-06 4.1914e-06 9.5505e-06

CPU 0.0039097 0.0033813 0.0030813 0.0025702 0.003116 0.0031086
MSOR II IT 17 15 14 11 12 14

RES 9.33e-06 5.5377e-06 4.8988e-06 5.8849e-06 6.2969e-06 5.3062e-06
CPU 0.0054165 0.008449 0.011466 0.11478 1.6477 1.652

MSOR IT 22 39 58 681 10000 10000
RES 8.7769e-06 6.8554e-06 8.5487e-06 8.892e-06 634.992 609.0909

CPU 0.0037938 0.0046769 0.0059422 0.021642 0.16976 2.9319
90 TSMSOR IT 9 12 16 70 584 10000

RES 8.4592e-06 9.2464e-06 8.6684e-06 9.7124e-06 9.6765e-06 919.4969

CPU 0.0064268 0.0066812 0.0070438 0.006983 0.0074798 0.0083884
MSOR I IT 18 17 20 20 22 25

RES 5.2588e-06 9.1831e-06 5.2987e-06 4.358e-06 4.7879e-06 4.1849e-06

CPU 0.0064258 0.0055416 0.005317 0.0043567 0.0046607 0.0052042
MSOR II IT 18 15 14 11 12 14

RES 4.7993e-06 7.3457e-06 6.5071e-06 7.4054e-06 7.1935e-06 6.0646e-06

Tables 2 to 11 report three parameters: CPU time (CPU), iteration steps (IT), and residual (RES), for
symmetric and nonsymmetric Examples 5.1, 5.2, and α = 1. The following results can be seen:

1. As the size of the problem increases with a constant η, the CPU time and IT for all the mentioned
methods increase. In essence, the superiority of the newly proposed methods is maintained with an
increase in the problem size.

2. With an increase in the value of η, it can be seen that the CPU and IT decrease.
3. The proposed methods exhibit nearly three times better performance than the MSOR method and 1.5

times better performance than the TSMSOR method.

M. Bashirizadeh, M. Hajarian / Filomat 38:13 (2024), 4495–4509 4507

Table 10: Numerical results for Example 5.2 with η = 3.5, α = 1
m=40 m=60 m=80

method CPU IT RES CPU IT RES CPU IT RES
MSOR 0.0037872 99 9.6179e-06 0.0099387 103 9.4803e-06 0.016687 105 9.375e-06
TSMSOR 0.0016322 22 7.0793e-06 0.0038406 22 9.0081e-06 0.006843 23 5.615e-06
MSOR I 0.0013923 19 4.7351e-06 0.003565 19 5.8404e-06 0.0058009 19 6.77e-06
MSOR II 0.00095573 12 8.1282e-06 0.0025592 13 3.911e-06 0.0043146 13 5.4558e-06

Table 11: Numerical results for Example 5.2 with η = 4, α = 1
m=40 m=60 m=80

method CPU IT RES CPU IT RES CPU IT RES
MSOR 0.0031098 80 8.6388e-06 0.0083771 82 9.0801e-06 0.013386 83 9.5347e-06
TSMSOR 0.0016004 20 8.0737e-06 0.0035757 21 5.0998e-06 0.0067784 21 5.9901e-06
MSOR I 0.0013663 19 4.6341e-06 0.0032135 19 5.7216e-06 0.0063392 19 6.6359e-06
MSOR II 0.0008787 11 8.7877e-06 0.002270 12 3.8597e-06 0.004298 12 5.3642e-06

4. It’s noteworthy that for α = 1, the modulus-based SOR method reduces to the modulus-based Gauss-
Seidel method.

From Tables 12 and 13 for different values of α , 1, constant η, and different sizes of the problem, it can be
seen that:

1. The proposed methods for α > 1 demonstrate significantly better performance compared to previous
methods in terms of CPU time and IT. This superiority remains valid with an increase in problem
sizes.

2. Moreover, for some α-values, MSOR and TSMSOR methods exhibit divergence, while the proposed
methods demonstrate convergence. In other words, the new methods have a wider range of conver-
gence.

Overall, the numerical results indicate that the proposed methods (MSOR I, MSOR II) outperform other
mentioned methods in terms of CPU time and iteration steps (IT).

6. Conclusions

This paper presented two efficient methods for solving the linear complementarity problem. The
convergence of these methods was discussed when the system matrix was an H+-matrix. The numerical
results confirmed the efficiency of the new methods by comparing them with the modulus-based method
[2] and two-step modulus-based method [42].

Acknowledgements

The authors are deeply indebted to the editor and an anonymous reviewer for their constructive com-
ments and suggestions.

References

[1] Z.-Z. Bai. On the convergence of the multisplitting methods for the linear complementarity problem. SIAM Journal on Matrix
Analysis and Applications, 21(1):67–78, 1999.

[2] Z.-Z. Bai. Modulus-based matrix splitting iteration methods for linear complementarity problems. Numerical Linear Algebra with
Applications, 17(6):917–933, 2010.

[3] Z.-Z. Bai, A. Buccini, K. Hayami, L. Reichel, J.-F. Yin, and N. Zheng. Modulus-based iterative methods for constrained tikhonov
regularization. Journal of Computational and Applied Mathematics, 319:1–13, 2017.

M. Bashirizadeh, M. Hajarian / Filomat 38:13 (2024), 4495–4509 4508

[4] Z.-Z. Bai and D. Evans. Matrix multisplitting methods with applications to linear complementarity problems: parallel syn-
chronous and chaotic methods. Calculateurs Parallèles Réseaux et Systèmes Répartis, 13(1):125–141, 2001.

[5] Z.-Z. Bai and D. J. Evans. Matrix multisplitting relaxation methods for linear complementarity problems. International Journal of
Computer Mathematics, 63(3-4):309–326, 1997.

[6] Z.-Z. Bai and L.-L. Zhang. Modulus-based synchronous multisplitting iteration methods for linear complementarity problems.
Numerical Linear Algebra with Applications, 20(3):425–439, 2013.

[7] M. Bashirizadeh and M. Hajarian. Two-step two-sweep modulus-based matrix splitting iteration method for linear complemen-
tarity problems. Numerical Mathematics: Theory, Methods & Applications, 15(3), 2022.

[8] A. Berman and R. J. Plemmons. Nonnegative Matrices in the Mathematical Sciences, volume 9. SIAM, 1994.
[9] R. W. Cottle, J.-S. Pang, and R. E. Stone. The linear complementarity problem. SIAM, 2009.

[10] C. W. Cryer. The solution of a quadratic programming problem using systematic overrelaxation. SIAM Journal on Control,
9(3):385–392, 1971.

[11] M. Dehghan and M. Hajarian. Convergence of SSOR methods for linear complementarity problems. Operations Research Letters,
37(3):219–223, 2009.

[12] M. Dehghan and M. Hajarian. Two class of synchronous matrix multisplitting schemes for solving linear complementarity
problems. Journal of Computational and Applied Mathematics, 235(15):4325–4336, 2011.

[13] J.-L. Dong and M.-Q. Jiang. A modified modulus method for symmetric positive-definite linear complementarity problems.
Numerical Linear Algebra with Applications, 16(2):129–143, 2009.

[14] K. Fan. Topological proofs for certain theorems on matrices with non-negative elements. Monatshefte für Mathematik, 62(3):219–237,
1958.

[15] X. Fang. The convergence of the modulus-based jacobi (MJ) iteration method for solving horizontal linear complementarity
problems. Computational and Applied Mathematics, 41(4):1–16, 2022.

[16] M. C. Ferris and J.-S. Pang. Engineering and economic applications of complementarity problems. SIAM Review, 39(4):669–713,
1997.

[17] A. Frommer and G. Mayer. Convergence of relaxed parallel multisplitting methods. Linear Algebra and its Applications, 119:141–152,
1989.

[18] L. Gao, Y. Wang, C. Li, and Y. Li. Error bounds for linear complementarity problems of S-Nekrasov matrices and B-S-Nekrasov
matrices. Journal of computational and Applied Mathematics, 336:147–159, 2018.

[19] A. Hadjidimos and M. Tzoumas. Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity
problem. Linear Algebra and its Applications, 431(1-2):197–210, 2009.

[20] M. Hajarian. The PMCGAOR and PMCSSOR methods for solving linear complementarity problems. Computational and Applied
Mathematics, 34(1):251–264, 2015.

[21] B. Huang and C. Ma. Accelerated modulus-based matrix splitting iteration method for a class of nonlinear complementarity
problems. Computational and Applied Mathematics, 37(3):3053–3076, 2018.

[22] Z.-G. Huang and J.-J. Cui. Accelerated relaxation modulus-based matrix splitting iteration method for linear complementarity
problems. Bulletin of the Malaysian Mathematical Sciences Society, 44(4):2175–2213, 2021.

[23] Y.-F. Ke and C.-F. Ma. On the convergence analysis of two-step modulus-based matrix splitting iteration method for linear
complementarity problems. Applied Mathematics and Computation, 243:413–418, 2014.

[24] C. E. Lemke and J. T. Howson, Jr. Equilibrium points of bimatrix games. Journal of the Society for industrial and Applied Mathematics,
12(2):413–423, 1964.

[25] C.-L. Li and J.-T. Hong. Modulus-based synchronous multisplitting iteration methods for an implicit complementarity problem.
EAST Asian Journal on Applied Mathematics, 7(2):363–375, 2017.

[26] D.-K. Li, L. Wang, and Y.-Y. Liu. A relaxation general two-sweep modulus-based matrix splitting iteration method for solving
linear complementarity problems. Journal of Computational and Applied Mathematics, 409:114140, 2022.

[27] W. Li. A general modulus-based matrix splitting method for linear complementarity problems of H-matrices. Applied Mathematics
Letters, 26(12):1159–1164, 2013.

[28] Z. Li, Y. Ke, H. Zhang, and R. Chu. SOR-like iteration methods for second-order cone linear complementarity problems. East
Asian Journal on Applied Mathematics, 10(2):295–315, 2020.

[29] F. Mezzadri. On the equivalence between some projected and modulus-based splitting methods for linear complementarity
problems. Calcolo, 56(4):1–20, 2019.

[30] F. Mezzadri and E. Galligani. Modulus-based matrix splitting methods for horizontal linear complementarity problems. Numerical
Algorithms, 83(1):201–219, 2020.

[31] H. Ren, X. Wang, X.-B. Tang, and T. Wang. The general two-sweep modulus-based matrix splitting iteration method for solving
linear complementarity problems. Computers & Mathematics with Applications, 77(4):1071–1081, 2019.

[32] H. Ren, X. Wang, X.-B. Tang, and T. Wang. A preconditioned general two-step modulus-based matrix splitting iteration method
for linear complementarity problems of H+-matrices. Numerical Algorithms, 82(3):969–986, 2019.

[33] Q. Shi, Q.-Q. Shen, and T.-P. Tang. A class of two-step modulus-based matrix splitting iteration methods for quasi-
complementarity problems. Computational and Applied Mathematics, 39(1):1–23, 2020.

[34] R. S.Varga. Matrix Iterative Analysis. Prentice-Hall, 1962.
[35] W. M. G. Van Bokhoven. Piecewise-linear modelling and analysis. Proefschrift: Eindhoven, 1981.
[36] B. Wang, X. Wu, and F. Meng. Trigonometric collocation methods based on lagrange basis polynomials for multi-frequency

oscillatory second-order differential equations. Journal of Computational and Applied Mathematics, 313:185–201, 2017.
[37] Z. I. Woznicki. Nonnegative splitting theory. Japan Journal of Industrial and Applied Mathematics, 11(2):289–342, 1994.
[38] S.-L. Wu and C.-X. Li. Two-sweep modulus based matrix splitting iteration methods for linear complementarity problems. Journal

of Computational and Applied Mathematics, 302:327–339, 2016.

M. Bashirizadeh, M. Hajarian / Filomat 38:13 (2024), 4495–4509 4509

[39] Y.-J. Wu, G.-L. Yan, and A.-L. Yang. Modulus-based synchronous multisplitting iteration methods for a restricted class of
nonlinear complementarity problems. Numerical Mathematics: Theory, Methods & Applications, 12(3), 2019.

[40] Z. Xia and C. Li. Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problem. Applied
Mathematics and Computation, 271:34–42, 2015.

[41] D. M. Young. Iterative Solution of Large Linear Systems. Academic Press, New York, 1971.
[42] L.-L. Zhang. Two-step modulus-based matrix splitting iteration method for linear complementarity problems. Numerical

Algorithms, 57(1):83–99, 2011.
[43] L.-L. Zhang and Z.-R. Ren. Improved convergence theorems of modulus-based matrix splitting iteration methods for linear

complementarity problems. Applied Mathematics Letters, 26(6):638–642, 2013.
[44] L.-T. Zhang, Y.-X. Zhang, T.-X. Gu, X.-P. Liu, and L.-W. Zhang. New convergence of modulus-based synchronous block multi-

splitting multi-parameter methods for linear complementarity problems. Computational and Applied Mathematics, 36(1):481–492,
2017.

[45] H. Zheng and L. Liu. A two-step modulus-based matrix splitting iteration method for solving nonlinear complementarity
problems of H+-matrices. Computational and Applied Mathematics, 37(4):5410–5423, 2018.

[46] H. Zheng and S. Vong. On the modulus-based successive overrelaxation iteration method for horizontal linear complementarity
problems arising from hydrodynamic lubrication. Applied Mathematics and Computation, 402:126165, 2021.

[47] H. Zheng, S. Vong, and L. Liu. The relaxation modulus-based matrix splitting iteration method for solving a class of nonlinear
complementarity problems. International Journal of Computer Mathematics, 96(8):1648–1667, 2019.

