Filomat 38:14 (2024), 4991–5001 https://doi.org/10.2298/FIL2414991M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

L^p **geominimal Gaussian surface area**

Shuang Mou^a

^aSchool of Mathematics and Statistics, Shaanxi Normal University Xi'an, 710119, China

Abstract. In this paper, we study the L_p geominimal Gaussian surface area for $p \ge 1$. We prove some properties of the *L^p* geominimal Gaussian surface area, such as continuity and Santalo style inequality. ´ Moreover, we obtain that the opposite question of continuity of the *L^p* geominimal Gaussian surface area is also continuous.

1. Introduction

In this paper, we will work in the *n*-dimensional Euclidean space, \mathbb{R}^n , and write $x = (x_1, \dots, x_n)$ for $x \in \mathbb{R}^n$. For $x, y \in \mathbb{R}^n$, we write $x \cdot y = x_1y_1 + \cdots + x_ny_n$ for the standard inner product of x and y, let $|x| = \sqrt{x \cdot x}$ for the Euclidean norm of *x*. A set $K \subset \mathbb{R}^n$ is convex if $\lambda x + (1 - \lambda)y \in K$ for all $x, y \in K$ and each $\lambda \in [0, 1]$. A convex subset $K \subset \mathbb{R}^n$ is a convex body if *K* is compact and has nonempty interior. Let \mathcal{K}^n , \mathcal{K}_0^n , \mathcal{K}_c^n and \mathcal{K}_s^n denote the class of all convex bodies in \mathbb{R}^n , the class of all convex bodies containing the origin *o* in their interiors, the class of all convex bodies with their centroid at origin *o*, and the set of all convex bodies with their Santaló point at origin o . Let $|K|$ denote the *n*-dimensional volume of a convex body K . For $K \in \mathcal{K}_0^n$, the geominimal surface area *G*(*K*) of *K* was firstly introduced by Petty [18] more than five decades ago, i.e.,

$$
G(K) = \inf \left\{ \int_{S^{n-1}} h(Q, u) dS(K, u) : Q \in \mathcal{K}_s^n \text{ and } |Q^*| = \omega_n \right\},\tag{1}
$$

where *Q*[∗] is the polar body of *Q*, *S*(*K*, ·) is the surface area of the convex body *K* and *h*(*Q*, ·) is the support function (see Section 2). In [18], Petty proved the existence and uniqueness to the solution of the optimal problem (1). As Petty stated the geominimal surface area serves as a bridge connecting affine differential geometry, relative differential geometry and Minkowski geometry. This implies that the geominimal surface area is one of the basic concepts in Brunn-Minkowski theory.

With the development of *L^p* Brunn-Minkowski theory and motivated by the *L^p* mixed volume, the classical geominimal surface area has been extended to L_p case by Lutwak [13] (for $p \ge 1$). Using the L_p affine surface area integral formula, Ye [20] introduced the *L^p* geominimal surface area for all −*n* , *p* < 1. Moreover, Zhu, Zhou and Xu [25] extended the *L^p* geominimal surface area to the *L^p* mixed geominimal

Communicated by Dijana Mosic´

²⁰²⁰ *Mathematics Subject Classification*. 52A20, 52A39.

Keywords. convex body; geominimal surface area; Gaussian measure.

Received: 23 May 2023; Revised: 30 October 2023; Accepted: 13 November 2023

Research supported by the National Natural Science Foundation of China (No.11971005) and the Fundamental Research Funds for the Central Universities (GK202202007,GK202102012)

Email address: shuangmou92@163.com (Shuang Mou)

surface area and obtained Blaschke-Santaló inequality for the L_p mixed geominimal surface area. Ye, Zhu and Zhou [22] also obtained affine isoperimetric inequalities for the *L^p* mixed geominimal surface area with respect to multiple convex bodies. Recently, Li, Wang and Zhou [6] introduced (*p*, *q*) mixed geominimal surface area and (p, q) mixed affine surface area. For more results for the geominimal surface area, the reader can refer to [1, 5, 6, 8, 9, 11, 12, 15–17, 21, 23, 24, 26].

The Gaussian volume of Borel set *K* is denoted by γ*ⁿ* as follows,

$$
\gamma_n(K) = \frac{1}{(\sqrt{2\pi})^n} \int_K e^{-\frac{|x|^2}{2}} dx.
$$

Huang, Xi and Zhao [4] established the variational formula for the Gaussian volume γ*n*. Recently, Liu [7] extended the variational formula for the Gaussian volume γ_n to the L_p ($p \ge 1$) case:

$$
\lim_{\epsilon \to 0} \frac{\gamma_n(K +_p \epsilon \cdot L) - \gamma_n(L)}{\epsilon} = \frac{1}{p} \int_{S^{n-1}} h(L, u)^p dS_{\gamma_n, p}(K, u), \tag{2}
$$

where $S_{\gamma_n,p}(K, \cdot)$ is the L_p Gaussian surface area of *K* (see Section 2).

Utilizing the relationship between the geominimal surface area and the L_p variational formula for the Gaussian volume γ_n , we discuss the geominimal L_p Gaussian surface area, i.e., whether there exists $M \in \mathcal{K}_0^n$ with $|M^*| = \omega_n$ such that it is the unique solution for the following optimal problem

$$
\inf \left\{ \int_{S^{n-1}} h(Q, u)^p dS_{\gamma_n, p}(K, u) : Q \in \mathcal{K}_0^n \text{ and } |Q^*| = \omega_n \right\}?
$$
 (3)

The main aim of this paper is to solve the solution of the optimal problem (3).

Theorem 1.1. Let $K \in \mathcal{K}_0^n$. Then there is a unique convex body $M \in \mathcal{K}_0^n$ with $|M^*| = \omega_n$ such that

$$
\int_{S^{n-1}}h(M,u)^p dS_{\gamma_n,p}(K,u)=\inf\left\{\int_{S^{n-1}}h(Q,u)^p dS_{\gamma_n,p}(K,u):Q\in \mathcal{K}_0^n,|Q^*|=\omega_n\right\}.
$$

The solution *M* of Theorem 1.1 is usually called the L_p Gaussian Petty body. Let $K \in \mathcal{K}_c^n$ be a simplex, then the *L_p* Gaussian Petty body *M* and *K* are homothetic. For $K \in \mathcal{K}_0^n$, let

$$
\widetilde{G}_{\gamma_n,p}(K)=\inf\left\{\int_{S^{n-1}}h_L^p(u)dS_{\gamma_n,p,K}(u):L\in\mathcal{K}_c^n, \ |L^*|=\omega_n\right\}.
$$

Since the Gaussian volume γ_n has neither affine invariance nor homogeneity, we obtain that the L_p geominimal Gaussian surface area has neither affine invariance nor homogeneity. Fortunately, the *L^p* geominimal Gaussian surface area is continuous. Moreover, we obtain that the opposite question of continuity is also continuous.

Theorem 1.2. *For* $p \ge 1$ *. Let* K , $K_i \in \mathcal{K}_c^n$ *be simplexes and let* $\alpha > 0$ *satisfying* $|K_i^*|$ $|X_i^*| = \alpha$ *and* $|K^*| = \alpha$. If $G_{\gamma_n,p}(K_i) \to G_{\gamma_n,p}(K)$, then $K_i \to K$.

The organization of this paper is as follows. Section 2 collects some basic concepts and various facts that will be used in the proofs of our results. Section 3 includes the basic properties of the *L^p* variation formula (2) and proves the main result Theorem 1.1. Section 4 proves the continuity of the *L^p* geominimal Gaussian surface area and the *L^p* Gaussian Petty body. Moreover, we will prove the main result Theorem 1.2.

2. Background and Notation

We now introduce the basic well-known facts and standard notations in this section. For more details and more concepts in convex geometry, please see [2, 3, 19].

The Minkowski sum of two Borel sets *K*, *L* is defined by $K + L := \{x + y : x \in K, y \in L\}$. The scalar product of $\lambda \in \mathbb{R}$ and Borel *K* is defined by $\lambda K := \{\lambda x : x \in K\}$. For $K \in \mathcal{K}^n$, the volume radius of *K* is defined by

$$
\text{vrad}(K) = \left(\frac{|K|}{\omega_n}\right)^{1/n}.
$$

The origin-centered unit ball in \mathbb{R}^n is denoted by B_2^n , i.e., $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, and let ω_n denote the volume of B_2^n . Let S^{n-1} denote the unit sphere in \mathbb{R}^n . Let $C(S^{n-1})$ be the set of continuous functions on S^{n-1} . Let ∂*K*, *convK* denote the boundary and the convex hull of *K*, respectively.

For convex set K , it is uniquely determined by the support function h_K of K which is defined by $h_K(u) = \max\{x \cdot u : x \in K\}$, $\forall u \in S^{n-1}$. For $\lambda > 0$ and $K, L \in \mathcal{K}^n$, we obtain $h_{\lambda K} = \lambda h_K$. Moreover, $K \subset L$ if and only if

$$
h_K(u) \le h_L(u), \quad \forall u \in S^{n-1}.
$$
\n
$$
(4)
$$

Let $H(u, t) = \{x : x \cdot u = t\}$ and $H^{-}(u, t) = \{x : x \cdot u \leq t\}$ denote the hyperplane and the closed halfspace. Let *H*(*u*, *h*(*K*, *u*)) and *H*[−] (*u*, *h*(*K*, *u*)) be respectively, the support plane and the support halfspace of *K*, with outer normal vector *u*. Obviously, for $K \in \mathcal{K}^n$, one has $K = \bigcap_{u \in S^{n-1}} H^-(u, h(K, u))$. If there are finite outer normal vectors such that $K = \bigcap_{i=1}^m H^-(u_i, h(K, u_i))$, then *K* is called polytope. Given a polytope *P*, a face of *P* is the intersection of *P* with a supporting hyperplane. A face of (*n* − 1)-dimension is called a facet, and the outer normal vector of the facet is called the facet normal vector.

For the class \mathcal{K}^n , we consider the topology generated by the Hausdorff metric $d_H(\cdot, \cdot)$. Here $d_H(K, L)$ is defined by

$$
d_H(K,L) = ||h_K - h_L||_{\infty} = \sup_{u \in S^{n-1}} |h_K(u) - h_L(u)|,
$$

for *K*, *L* ∈ K^n . Given *K* ∈ K^n and any Borel set $\omega \subset S^{n-1}$, the surface area measure *S*(*K*, ·) is defined by

$$
S(K,\omega)=\int_{\nu_K^{-1}(\omega)}d\mathcal{H}^{n-1},
$$

where $\mathbf{v}_K^{-1}(\omega)$ is the reverse Gauss image of ω and \mathcal{H}^{n-1} is the $(n-1)$ -dimensional Hausdorff measure. Moreover, for any $K \in \mathcal{K}^n$, there is an integral formula for volume, that is,

$$
|K| = \frac{1}{n} \int_{S^{n-1}} h_K(u) dS(K, u).
$$
 (5)

Let $l_u = \{tu : t \ge 0\}$ for $u \in S^{n-1}$. The set $L \subset \mathbb{R}^n$ is star-shaped with respect to the origin, if for each *u* ∈ S^{n-1} , the set *L* ∩ *l*_{*u*} is a closed line segment containing the origin. The radial function ρ_L : S^{n-1} → [0, ∞) of star-shaped set *L*, with respect to the origin, is defined by

$$
\rho_L(u) = \max\{\lambda \ge 0 : \lambda u \in L\}, \ \forall u \in S^{n-1}.
$$

A compact star-shaped set with respect to the origin is uniquely determined by its radial function. If ρ*^L* is positive and continuous on S^{n-1} , then star-shaped set *L* is called star body with respect to the origin. Let I_0^n be the set of all star bodies with respect to the origin. Clearly, the radial function of $K \in \mathcal{K}_0^n$ is continuous and positive, i.e., $\mathcal{K}_0^n \subset \mathcal{I}_0^n$. If $K \in \mathcal{I}_0^n$, then

$$
\partial K = \{\rho_K(u)u : u \in S^{n-1}\}.
$$

It is well known that (e.g., see [19]) for any $K \in \mathcal{K}_0^n$ and for all $u \in S^{n-1}$,

$$
h_{K^*}(u) = \frac{1}{\rho_K(u)}
$$
 and $\rho_{K^*}(u) = \frac{1}{h_K(u)}$, (6)

where *K* ∗ is the polar body of *K*, is defined by

$$
K^* = \{x \in \mathbb{R}^n : x \cdot y \le 1, \text{ for all } y \in K\}.
$$

The radial metric is defined by

$$
d_\rho(K,L)=\|\rho_K-\rho_L\|_\infty=\sup_{u\in S^{n-1}}|\rho_K(u)-\rho_L(u)|,
$$

for $K, L \in \mathcal{I}_0^n$. We shall use the fact that the Hausdorrf metric and the radial metric are topologically equivalent on \mathcal{K}_0^n . We say that the sequence $\{K_i\}_{i\geq 1} \subset \mathcal{K}_0^n$ converges to a convex body $K_0 \in \mathcal{K}_0^n$ (write as $K_i \to K_0$), if $d_H(K_i, K_0) \to 0$ as $i \to \infty$. Obviously, according to the fact that $d_H(K_i, K_0) \to 0$ if and only if $d_p(K_i, K_0) \to 0$, and (6), we have

$$
K_i \to K_0 \Leftrightarrow K_i^* \to K_0^*.
$$
 (7)

For each real $p \ge 1$ and $a, b > 0$, the compact set $a \cdot K +_p b \cdot L \in \mathcal{K}_0^n$ is called the Minkowski-Firey L_p combination of $K, L \in \mathcal{K}_0^n$, which is introduced by Firey (see, e.g., [19]) and is defined by

$$
h_{a \cdot K +_{p} b \cdot L}^{p}(\cdot) = ah_{K}^{p}(\cdot) + bh_{L}^{p}(\cdot).
$$
\n(8)

For each $p \in \mathbb{R} \setminus \{0\}$ and $a, b > 0$, the compact set $a \circ K \mathfrak{F}_p b \circ L \in \mathcal{I}_0^n$ is called the radial L_p combination of *K*, *L* $\in \mathcal{I}_{0}^{n}$, which is defined by

$$
\rho_{a \circ K \ddot{\tau}_p b \circ L}^p(\cdot) = a \rho_K^p(\cdot) + b \rho_L^p(\cdot). \tag{9}
$$

Note that for convex bodies $K, L \in \mathcal{K}_0^n$ it follows from (6), (8) and (9) that

$$
K \tilde{+}_{-p} L = (K^* +_p L^*)^* \text{ for } p \ge 1.
$$
 (10)

The Gaussian volume of Borel set *K* is denoted by γ*n*,

$$
\gamma_n(K)=\frac{1}{(\sqrt{2\pi})^n}\int_K e^{-\frac{|x|^2}{2}}dx.
$$

Huang, Xi and Zhao [4] established the variational formula for the Gaussian volume γ*n*. Recently, Liu [7] extended the variational formula for the Gaussian volume γ_n to the L_p ($p \ge 1$) case:

$$
\lim_{\epsilon \to 0} \frac{\gamma_n (K +_p \epsilon \cdot L) - \gamma_n (L)}{\epsilon} = \frac{1}{p} \int_{S^{n-1}} h(L, u)^p dS_{\gamma_n, p}(K, u), \tag{11}
$$

where $S_{\gamma_n,p}(K, \cdot)$ is the L_p Gaussian surface area measure of *K*, i.e., which is defined by

$$
S_{\gamma_n, p}(K, \omega) = \frac{1}{(\sqrt{2\pi})^n} \int_{\nu_K^{-1}(\omega)} e^{-\frac{|x|^2}{2}} (x \cdot \nu_K(x))^{1-p} d\mathcal{H}^{n-1}(x).
$$
 (12)

For $p = 1$, the L_1 Gaussian surface area measure of the convex body *K* is $S_{\gamma_n}(K, \cdot)$. The L_p Gaussian surface area measure $S_{\gamma_n,p}(K, \cdot)$ of *K* has some basic properties.

(1). $dS_{\gamma_n,p}(K, \cdot) = h(K, \cdot)^{1-p} dS_{\gamma_n}(K, \cdot).$

(2). It is absolutely continuous with respect to (*n* − 1)-dimensional Hausdorff measure.

(3). It is not concentrated on any closed hemisphere, i.e., for all $v \in S^{n-1}$, there exists a constant $c > 0$ such that

$$
\int_{S^{n-1}} (u, v)_+ dS_{\gamma_n, p}(K, u) \ge c,
$$
\n(13)

where $(u \cdot v)_+ = \max\{u \cdot v, 0\}.$

(4). It is a weakly convergent measure, i.e., for K_i , $K_0 \in \mathcal{K}_0^n$, if $K_i \to K_0$, then

$$
\lim_{i\to\infty}\int_{S^{n-1}}f(u)dS_{\gamma_n,p}(K_i,u)=\int_{S^{n-1}}f(u)dS_{\gamma_n,p}(K_0,u),
$$

for all $f \in C(S^{n-1})$.

Moreover, if $\{f_i\}_{i\geq 1} \subset C(S^{n-1})$ converges uniformly to $f_0 \in C(S^{n-1})$ and $K_i \in \mathcal{K}_0^n$ converges to $K_0 \in \mathcal{K}_0^n$ in the Hausdorff distance, and the *L^p* Gaussian surface area measure *S*γ*n*,*p*(*Kⁱ* , ·) converges weakly to *S*γ*n*,*p*(*K*0, ·), we see that

$$
\lim_{i \to \infty} \int_{S^{n-1}} f_i(u) \, dS_{\gamma_n, p}(K_i, u) = \int_{S^{n-1}} f_0(u) \, dS_{\gamma_n, p}(K_0, u). \tag{14}
$$

We also use the following lemmas in the proofs of our main results.

Lemma 2.1. *(see [10]) If* $\{K_i\}_{i\geq 1} \subset \mathcal{K}_0^n$ *is a bounded sequence such that* $\{K_i^k\}_{i=1}^n$ *i* |}*i*≥¹ *is also a bounded sequence, there* e xists a subsequence $\{K_{i_j}\}_{j\geq 1}$ of $\{K_i\}_{i\geq 1}$ and $K\in\mathcal{K}_0^n$ such that $K_{i_j}\to K$. In addition, if $|K_i^*|$ $|K_i^*| = \omega_n$, then $|K^*| = \omega_n$.

Lemma 2.2. *(see[13])* Let $\{K_i\}_{i\geq 1} \subset \mathcal{K}_0^n$ be a convergent sequence with the limit K_0 . If the sequence $\{K_i^n\}$ *i* |}*i*≥¹ *is bounded, then* $K_0 \in \mathcal{K}_0^n$.

3. The *L^p* **geominimal Gaussian surface area**

Firstly, we will prove the continuity of the *L^p* variational formula for the Gaussian volume γ*n*.

Lemma 3.1. For $p \ge 1$. Let $\{K_i\}_{i\ge 1} \subset \mathcal{K}_0^n$ and $\{L_i\}_{i\ge 1} \subset \mathcal{K}_0^n$ be two sequences of convex bodies with $K_i \to K_0 \in \mathcal{K}_0^n$ *and* $L_i \to L_0 \in \mathcal{K}_0^n$ *as i* $\to \infty$ *. Then*

$$
\int_{S^{n-1}} h(L_i, u)^p dS_{\gamma_n, p}(K_i, u) \longrightarrow \int_{S^{n-1}} h(L_0, u)^p dS_{\gamma_n, p}(K_0, u), \text{ as } i \longrightarrow \infty.
$$

Proof. Since $K_i \to K_0 \in \mathcal{K}_0^n$ and $L_i \to L_0 \in \mathcal{K}_0^n$ as $i \to \infty$, then $S_{\gamma_n, p}(K_i, \cdot)$ converges weakly to $S_{\gamma_n, p}(K_0, \cdot)$ and the support function $h_{L_i}(\cdot)$ converges uniformly to $h_{L_0}(\cdot)$, as $i \to \infty$. Thus, an application of (14) completes the proof. \square

Next, we will discuss the boundedness of convex bodies.

Lemma 3.2. Let $\{K_i\}_{i\geq 1} \subset \mathcal{K}_0^n$ and $K \in \mathcal{K}_0^n$ be such that $K_i \to K$ as $i \to \infty$. If $\{L_i\}_{i\geq 1} \subset \mathcal{K}_0^n$ is a sequence such that $\int_{S^{n-1}} h^p(L_i, u)dS_{\gamma_n, p}(K_i, u)$ is uniformly bounded , then the sequence $\{L_i\}_{i\geq 1}$ is uniformly bounded.

Proof. Let $R_i(u_i) = \max\{\rho(L_i, u): u \in S^{n-1}\}\$. Obviously, $[o, R(u_i)u_i] \subset L_i$ and using (4) shows that $R_i(u_i)(u_i \cdot u)_+$ $h(L_i, u)$. Suppose the sequence $\{L_i\}_{i\geq 1}$ is not uniformly bounded, then $R_i(u_i)$ converges to infinity. Thus, given a sufficiently large $M > 0$, there is an integer \dot{N} such that $R_i \geq M$ for all $i > \ddot{N}$. For each sequence ${u_i}_{i \ge 1}$ ⊂ *S*^{*n*−1}, since the sphere *S*^{*n*−1} is a compact set, there is a vector $u_0 \in S^{n-1}$ and the subsequence u_{i_j} of *u*_{*i*} such that $\lim_{j\to\infty} u_{i_j} = u_0$. Using Lemma 3.1, Jessen's inequality, (13) and the boundness of the sequence $\int_{S^{n-1}} h(L_i, u)^p dS_{\gamma_n, p}(K_i, u)$ we obtain that there is a constant $C > 0$ such that

$$
C \geq \lim_{i \to \infty} \int_{S^{n-1}} h_{L_i}^p(u) dS_{\gamma_n, p}(K_i, u)
$$

\n
$$
\geq \lim_{i \to \infty} \int_{S^{n-1}} R_i(u_i)^p(u_i, u)_+^p dS_{\gamma_n, p}(K_i, u)
$$

\n
$$
\geq \lim_{j \to \infty} M^p \int_{S^{n-1}} (u, u_{i_j})_+^p dS_{\gamma_n, p}(K_{i_j}, u)
$$

\n
$$
= M^p S_{\gamma_n, p}(K, S^{n-1}) \left(\frac{1}{S_{\gamma_n, p}(K, S^{n-1})} \int_{S^{n-1}} (u, u_0)_+ dS_{\gamma_n, p}(K, u) \right)^p
$$

\n
$$
\geq M^p S_{\gamma_n, p}^{1-p}(K, S^{n-1}) c^p.
$$

By the arbitrariness of M, let $M \to \infty$, we obtain a contradiction $C \geq \infty$. The proof of lemma is complished quickly. \square

Now, we define the *L^p* geominimal Gaussian surface area *G*γ*n*,*p*(*K*) of the convex body *K*.

Definition 3.3. Suppose $K ∈ \mathcal{K}_0^n$. The L_p geominimal Gaussian surface area $G_{\gamma_n, p}(K)$ of the convex body K , is defined *by*

$$
G_{\gamma_n,p}(K) = \inf \left\{ \int_{S^{n-1}} h(Q, u)^p dS_{\gamma_n,p}(K, u) : Q \in \mathcal{K}_0^n \text{ and } |Q^*| = \omega_n \right\}.
$$
 (15)

Remark: For each convex body $L \in \mathcal{K}_0^n$, we have $|(vrad(L^*)L)^*| = \omega_n$. Thus, the foluma (15) is equivalent to

$$
G_{\gamma_n,p}(K)=\inf_{L\in\mathcal{K}_0^n}\left\{\int_{S^{n-1}}h((vrad(L^*)L,u)^p dS_{\gamma_n,p}(K,u)\right\}.
$$
\n(16)

Next, we will prove the main result Theorem 1.1.

Proof. Firstly, we prove the existence of Theorem 1.1. By Definition 3.3, there exists a sequence ${M_i}_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$ ⊂ \mathcal{K}_0^n with $|M_i^*| = \omega_n$ such that

$$
S_{\gamma_n, p}(K, S^{n-1}) = \int_{S^{n-1}} h_{B_2^n}^p(u) dS_{\gamma_n, p}(K, u) \ge \int_{S^{n-1}} h_{M_i}^p(u) dS_{\gamma_n, p}(K, u) > 0, \text{ for all } i \ge 1.
$$

Obviously, the sequence $\int_{S^{n-1}} h_{\lambda}^p$ $_{M_i}^p(u)dS_{\gamma_n,p}(K,u)$ is uniformly bounded. By Lemma 3.2, the sequence $\{M_i\}_{i=1}^\infty$ *i*=1 is uniformly bounded. Thus, using the Blaschke selection theorem, there is a subsequence of $\{M_i\}_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$, for convenience, still recorded as ${M_i}_{i=1}^{\infty}$ which converges to a compact convex set *M*. Using Lemma 2.2 and M_i ∈ \mathcal{K}_0^n shows that $M \in \mathcal{K}_0^n$. And using (7) implies that M_i^* converges to M^* as $i \to \infty$. Thus, we obtain $|M^*| = \omega_n$. From Lemma 3.1, we show that

$$
\lim_{i\to\infty}\int_{S^{n-1}}h_{M_i}^p(u)dS_{\gamma_n,p}(K,u)=\int_{S^{n-1}}h_M^p(u)dS_{\gamma_n,p}(K,u).
$$

Now we prove the uniqueness of Theorem 1.1. Assume that there exist two convex bodies $M_1, M_2 \in \mathcal{K}_0^n$ with $|M_1^*| = |M_2^*| = \omega_n$ such that

$$
G_{\gamma_n,p}(K)=\int_{S^{n-1}}h_{M_1}^p(u)dS_{\gamma_n,p}(K,u)=\int_{S^{n-1}}h_{M_2}^p(u)dS_{\gamma_n,p}(K,u).
$$

For $p \ge 1$, the new compact set *M* with respect to $M_1, M_2 \in \mathcal{K}_0^n$ is defined by

$$
M=\frac{1}{2}\cdot M_1+_{p}\frac{1}{2}\cdot M_2.
$$

Using (10) shows that

$$
M^*=\frac{1}{2}\diamond M_1^*\tilde{+}_{-p}\frac{1}{2}\diamond M_2^*.
$$

Using the L_p Brunn-Minkowski inequality (see, e.g., [19]) we obtain that $|M^*| \leq \omega_n$ and the equality holds if and only if M_1^* and M_2^* are dilates. If M_1^* and M_2^* are dilates, for convenience, we set $M_1^* = sM_2^*$ for real number $s > 0$. Since $|M_1^*| = s^n |M_2^*| = \omega_n$, we deduce that $s = 1$. Then $M_1 = M_2$ if and only if vrad(M^*) = 1. By (16) , we have

$$
G_{\gamma_n, p}(K) \leq \int_{S^{n-1}} h^p_{(vrad(M^*))M}(u) dS_{\gamma_n, p}(K, u)
$$

\n
$$
\leq \int_{S^{n-1}} h^p(M, u) dS_{\gamma_n, p}(K, u)
$$

\n
$$
= \int_{S^{n-1}}^{\gamma_n} \left(\frac{1}{2} h^p(M_1, u) + \frac{1}{2} h^p(M_2, u)\right) dS_{\gamma_n, p}(K, u)
$$

\n
$$
= G_{\gamma_n, p}(K).
$$

This implies that vrad $(M^*) = 1$. This completes the proof of the theorem.

4. Continuity

The optimal solution *M* of Theorem 1.1 is called the *L^p* Gaussian Petty body. And the set of solutions is denoted by

$$
M_{\gamma_n,p}(K) = \Big\{ M \in \mathcal{K}_0^n : G_{\gamma_n,p}(K) = \int_{S^{n-1}} h_M^p(u) dS_{\gamma_n,p}(K,u) \text{ and } |M^*| = \omega_n \Big\}.
$$
 (17)

Obviously, the uniqueness of Theorem 1.1 implies that the set $M_{\gamma_n,p}(K)$ can define an operator on \mathcal{K}_0^n . We now prove the continuity of $G_{\gamma_n,p}(K)$ and the operator $M_{\gamma_n,p}(K)$.

Theorem 4.1. *Let* $\{K_i\}_{i=1}^{\infty}$ $\sum_{i=1}^{\infty} \subset \mathcal{K}_0^n$ and $K \in \mathcal{K}_0^n$ with $K_i \to K$ as $i \to \infty$. Then (i) $\lim_{i\to\infty} G_{\gamma_n,p}(K_i) = G_{\gamma_n,p}(K)$; (ii) $\lim_{i\to\infty} M_{\gamma_n,p}(K_i) = M_{\gamma_n,p}(K)$.

Proof. Firstly, we give the proof of (i). Let ${K_i}_{i=1}^{\infty}$ $\sum_{i=1}^{\infty} \subset \mathcal{K}_0^n$ and $K \in \mathcal{K}_0^n$ such that $K_i \to K$ as $i \to \infty$. For sufficiently small $\varepsilon > 0$, using Definition 3.3 and Lemma 3.1, we obtain that there is a convex body $M_{\varepsilon} \in \mathcal{K}_0^n$ with $|M_{\varepsilon}| = \omega_n$ such that

$$
G_{\gamma_n, p}(K) + \varepsilon \ge \int_{S^{n-1}} h_{M_{\varepsilon}}^p(u) dS_{\gamma_n, p}(K, u) = \lim_{i \to \infty} \int_{S^{n-1}} h_{M_{\varepsilon}}^p(u) dS_{\gamma_n, p}(K_i, u) \ge \limsup_{i \to \infty} G_{\gamma_n, p}(K_i).
$$

Let $\varepsilon \to 0^+$, we have

$$
G_{\gamma_n, p}(K) \ge \limsup_{i \to \infty} G_{\gamma_n, p}(K_i). \tag{18}
$$

Next, we assume $M_i \in \mathcal{K}_0^n$ and $|M_i^*| = \omega_n$ such that $G_{\gamma_n, p}(K_i) = \int_{S^{n-1}} h_n^p$ $_{M_i}^{\rho}(u)dS_{\gamma_n,p}(K_i,u)$. Thus

$$
0<\int_{S^{n-1}}h_{M_i}^p(u)dS_{\gamma_n,p}(K_i,u)\leq \int_{S^{n-1}}h_{B_2^n}^p(u)dS_{\gamma_n,p}(K_i,u)<\infty.
$$

This implies that the sequence $\int_{S^{n-1}} h_{\lambda}^p$ $_{M_i}^p(u)dS_{\gamma_n,p}(K_i,u)$ is bounded. Thus, the sequence $\{M_i\}_{i=1}^\infty$ $\sum_{i=1}^{\infty}$ is uniformly bounded. Using the Blaschke selection theorem shows that there exists a convergent subsequence of ${M_i}$ ^{$>$ $_{i=$ </sub>} $\sum_{i=1}^{\infty}$, which is also written as $\{M_i\}_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$, and a compact convex set *M*′ such that $\lim_{i\to\infty} M_i = M'$. Combining $|M_i^*| = \omega_n$, Lemma 2.2 and Lemma 2.1, we obtain $M' \in \mathcal{K}_0^n$ with $|(M')^*| = \omega_n$. By Definition 3.3, Lemma 3.1 and Theorem 1.1, we have

$$
G_{\gamma_n,p}(K) \leq \int_{S^{n-1}} h^p_{M'}(u) dS_{\gamma_n,p}(K_i, u) = \liminf_{i \to \infty} \int_{S^{n-1}} h^p_{M_i}(u) dS_{\gamma_n,p}(K_i, u) = \liminf_{i \to \infty} G_{\gamma_n,p}(K_i). \tag{19}
$$

Combining (18) with (19), this completes the proof of (i).

Now, we give the proof of (ii). By (17) and Theorem 1.1, we know that the set *M*^γ*n*,*p*(*K*) has only one element. For simplicity, we set $M = M_{\gamma_n, p}(K)$ and $M_i = M_{\gamma_n, p}(K_i)$. For $K_i \to K$ as $i \to \infty$, using the continuity of $G_{\gamma_n,p}(\cdot)$ we obtain that

$$
G_{\gamma_n,p}(K)=\lim_{i\to\infty}G_{\gamma_n,p}(K_i)=\lim_{i\to\infty}\int_{S^{n-1}}h_{M_i}^p(u)dS_{\gamma_n,p}(K_i,u).
$$

This implies that $\int_{S^{n-1}} h_N^p$ $_{M_i}^p(u)dS_{\gamma_n,p}(K_i,u)$ is uniformly bounded. Thus, the sequence $\{M_i\}_{i=1}^\infty$ $\sum_{i=1}^{\infty}$ is bounded. By Lemma 2.1, there exists a subsequence ${M_i}_j$ $\sum_{j=1}^{\infty}$ ⊂ ${M_i}_{i=1}^{\infty}$ $\sum_{i=1}^{\infty}$ and a convex body $M_0 \in \mathcal{K}_0^n$ such that lim_{*j*→∞} $M_{i_j} = M_0 \in \mathcal{K}_0^n$ and $|M_0^*| = \omega_n$. By (i) of Theorem 4.1 and Lemma 3.1, one has

$$
G_{\gamma_n,p}(K)=\lim_{j\to\infty}G_{\gamma_n,p}(K_{i_j})=\int_{S^{n-1}}h_{M_0}^p(u)dS_{\gamma_n,p}(K,u).
$$

Using Theorem 1.1 shows that

$$
G_{\gamma_n,p}(K)=\int_{S^{n-1}}h^p_M(u)dS_{\gamma_n,p}(K,u)\ \ \hbox{with}\ \ |M^*|=\omega_n.
$$

Since the operator $M_{\gamma_n,p}(K)$ has only one element, this implies that $\lim_{i\to\infty} M_i = M$. This completes the proof of the theorem. \square

Next, we will discuss the continuity of the solution for the L_p geominimal Gaussian surface area.

Corollary 4.2. Let $K_i, K \in \mathcal{K}_0^n$. For $p \ge 1$, let M_i be the solution of $G_{\gamma_n,p}(K_i)$ and M be the solution of $G_{\gamma_n,p}(K)$. If $G_{\gamma_n, p}(K_i)$ *converges to* $G_{\gamma_n, p}(K)$ *, then* M_i *converges to* M *.*

Proof. Using Theorem 1.1 we obtain that the solution for the *L^p* geominimal Gaussian surface area is unique. Hence, let *M*_{*i*}, *M* be such that $\int_{S^{n-1}} h_{\lambda}^p$ $\int_{M_i}^{p} (u) dS_{\gamma_n, p}(K_i, u) = G_{\gamma_n, p}(K_i)$, and $\int_{S^{n-1}} h_n^{p}$ $\int_M^P (u)dS_{\gamma_n,p}(K,u) = G_{\gamma_n,p}(K)$. Since $G_{\gamma_n,p}(K_i)$ converges to $G_{\gamma_n,p}(K)$, this shows that there is an integer *N* such that

$$
G_{\gamma_n,p}(K_i)\leq G_{\gamma_n,p}(K)+\varepsilon,\ i\geq N,
$$

for all $\varepsilon > 0$. This implies that the sequence $\int_{S^{n-1}} h_{\lambda}^p$ $\frac{\partial P}{\partial A_i}(u)dS_{\gamma_n,p}(K_i,u)$ is bounded. Thus, using Lemma 3.2 shows that M_i is uniformly bounded. Using the Blaschke selection theorem, we obtain that there is a subsequence *^Mⁱ^j* of *^Mⁱ* such that it converges to a compact convex set *^M*′ . Combining Lemma 2.1 with Lemma 2.2, we obtain that $M' \in \mathcal{K}_0^n$ and $|(M')^*| = \omega_n$. Since M_{i_j} is the solution of $G_{\gamma_n,p}(K_{i_j})$, taking the limit as $j \to \infty$, we obtain that *M'* is the solution of $G_{\gamma_n,p}(K)$. The uniqueness of the solution immediately get that lim_{*j*→∞} M_{i_j} = M . This completes the proof of the corollary. $□$

Corollary 4.3. Let $K \in \mathcal{K}_0^n$. For $p, p_i \ge 1$, let M_i be the solution of $G_{\gamma_n, p_i}(K)$ and M be the solution of $G_{\gamma_n, p}(K)$. If *G*γ*n*,*pⁱ* (*K*) *converges to G*γ*n*,*p*(*K*)*, then Mⁱ converges to M.*

Proof. The proof is similar to Corollary 4.2. \Box

Lemma 4.4. Let $K \in \mathcal{K}_0^n$ be a polytope. For $p_1, p_2 ≥ 1$ and $p_1 ≠ p_2$. If the convex body M_j ($j = 1, 2$) is the solution *to the Lp^j geominimal Gaussian surface area, then M*¹ *and M*² *are polytopes with the same facet normal vector.*

Proof. Let $K \in \mathcal{K}_0^n$ be a polytope with the facet normal vectors u_1, \dots, u_m . Obviously, $\{u_1, u_2, \dots, u_m\}$ is not concentrated on any closed hemisphere of S^{n-1} and $K = \bigcap_{i=1}^{m} H^-(u_i, h_K(u_i))$. Since the L_p Gaussian surface measure is absolutely continuous with respect to (*n* − 1)-dimensional Hausdorff measure, this implies that the L_p Gaussian surface measure $S_{\gamma_n,p_1}(K,\cdot)$ is a discrete measure concentrated on $\{u_1,u_2,\cdots,u_m\}\subset S^{n-1}$. Let *P* be a polytope with the facet normal vectors u_1, u_2, \dots, u_m , such that

$$
P_j=\bigcap_{i=1}^m H^-(u_i,h_{M_j}(u_i)).
$$

Therefore, one has $M_j \subset P_j$. Since $M_j \in M_{\gamma_n,p_j}(K)$ ($j = 1, 2$), this implies that $vrad(P^*) \leq 1$. Combined Definition 3.3 with $M_j \in M_{\gamma_n,p_j}(K)$ ($j = 1, 2$), we obtain

$$
G_{\gamma_n, p_j}(K) \leq \int_{S^{n-1}} h^{p_j}(vard(P_j^*)P_j, u)dS_{\gamma_n, p_j}(K, u)
$$

\n
$$
\leq \int_{S^{n-1}} h^{p_j}(P_j, u)dS_{\gamma_n, p_j}(K, u)
$$

\n
$$
= \sum_{i=1}^m h^{p_j}(P_j, u_i)S_{\gamma_n, p_j}(K, \{u_i\})
$$

\n
$$
= \sum_{i=1}^m h^{p_j}(M_j, u_i)S_{\gamma_n, p_j}(K, \{u_i\})
$$

\n
$$
\leq \int_{S^{n-1}} h^{p_j}(M_j, u)dS_{\gamma_n, p_j}(K, u)
$$

\n
$$
= G_{\gamma_n, p_j}(K).
$$

This shows that *vrad*(*P* ∗ f_j^* = *vrad*(M_j^*) = 1. We know that $|M_j| = |P_j|$ and $M_j \subset P_j$. Thus, $M_j = P_j$, which means that the optimal solution M_j is a polytope with the facet normal vectors u_1, u_2, \dots, u_m . This completes the proof of the lemma. \square

Let $conv\{x_1, \dots, x_m\}$ be the convex hull of $x_1, \dots, x_m \in \mathbb{R}^n$. If x_1, \dots, x_{n+1} are affine independent, then the convex hull $conv\{x_1, \dots, x_{n+1}\}$ denotes the simplex. Moreover, the convex hull of *n* points $\{x_{i_1}, \dots, x_{i_n}\} \subset$ ${x_1, \dots, x_{n+1}}$ denote the facets of the simplex $conv\{x_1, \dots, x_{n+1}\}$. Let $T = conv\{o, e_1, \dots, e_n\}$ denotes standard simplex, where e_1 , \cdots , e_n denote the vectors of the standard bases of \mathbb{R}^n . Obviously, for each simplex *K*, there is a transformation $\phi \in GL(n)$ and $x \in \mathbb{R}^n$ such that $K = \phi T + x$. Let $K \in \mathcal{K}_0^n$, then the volume product $|K||K^*|$ is $GL(n)$ invariant. Moreover, if $K \in \mathcal{K}_c^n$, then

$$
|K||K^*| \le \omega_n^2,
$$

with equality if and only if *K* is an ellipsoid. The lower bound of the volume product is the Mahler conjecture, i.e., if $K \in \mathcal{K}_c^n$, then

$$
\frac{(n+1)^{n+1}}{(n!)^2} \le |K||K^*|,\tag{20}
$$

with equality if and only if *K* is a simplex. Recently, Meyer and Reisner [14] used the shadow system to prove an exact reverse Blaschke-Santaló inequality (20) for polytopes in \mathbb{R}^n that have at most $n + 3$ vertices.

Corollary 4.5. Let $p \ge 1$. If $K \in \mathcal{K}_0^n$ is the simplex and M is the solution of $G_{\gamma_n,p}(K)$, then M and K are homothetic.

Proof. For each simplex *K*, there is a transformation $\phi \in GL(n)$ and $x \in \mathbb{R}^n$ such that $K = \phi T + x$. From Lemma 4.1, we obtain that *M* and *K* are simplexes with the same facet normal vector. Thus, there is $\lambda > 0$ and $x_2 \in \mathbb{R}^n$ such that $M = \lambda \phi T + x_2$. This implies that $M = \lambda K + x$, where $\lambda > 0$ and $x \in \mathbb{R}^n$ with $|(\lambda K + x)^*| = \omega_n$. This completes the proof of the corollary. \square

Next, we will establish the main result Theorem 1.2.

Proof. Let the convex body M_i be the solution to the geominimal L_p style Gaussian surface area $G_{\gamma_n,p}(K)$. Using Corollary 4.5 we obtain that there are $\lambda_i > 0$ and $x_i \in \mathbb{R}^n$ such that $M_i = \lambda_i K + x_i$. Since $M_i, K \in \mathcal{R}_c^n$, one has $x_i = o$ for all *i*. Combining $|K_i^*|$ α_i^* = α with $|M_i^*| = \omega_n$, this implies that $M_i = \left(\frac{\alpha}{\omega_n}\right)^{\frac{1}{n}} K_i$. Similarly, we have $M = \left(\frac{\alpha}{\omega_n}\right)^{\frac{1}{n}}$ K. Thus, an application of Corollary 4.2 completes the proof.

Corollary 4.6. *For* $p \geq 1$ *. Let K, K_i* ∈ \mathcal{K}_c^n *be simplexes. Assume* | K^{*}_{*i*} $\int_{i}^{*} = |K^{*}| = \alpha$ for $\alpha > 0$, and if $\int_{S^{n-1}} h^{p}(K_{i}, u) dS_{\gamma_{n}, p, K_{i}}(u)$ *converges to* $\int_{S^{n-1}} h^p(K, u)dS_{\gamma_n, p, K}(u)$, then K_i converges to K.

Proof. Let the convex body M_i be the solution to the geominimal L_p style Gaussian surface area $\tilde{G}_{\gamma_n,p}(K)$. Using Corollary 4.5 implies that there are $\lambda_i > 0$ and $x_i \in \mathbb{R}^n$ such that $M_i = \lambda_i K_i + x_i$. Since $M_i, K_i \in \mathcal{R}_c^n$, one has $x_i = o$ for all *i*. Combining $|K_i^*|$ α_i^* = α with $|M_i^*| = \omega_n$, this implies that $M_i = \left(\frac{\alpha}{\omega_n}\right)^{\frac{1}{n}} K_i$. Similarly, we have $M = \left(\frac{\alpha}{\omega_n}\right)^{\frac{1}{n}} K$. Thus, $\widetilde{G}_{\gamma_n, p}(K_i) = \left(\frac{\alpha}{\omega_n}\right)^{\frac{p}{n}} \int_{S^{n-1}} h^p(K_i, u) dS_{\gamma_n, p, K_i}(u)$ and $\widetilde{G}_{\gamma_n, p}(K) = \left(\frac{\alpha}{\omega_n}\right)^{\frac{p}{n}} \int_{S^{n-1}} h^p(K, u) dS_{\gamma_n, p, K}(u)$. Since $\int_{S^{n-1}} h^p(K_i, u)dS_{\gamma_n, p, K_i}(u)$ converges to $\int_{S^{n-1}} h^p(K, u)dS_{\gamma_n, p, K}(u)$, we now obtain $\widetilde{G}_{\gamma_n, p}(K_i) \to \widetilde{G}_{\gamma_n, p}(K)$. Thus, an application of Theorem 1.2 completes the proof of the corollary. \Box

Next, we will establish the Blaschke-Santaló style inequality for the L_p geominimal Gaussian surface area.

Corollary 4.7. *For* $p \geq 1$ *. If* $K \in \mathcal{K}_c^n$ *is a simplex, then*

$$
G_{\gamma_n,p}(K)G_{\gamma_n,p}(K^*)\leq \frac{n^2}{(2\pi)^n\omega_n^{2p/n}}\left(\frac{(n+1)^{n+1}}{(n!)^2}\right)^{\frac{p+n}{n}}.
$$

Proof. Let *M* be the solution to the L_p geominimal Gaussian surface area $\tilde{G}_{\gamma_n,p}(K)$. Using Corollary 4.6 shows that $M = \left(\frac{|K^*|}{\omega_{\infty}}\right)$ $\frac{K^*}{\omega_n}$)^{1/*n*}K. Thus $\tilde{G}_{\gamma_n,p}(K) = \left(\frac{|K^*|}{\omega_n}\right)$ $\int_{\omega_n}^{\vert K^* \vert} \int_{S^{n-1}}^{\nu/n} \int_{S^{n-1}} h(K, u) dS_{\gamma_n, K}(u)$. Similarly, we have $\tilde{G}_{\gamma_n, p}(K^*) = 0$ $\frac{|K|}{|K|}$ $\int_{\alpha_n}^{\vert K \vert} \int_{S^{n-1}}^{\rho/n} \int_{S^{n-1}} h(K^*,u) dS_{\gamma_n,K^*}(u).$ By using (20), one has

$$
\frac{(n+1)^{n+1}}{(n!)^2} \le |K||K^*|,
$$

with equality if and only if $K \in \mathcal{K}_c^n$ is a simplex. Thus, we have $\frac{(n+1)^{n+1}}{(n!)^2} = |K||K^*|$. Combining (11) with (12), this implies that $\int_{S^{n-1}} h(K, u) dS_{\gamma_n, K}(u) \leq \frac{1}{\sqrt{2}}$ ($\frac{1}{\sqrt{2\pi}y^n}$ *n*|*K*|. Similarly, $\int_{S^{n-1}} h(K^*, u) dS_{\gamma_n, K^*}(u) \le \frac{1}{\sqrt{2}}$ ($\frac{1}{\sqrt{2\pi}n}n|K^*|$. Thus,

$$
\tilde{G}_{\gamma_n,p}(K)\tilde{G}_{\gamma_n,p}(K^*) \leq \frac{n^2}{(2\pi)^n\omega_n^{2p/n}}\left(\frac{(n+1)^{n+1}}{(n!)^2}\right)^{\frac{p+n}{n}}.
$$

Together with $\tilde{G}_{\gamma_n,p}(K) \geq G_{\gamma_n,p}(K)$, this completes the proof of the corollary. We now discuss the monotonicity of the *L^p* geominimal Gaussian surface area with respect to *p*. **Corollary 4.8.** *Let* $K \in \mathcal{K}_0^n$ *. If* $p_1, p_2 \geq 1$ *and* $p_1 \leq p_2$ *, then*

$$
G_{\gamma_n,p_1}^{p_2}(K) \leq G_{\gamma_n,p_2}^{p_1}(K) \left(\int_{S^{n-1}} h_K(u) dS_{\gamma_n}(K,u) \right)^{p_2-p_1}.
$$

Proof. Let the convex body M_i be the solution of $G_{\gamma_n,p_i}(K)$ for $i=1,2$. Combining Definition 3.3 with Hölder inequality, one has

$$
G_{\gamma_n, p_1}(K) = \int_{S^{n-1}} h_{M_1}^{p_1}(u) dS_{\gamma_n, p_1}(K, u)
$$

\n
$$
\leq \int_{S^{n-1}} \left(\frac{h_{M_2}(u)}{h_K(u)}\right)^{p_1} h_K(u) dS_{\gamma_n}(K, u)
$$

\n
$$
\leq \left(\int_{S^{n-1}} \left(\frac{h_{M_2}(u)}{h(K, u)}\right)^{p_2} h_K(u) dS_{\gamma_n}(K, u)\right)^{\frac{p_1}{p_2}} \left(\int_{S^{n-1}} h_K(u) dS_{\gamma_n}(K, u)\right)^{\frac{p_2 - p_1}{p_2}}
$$

\n
$$
= G_{\gamma_n, p_2}^{\frac{p_1}{p_2}}(K) \left(\int_{S^{n-1}} h_K(u) dS_{\gamma_n}(K, u)\right)^{\frac{p_2 - p_1}{p_2}}.
$$

This completes the proof. \square

References

- [1] Y. Feng, W. Wang, *Lp*-dual mixed geominimal surface area, Glasg. Math. J. **56** (2014), 229-239.
- [2] R.J. Gardner, Geometric tomography, Cambridge Univ. Press, Cambridge, (1995).
- [3] P.M. Gruber, Convex and discrete geometry, Springer-Verlag, Berlin Heidelberg, (2007).
- [4] Y. Huang, D. Xi, Y. Zhao, The Minkowski problem in Gaussian probability space, Adv. Math., 385 (2021), Paper No. 107769, 36pp.
- [5] N. Li, S. Mou, The General Dual Orlicz Geominimal Surface Area, J. Function Spaces, 2020(1):1-6.
- [6] X. Li, H. Wang, J. Zhou, (*p*, *q*)-mixed geominimal surface area and (p,q)-mixed affine surface area, J. Math. Anal. Appl., **475** (2019), 1472-1492.
- [7] J. Liu, The *Lp*-Gaussian Minkowski problem, Calc. Var. Partial Differential Equations, 66 (2022), Paper No. 28, 23 pp.
- [8] M. Ludwig, General affine surface areas, Adv. Math., **224** (2010), 2346-2360.
- [9] M. Ludwig, M. Reitzner, A characterization of affine surface area, Adv. Math., **147** (1999), 138-172.
- [10] X. Luo, D. Ye, B. Zhu, On the polar Orlicz-Minkowski problems and the *p*-capacitary Orlicz-Petty bodies, Indiana Univ. Math. J., **69** (2020), 385-420.
- [11] E. Lutwak, Dual mixed volume, Pacific Journal of Mathematics, **58** (1975), 531-538.
- [12] E. Lutwak, Centroid bodies and dual mixed volumes, Pro. London Math. Soc., **2** (1990), 365-391.
- [13] E. Lutwak, The Brunn-Minkowski-Firey theory II. Affine and geominimal surface areas, Adv. Math., **118** (1996), 244-294.
- [14] M. Meyer, S. Reisner, Shadow systems and volumes of polar convex bodies, Mathematika, 53 (2006), 129-148.
- [15] S. Mou, The geominimal integral curvature, AIMS Math., **7** (2022), 14338-14353.
- [16] S. Mou, J. Dai, Geominimal Lp integral curvature, Acta Math. Sinica (Chinese Ser.) 66 (2023), 617-628.
- [17] S. Mou, B. Zhu, The orlicz-minkowski problem for measure in *R ⁿ* and Orlicz geominimal measures , Int. J. Math., **30** (2019), 26pp.
- [18] C.M. Petty, Geominimal surface area , Geom. Dedicata, **3** (1974), 77-97.
- [19] R. Schneider Convex Bodies: The Brunn-Minkowski theory , Second edition, Cambridge Univ., (2014).
- [20] D. Ye, *L^p* geominimal surface areas and their inequalities , Int. Math. Res. Not., **2015** (2015), 2465-2498.
- [21] D. Ye, Dual Orlicz-Brunn-Minkowski theory: dual Orlicz *L*^ϕ affine and geominimal surface areas , J. Math. Anal. Appl., **443** (2016), 352-371.
- [22] D. Ye, B. Zhu, J. Zhou, The mixed *L^p* geominimal surface area for multiple convex bodies, Indiana Univ. Math. J., **64** (2015), 1513-1552.
- [23] S. Yuan, H. Jin, G. Leng, Orlicz geominimal surface areas, Math. Ineq. Appl., **18** (2015), 353-362.
- [24] B. Zhu, N. Li, J. Zhou, Isoperimetric inequalities for *L^p* geominimal surface area, Glasg. Math. J., **53** (2011), 717-726.
- [25] B. Zhu, J. Zhou, W. Xu, *L^p* mixed geominimal surface area, J. Math. Anal. Appl., **422** (2015), 1247-1263.
- [26] B. Zhu, H. Hong, D. Ye, The Orlicz Petty bodies, Int. Math. Res. Not., 14 (2018), 4356-4403.