Filomat 38:14 (2024), 4991–5001 https://doi.org/10.2298/FIL2414991M

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

L_p geominimal Gaussian surface area

Shuang Mou^a

^aSchool of Mathematics and Statistics, Shaanxi Normal University Xi'an, 710119, China

Abstract. In this paper, we study the L_p geominimal Gaussian surface area for $p \ge 1$. We prove some properties of the L_p geominimal Gaussian surface area, such as continuity and Santaló style inequality. Moreover, we obtain that the opposite question of continuity of the L_p geominimal Gaussian surface area is also continuous.

1. Introduction

In this paper, we will work in the *n*-dimensional Euclidean space, \mathbb{R}^n , and write $x = (x_1, \dots, x_n)$ for $x \in \mathbb{R}^n$. For $x, y \in \mathbb{R}^n$, we write $x \cdot y = x_1y_1 + \dots + x_ny_n$ for the standard inner product of *x* and *y*, let $|x| = \sqrt{x \cdot x}$ for the Euclidean norm of *x*. A set $K \subset \mathbb{R}^n$ is convex if $\lambda x + (1 - \lambda)y \in K$ for all $x, y \in K$ and each $\lambda \in [0, 1]$. A convex subset $K \subset \mathbb{R}^n$ is a convex body if *K* is compact and has nonempty interior. Let $\mathcal{K}^n, \mathcal{K}^n_0, \mathcal{K}^n_c$ and \mathcal{K}^n_s denote the class of all convex bodies in \mathbb{R}^n , the class of all convex bodies containing the origin *o* in their interiors, the class of all convex bodies with their centroid at origin *o*, and the set of all convex bodies with their Santaló point at origin *o*. Let |K| denote the *n*-dimensional volume of a convex body *K*. For $K \in \mathcal{K}^n_0$, the geominimal surface area *G*(*K*) of *K* was firstly introduced by Petty [18] more than five decades ago, i.e.,

$$G(K) = \inf\left\{\int_{S^{n-1}} h(Q, u) dS(K, u) : Q \in \mathcal{K}_s^n \text{ and } |Q^*| = \omega_n\right\},\tag{1}$$

where Q^* is the polar body of Q, $S(K, \cdot)$ is the surface area of the convex body K and $h(Q, \cdot)$ is the support function (see Section 2). In [18], Petty proved the existence and uniqueness to the solution of the optimal problem (1). As Petty stated the geominimal surface area serves as a bridge connecting affine differential geometry, relative differential geometry and Minkowski geometry. This implies that the geominimal surface area is one of the basic concepts in Brunn-Minkowski theory.

With the development of L_p Brunn-Minkowski theory and motivated by the L_p mixed volume, the classical geominimal surface area has been extended to L_p case by Lutwak [13] (for $p \ge 1$). Using the L_p affine surface area integral formula, Ye [20] introduced the L_p geominimal surface area for all $-n \ne p < 1$. Moreover, Zhu, Zhou and Xu [25] extended the L_p geominimal surface area to the L_p mixed geominimal

Communicated by Dijana Mosić

²⁰²⁰ Mathematics Subject Classification. 52A20, 52A39.

Keywords. convex body; geominimal surface area; Gaussian measure.

Received: 23 May 2023; Revised: 30 October 2023; Accepted: 13 November 2023

Research supported by the National Natural Science Foundation of China (No.11971005) and the Fundamental Research Funds for the Central Universities (GK202202007,GK202102012)

Email address: shuangmou92@163.com (Shuang Mou)

surface area and obtained Blaschke-Santaló inequality for the L_p mixed geominimal surface area. Ye, Zhu and Zhou [22] also obtained affine isoperimetric inequalities for the L_p mixed geominimal surface area with respect to multiple convex bodies. Recently, Li, Wang and Zhou [6] introduced (p, q) mixed geominimal surface area and (p, q) mixed affine surface area. For more results for the geominimal surface area, the reader can refer to [1, 5, 6, 8, 9, 11, 12, 15–17, 21, 23, 24, 26].

The Gaussian volume of Borel set *K* is denoted by γ_n as follows,

$$\gamma_n(K) = \frac{1}{(\sqrt{2\pi})^n} \int_K e^{-\frac{|x|^2}{2}} dx.$$

Huang, Xi and Zhao [4] established the variational formula for the Gaussian volume γ_n . Recently, Liu [7] extended the variational formula for the Gaussian volume γ_n to the L_p ($p \ge 1$) case:

$$\lim_{\epsilon \to 0} \frac{\gamma_n(K +_p \epsilon \cdot L) - \gamma_n(L)}{\epsilon} = \frac{1}{p} \int_{S^{n-1}} h(L, u)^p dS_{\gamma_n, p}(K, u),$$
(2)

where $S_{\gamma_n,p}(K, \cdot)$ is the L_p Gaussian surface area of K (see Section 2).

Utilizing the relationship between the geominimal surface area and the L_p variational formula for the Gaussian volume γ_n , we discuss the geominimal L_p Gaussian surface area, i.e., whether there exists $M \in \mathcal{K}_0^n$ with $|M^*| = \omega_n$ such that it is the unique solution for the following optimal problem

$$\inf\left\{\int_{S^{n-1}} h(Q,u)^p dS_{\gamma_n,p}(K,u) : Q \in \mathcal{K}_0^n \text{ and } |Q^*| = \omega_n\right\}?$$
(3)

The main aim of this paper is to solve the solution of the optimal problem (3).

Theorem 1.1. Let $K \in \mathcal{K}_0^n$. Then there is a unique convex body $M \in \mathcal{K}_0^n$ with $|M^*| = \omega_n$ such that

$$\int_{S^{n-1}} h(M, u)^p dS_{\gamma_n, p}(K, u) = \inf \left\{ \int_{S^{n-1}} h(Q, u)^p dS_{\gamma_n, p}(K, u) : Q \in \mathcal{K}_0^n, |Q^*| = \omega_n \right\}$$

The solution *M* of Theorem 1.1 is usually called the L_p Gaussian Petty body. Let $K \in \mathcal{K}_c^n$ be a simplex, then the L_p Gaussian Petty body *M* and *K* are homothetic. For $K \in \mathcal{K}_0^n$, let

$$\widetilde{G}_{\gamma_n,p}(K) = \inf\left\{\int_{S^{n-1}} h_L^p(u) dS_{\gamma_n,p,K}(u) : L \in \mathcal{K}_c^n, \ |L^*| = \omega_n\right\}.$$

Since the Gaussian volume γ_n has neither affine invariance nor homogeneity, we obtain that the L_p geominimal Gaussian surface area has neither affine invariance nor homogeneity. Fortunately, the L_p geominimal Gaussian surface area is continuous. Moreover, we obtain that the opposite question of continuity is also continuous.

Theorem 1.2. For $p \ge 1$. Let $K, K_i \in \mathcal{K}_c^n$ be simplexes and let $\alpha > 0$ satisfying $|K_i^*| = \alpha$ and $|K^*| = \alpha$. If $\widetilde{G}_{\gamma_n,p}(K_i) \to \widetilde{G}_{\gamma_n,p}(K)$, then $K_i \to K$.

The organization of this paper is as follows. Section 2 collects some basic concepts and various facts that will be used in the proofs of our results. Section 3 includes the basic properties of the L_p variation formula (2) and proves the main result Theorem 1.1. Section 4 proves the continuity of the L_p geominimal Gaussian surface area and the L_p Gaussian Petty body. Moreover, we will prove the main result Theorem 1.2.

2. Background and Notation

We now introduce the basic well-known facts and standard notations in this section. For more details and more concepts in convex geometry, please see [2, 3, 19].

The Minkowski sum of two Borel sets *K*, *L* is defined by $K + L := \{x + y : x \in K, y \in L\}$. The scalar product of $\lambda \in \mathbb{R}$ and Borel *K* is defined by $\lambda K := \{\lambda x : x \in K\}$. For $K \in \mathcal{K}^n$, the volume radius of *K* is defined by

$$\operatorname{vrad}(K) = \left(\frac{|K|}{\omega_n}\right)^{1/n}.$$

The origin-centered unit ball in \mathbb{R}^n is denoted by B_2^n , i.e., $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, and let ω_n denote the volume of B_2^n . Let S^{n-1} denote the unit sphere in \mathbb{R}^n . Let $C(S^{n-1})$ be the set of continuous functions on S^{n-1} . Let ∂K , *convK* denote the boundary and the convex hull of K, respectively.

For convex set *K*, it is uniquely determined by the support function h_K of *K* which is defined by $h_K(u) = \max\{x \cdot u : x \in K\}, \forall u \in S^{n-1}.$ For $\lambda > 0$ and $K, L \in \mathcal{K}^n$, we obtain $h_{\lambda K} = \lambda h_K$. Moreover, $K \subset L$ if and only if

$$h_K(u) \le h_L(u), \ \forall u \in S^{n-1}.$$
(4)

Let $H(u, t) = \{x : x \cdot u = t\}$ and $H^{-}(u, t) = \{x : x \cdot u \le t\}$ denote the hyperplane and the closed halfspace. Let H(u, h(K, u)) and $H^{-}(u, h(K, u))$ be respectively, the support plane and the support halfspace of K, with outer normal vector u. Obviously, for $K \in \mathcal{K}^n$, one has $K = \bigcap_{u \in S^{n-1}} H^{-}(u, h(K, u))$. If there are finite outer normal vectors such that $K = \bigcap_{i=1}^{m} H^{-}(u_i, h(K, u_i))$, then K is called polytope. Given a polytope P, a face of P is the intersection of P with a supporting hyperplane. A face of (n - 1)-dimension is called a facet, and the outer normal vector of the facet is called the facet normal vector.

For the class \mathcal{K}^n , we consider the topology generated by the Hausdorff metric $d_H(\cdot, \cdot)$. Here $d_H(K, L)$ is defined by

$$d_H(K,L) = ||h_K - h_L||_{\infty} = \sup_{u \in S^{n-1}} |h_K(u) - h_L(u)|,$$

for $K, L \in \mathcal{K}^n$. Given $K \in \mathcal{K}^n$ and any Borel set $\omega \subset S^{n-1}$, the surface area measure $S(K, \cdot)$ is defined by

$$S(K,\omega) = \int_{\boldsymbol{\nu}_{K}^{-1}(\omega)} d\mathcal{H}^{n-1}$$

where $\mathbf{v}_{K}^{-1}(\omega)$ is the reverse Gauss image of ω and \mathcal{H}^{n-1} is the (n-1)-dimensional Hausdorff measure. Moreover, for any $K \in \mathcal{K}^{n}$, there is an integral formula for volume, that is,

$$K| = \frac{1}{n} \int_{S^{n-1}} h_K(u) dS(K, u).$$
(5)

Let $l_u = \{tu : t \ge 0\}$ for $u \in S^{n-1}$. The set $L \subset \mathbb{R}^n$ is star-shaped with respect to the origin, if for each $u \in S^{n-1}$, the set $L \cap l_u$ is a closed line segment containing the origin. The radial function $\rho_L : S^{n-1} \to [0, \infty)$ of star-shaped set L, with respect to the origin, is defined by

$$\rho_L(u) = \max\{\lambda \ge 0 : \lambda u \in L\}, \ \forall u \in S^{n-1}$$

A compact star-shaped set with respect to the origin is uniquely determined by its radial function. If ρ_L is positive and continuous on S^{n-1} , then star-shaped set *L* is called star body with respect to the origin. Let I_0^n be the set of all star bodies with respect to the origin. Clearly, the radial function of $K \in \mathcal{K}_0^n$ is continuous and positive, i.e., $\mathcal{K}_0^n \subset I_0^n$. If $K \in I_0^n$, then

$$\partial K = \{ \rho_K(u)u : u \in S^{n-1} \}.$$

It is well known that (e.g., see [19]) for any $K \in \mathcal{K}_0^n$ and for all $u \in S^{n-1}$,

$$h_{K^*}(u) = \frac{1}{\rho_K(u)}$$
 and $\rho_{K^*}(u) = \frac{1}{h_K(u)}$, (6)

where K^* is the polar body of K, is defined by

$$K^* = \{ x \in \mathbb{R}^n : x \cdot y \le 1, \text{ for all } y \in K \}.$$

The radial metric is defined by

$$d_{\rho}(K,L) = \|\rho_K - \rho_L\|_{\infty} = \sup_{u \in S^{n-1}} |\rho_K(u) - \rho_L(u)|,$$

for $K, L \in \mathcal{I}_0^n$. We shall use the fact that the Hausdorff metric and the radial metric are topologically equivalent on \mathcal{K}_0^n . We say that the sequence $\{K_i\}_{i\geq 1} \subset \mathcal{K}_0^n$ converges to a convex body $K_0 \in \mathcal{K}_0^n$ (write as $K_i \to K_0$), if $d_H(K_i, K_0) \to 0$ as $i \to \infty$. Obviously, according to the fact that $d_H(K_i, K_0) \to 0$ if and only if $d_\rho(K_i, K_0) \to 0$, and (6), we have

$$K_i \to K_0 \Leftrightarrow K_i^* \to K_0^*. \tag{7}$$

For each real $p \ge 1$ and a, b > 0, the compact set $a \cdot K +_p b \cdot L \in \mathcal{K}_0^n$ is called the Minkowski-Firey L_p combination of $K, L \in \mathcal{K}_0^n$, which is introduced by Firey (see, e.g., [19]) and is defined by

$$h_{a\cdot K+pb\cdot L}^{p}(\cdot) = ah_{K}^{p}(\cdot) + bh_{L}^{p}(\cdot).$$
(8)

For each $p \in \mathbb{R} \setminus \{0\}$ and a, b > 0, the compact set $a \diamond K \tilde{+}_p b \diamond L \in \mathcal{I}_0^n$ is called the radial L_p combination of $K, L \in \mathcal{I}_0^n$, which is defined by

$$\rho_{a \diamond K \tilde{+}_p b \diamond L}^p(\cdot) = a \rho_K^p(\cdot) + b \rho_L^p(\cdot).$$
⁽⁹⁾

Note that for convex bodies $K, L \in \mathcal{K}_0^n$ it follows from (6), (8) and (9) that

$$K\tilde{+}_{-p}L = (K^* +_p L^*)^* \text{ for } p \ge 1.$$
(10)

The Gaussian volume of Borel set *K* is denoted by γ_n ,

$$\gamma_n(K) = \frac{1}{(\sqrt{2\pi})^n} \int_K e^{-\frac{|x|^2}{2}} dx.$$

Huang, Xi and Zhao [4] established the variational formula for the Gaussian volume γ_n . Recently, Liu [7] extended the variational formula for the Gaussian volume γ_n to the L_p ($p \ge 1$) case:

$$\lim_{\epsilon \to 0} \frac{\gamma_n(K +_p \epsilon \cdot L) - \gamma_n(L)}{\epsilon} = \frac{1}{p} \int_{S^{n-1}} h(L, u)^p dS_{\gamma_n, p}(K, u), \tag{11}$$

where $S_{\gamma_n,p}(K, \cdot)$ is the L_p Gaussian surface area measure of K, i.e., which is defined by

$$S_{\gamma_{n,p}}(K,\omega) = \frac{1}{(\sqrt{2\pi})^n} \int_{\boldsymbol{\nu}_K^{-1}(\omega)} e^{-\frac{|x|^2}{2}} (x \cdot \boldsymbol{\nu}_K(x))^{1-p} d\mathcal{H}^{n-1}(x).$$
(12)

For p = 1, the L_1 Gaussian surface area measure of the convex body K is $S_{\gamma_n}(K, \cdot)$. The L_p Gaussian surface area measure $S_{\gamma_n,p}(K, \cdot)$ of K has some basic properties.

(1). $dS_{\gamma_n,p}(K,\cdot) = h(K,\cdot)^{1-p} dS_{\gamma_n}(K,\cdot).$

(2). It is absolutely continuous with respect to (n - 1)-dimensional Hausdorff measure.

(3). It is not concentrated on any closed hemisphere, i.e., for all $v \in S^{n-1}$, there exists a constant c > 0 such that

$$\int_{S^{n-1}} (u, v)_+ dS_{\gamma_n, p}(K, u) \ge c,$$
(13)

where $(u \cdot v)_+ = \max\{u \cdot v, 0\}$.

(4). It is a weakly convergent measure, i.e., for $K_i, K_0 \in \mathcal{K}_0^n$, if $K_i \to K_0$, then

$$\lim_{i\to\infty}\int_{S^{n-1}}f(u)dS_{\gamma_n,p}(K_i,u)=\int_{S^{n-1}}f(u)dS_{\gamma_n,p}(K_0,u),$$

for all $f \in C(S^{n-1})$.

4994

Moreover, if $\{f_i\}_{i\geq 1} \subset C(S^{n-1})$ converges uniformly to $f_0 \in C(S^{n-1})$ and $K_i \in \mathcal{K}_0^n$ converges to $K_0 \in \mathcal{K}_0^n$ in the Hausdorff distance, and the L_p Gaussian surface area measure $S_{\gamma_n,p}(K_i, \cdot)$ converges weakly to $S_{\gamma_n,p}(K_0, \cdot)$, we see that

$$\lim_{i \to \infty} \int_{S^{n-1}} f_i(u) \, dS_{\gamma_n, p}(K_i, u) = \int_{S^{n-1}} f_0(u) \, dS_{\gamma_n, p}(K_0, u). \tag{14}$$

We also use the following lemmas in the proofs of our main results.

Lemma 2.1. (see [10]) If $\{K_i\}_{i\geq 1} \subset \mathcal{K}_0^n$ is a bounded sequence such that $\{|K_i^*|\}_{i\geq 1}$ is also a bounded sequence, there exists a subsequence $\{K_{i_i}\}_{i\geq 1}$ of $\{K_i\}_{i\geq 1}$ and $K \in \mathcal{K}_0^n$ such that $K_{i_i} \to K$. In addition, if $|K_i^*| = \omega_n$, then $|K^*| = \omega_n$.

Lemma 2.2. (see[13]) Let $\{K_i\}_{i\geq 1} \subset \mathcal{K}_0^n$ be a convergent sequence with the limit K_0 . If the sequence $\{|K_i^*|\}_{i\geq 1}$ is bounded, then $K_0 \in \mathcal{K}_0^n$.

3. The L_p geominimal Gaussian surface area

Firstly, we will prove the continuity of the L_p variational formula for the Gaussian volume γ_n .

Lemma 3.1. For $p \ge 1$. Let $\{K_i\}_{i\ge 1} \subset \mathcal{K}_0^n$ and $\{L_i\}_{i\ge 1} \subset \mathcal{K}_0^n$ be two sequences of convex bodies with $K_i \to K_0 \in \mathcal{K}_0^n$ and $L_i \to L_0 \in \mathcal{K}_0^n$ as $i \to \infty$. Then

$$\int_{S^{n-1}} h(L_i, u)^p dS_{\gamma_n, p}(K_i, u) \to \int_{S^{n-1}} h(L_0, u)^p dS_{\gamma_n, p}(K_0, u), \quad as \ i \to \infty.$$

Proof. Since $K_i \to K_0 \in \mathcal{K}_0^n$ and $L_i \to L_0 \in \mathcal{K}_0^n$ as $i \to \infty$, then $S_{\gamma_n,p}(K_i, \cdot)$ converges weakly to $S_{\gamma_n,p}(K_0, \cdot)$ and the support function $h_{L_i}(\cdot)$ converges uniformly to $h_{L_0}(\cdot)$, as $i \to \infty$. Thus, an application of (14) completes the proof. \Box

Next, we will discuss the boundedness of convex bodies.

Lemma 3.2. Let $\{K_i\}_{i\geq 1} \subset \mathcal{K}_0^n$ and $K \in \mathcal{K}_0^n$ be such that $K_i \to K$ as $i \to \infty$. If $\{L_i\}_{i\geq 1} \subset \mathcal{K}_0^n$ is a sequence such that $\int_{S^{n-1}} h^p(L_i, u) dS_{\gamma_{n}, p}(K_i, u)$ is uniformly bounded, then the sequence $\{L_i\}_{i\geq 1}$ is uniformly bounded.

Proof. Let $R_i(u_i) = \max\{\rho(L_i, u) : u \in S^{n-1}\}$. Obviously, $[o, R(u_i)u_i] \subset L_i$ and using (4) shows that $R_i(u_i)(u_i \cdot u)_+ \leq h(L_i, u)$. Suppose the sequence $\{L_i\}_{i\geq 1}$ is not uniformly bounded, then $R_i(u_i)$ converges to infinity. Thus, given a sufficiently large M > 0, there is an integer N such that $R_i \geq M$ for all i > N. For each sequence $\{u_i\}_{i\geq 1} \subset S^{n-1}$, since the sphere S^{n-1} is a compact set, there is a vector $u_0 \in S^{n-1}$ and the subsequence u_{i_j} of u_i such that $\lim_{j\to\infty} u_{i_j} = u_0$. Using Lemma 3.1, Jessen's inequality, (13) and the boundness of the sequence $\int_{c_{n-1}} h(L_i, u)^p dS_{\gamma_n, p}(K_i, u)$ we obtain that there is a constant C > 0 such that

$$C \geq \lim_{i \to \infty} \int_{S^{n-1}} h_{L_i}^p(u) dS_{\gamma_n, p}(K_i, u)$$

$$\geq \lim_{i \to \infty} \int_{S^{n-1}} R_i(u_i)^p(u_i, u)_+^p dS_{\gamma_n, p}(K_i, u)$$

$$\geq \lim_{j \to \infty} M^p \int_{S^{n-1}} (u, u_{i_j})_+^p dS_{\gamma_n, p}(K_{i_j}, u)$$

$$= M^p S_{\gamma_n, p}(K, S^{n-1}) \left(\frac{1}{S_{\gamma_n, p}(K, S^{n-1})} \int_{S^{n-1}} (u, u_0)_+ dS_{\gamma_n, p}(K, u) \right)^p$$

$$\geq M^p S_{\gamma_n, p}^{1-p}(K, S^{n-1}) c^p.$$

By the arbitrariness of M, let $M \to \infty$, we obtain a contradiction $C \ge \infty$. The proof of lemma is complished quickly. \Box

Now, we define the L_p geominimal Gaussian surface area $G_{\gamma_n,p}(K)$ of the convex body K.

Definition 3.3. Suppose $K \in \mathcal{K}_0^n$. The L_p geominimal Gaussian surface area $G_{\gamma_n,p}(K)$ of the convex body K, is defined by

$$G_{\gamma_n,p}(K) = \inf\left\{\int_{S^{n-1}} h(Q,u)^p dS_{\gamma_n,p}(K,u) : Q \in \mathcal{K}_0^n \text{ and } |Q^*| = \omega_n\right\}.$$
(15)

Remark: For each convex body $L \in \mathcal{K}_0^n$, we have $|(vrad(L^*)L)^*| = \omega_n$. Thus, the foluma (15) is equivalent to

$$G_{\gamma_n,p}(K) = \inf_{L \in \mathcal{K}_0^n} \left\{ \int_{S^{n-1}} h((vrad(L^*)L, u)^p dS_{\gamma_n,p}(K, u)) \right\}.$$
(16)

Next, we will prove the main result Theorem 1.1.

Proof. Firstly, we prove the existence of Theorem 1.1. By Definition 3.3, there exists a sequence $\{M_i\}_{i=1}^{\infty} \subset \mathcal{K}_0^n$ with $|M_i^*| = \omega_n$ such that

$$S_{\gamma_n,p}(K,S^{n-1}) = \int_{S^{n-1}} h_{B_2^n}^p(u) dS_{\gamma_n,p}(K,u) \ge \int_{S^{n-1}} h_{M_i}^p(u) dS_{\gamma_n,p}(K,u) > 0, \text{ for all } i \ge 1.$$

Obviously, the sequence $\int_{S^{n-1}} h_{M_i}^p(u) dS_{\gamma_{n,p}}(K, u)$ is uniformly bounded. By Lemma 3.2, the sequence $\{M_i\}_{i=1}^{\infty}$ is uniformly bounded. Thus, using the Blaschke selection theorem, there is a subsequence of $\{M_i\}_{i=1}^{\infty}$, for convenience, still recorded as $\{M_i\}_{i=1}^{\infty}$ which converges to a compact convex set M. Using Lemma 2.2 and $M_i \in \mathcal{K}_0^n$ shows that $M \in \mathcal{K}_0^n$. And using (7) implies that M_i^* converges to M^* as $i \to \infty$. Thus, we obtain $|M^*| = \omega_n$. From Lemma 3.1, we show that

$$\lim_{i\to\infty}\int_{S^{n-1}}h^p_{M_i}(u)dS_{\gamma_n,p}(K,u)=\int_{S^{n-1}}h^p_M(u)dS_{\gamma_n,p}(K,u)$$

Now we prove the uniqueness of Theorem 1.1. Assume that there exist two convex bodies $M_1, M_2 \in \mathcal{K}_0^n$ with $|M_1^*| = |M_2^*| = \omega_n$ such that

$$G_{\gamma_{n},p}(K) = \int_{S^{n-1}} h_{M_{1}}^{p}(u) dS_{\gamma_{n},p}(K,u) = \int_{S^{n-1}} h_{M_{2}}^{p}(u) dS_{\gamma_{n},p}(K,u)$$

For $p \ge 1$, the new compact set *M* with respect to $M_1, M_2 \in \mathcal{K}_0^n$ is defined by

$$M=\frac{1}{2}\cdot M_1+_p\frac{1}{2}\cdot M_2.$$

Using (10) shows that

$$M^* = \frac{1}{2} \diamond M_1^* \tilde{+}_{-p} \frac{1}{2} \diamond M_2^*.$$

Using the L_p Brunn-Minkowski inequality (see, e.g., [19]) we obtain that $|M^*| \le \omega_n$ and the equality holds if and only if M_1^* and M_2^* are dilates. If M_1^* and M_2^* are dilates, for convenience, we set $M_1^* = sM_2^*$ for real number s > 0. Since $|M_1^*| = s^n |M_2^*| = \omega_n$, we deduce that s = 1. Then $M_1 = M_2$ if and only if $vrad(M^*) = 1$. By (16), we have

$$\begin{aligned} G_{\gamma_{n},p}(K) &\leq \int_{S^{n-1}} h^{p}_{(vrad(M^{*}))M}(u) dS_{\gamma_{n},p}(K,u) \\ &\leq \int_{S^{n-1}} h^{p}(M,u) dS_{\gamma_{n},p}(K,u) \\ &= \int_{S^{n-1}} \left(\frac{1}{2}h^{p}(M_{1},u) + \frac{1}{2}h^{p}(M_{2},u)\right) dS_{\gamma_{n},p}(K,u) \\ &= G_{\gamma_{n},p}(K). \end{aligned}$$

This implies that $vrad(M^*) = 1$. This completes the proof of the theorem. \Box

4. Continuity

The optimal solution M of Theorem 1.1 is called the L_p Gaussian Petty body. And the set of solutions is denoted by

$$M_{\gamma_{n},p}(K) = \left\{ M \in \mathcal{K}_{0}^{n} : G_{\gamma_{n},p}(K) = \int_{S^{n-1}} h_{M}^{p}(u) dS_{\gamma_{n},p}(K,u) \text{ and } |M^{*}| = \omega_{n} \right\}.$$
(17)

Obviously, the uniqueness of Theorem 1.1 implies that the set $M_{\gamma_n,p}(K)$ can define an operator on \mathcal{K}_0^n . We now prove the continuity of $G_{\gamma_n,p}(K)$ and the operator $M_{\gamma_n,p}(K)$.

Theorem 4.1. Let $\{K_i\}_{i=1}^{\infty} \subset \mathcal{K}_0^n$ and $K \in \mathcal{K}_0^n$ with $K_i \to K$ as $i \to \infty$. Then (i) $\lim_{i\to\infty} G_{\gamma_n,p}(K_i) = G_{\gamma_n,p}(K)$; (ii) $\lim_{i\to\infty} M_{\gamma_n,p}(K_i) = M_{\gamma_n,p}(K)$.

Proof. Firstly, we give the proof of (i). Let $\{K_i\}_{i=1}^{\infty} \subset \mathcal{K}_0^n$ and $K \in \mathcal{K}_0^n$ such that $K_i \to K$ as $i \to \infty$. For sufficiently small $\varepsilon > 0$, using Definition 3.3 and Lemma 3.1, we obtain that there is a convex body $M_{\varepsilon} \in \mathcal{K}_0^n$ with $|M_{\varepsilon}^*| = \omega_n$ such that

$$G_{\gamma_{n},p}(K) + \varepsilon \ge \int_{S^{n-1}} h_{M_{\varepsilon}}^{p}(u) dS_{\gamma_{n},p}(K,u) = \lim_{i \to \infty} \int_{S^{n-1}} h_{M_{\varepsilon}}^{p}(u) dS_{\gamma_{n},p}(K_{i},u) \ge \limsup_{i \to \infty} G_{\gamma_{n},p}(K_{i}).$$

Let $\varepsilon \to 0^+$, we have

$$G_{\gamma_n,p}(K) \ge \limsup_{i \to \infty} G_{\gamma_n,p}(K_i).$$
(18)

Next, we assume $M_i \in \mathcal{K}_0^n$ and $|M_i^*| = \omega_n$ such that $G_{\gamma_n,p}(K_i) = \int_{S^{n-1}} h_{M_i}^p(u) dS_{\gamma_n,p}(K_i, u)$. Thus

$$0 < \int_{S^{n-1}} h_{M_i}^p(u) dS_{\gamma_n, p}(K_i, u) \le \int_{S^{n-1}} h_{B_2^n}^p(u) dS_{\gamma_n, p}(K_i, u) < \infty.$$

This implies that the sequence $\int_{S^{n-1}} h_{M_i}^p(u) dS_{\gamma_n, p}(K_i, u)$ is bounded. Thus, the sequence $\{M_i\}_{i=1}^{\infty}$ is uniformly bounded. Using the Blaschke selection theorem shows that there exists a convergent subsequence of $\{M_i\}_{i=1}^{\infty}$, which is also written as $\{M_i\}_{i=1}^{\infty}$, and a compact convex set M' such that $\lim_{i\to\infty} M_i = M'$. Combining $|M_i^*| = \omega_n$, Lemma 2.2 and Lemma 2.1, we obtain $M' \in \mathcal{K}_0^n$ with $|(M')^*| = \omega_n$. By Definition 3.3, Lemma 3.1 and Theorem 1.1, we have

$$G_{\gamma_{n},p}(K) \leq \int_{S^{n-1}} h_{M'}^p(u) dS_{\gamma_{n},p}(K_i, u) = \liminf_{i \to \infty} \int_{S^{n-1}} h_{M_i}^p(u) dS_{\gamma_{n},p}(K_i, u) = \liminf_{i \to \infty} G_{\gamma_{n},p}(K_i).$$
(19)

Combining (18) with (19), this completes the proof of (i).

Now, we give the proof of (ii). By (17) and Theorem 1.1, we know that the set $M_{\gamma_n,p}(K)$ has only one element. For simplicity, we set $M = M_{\gamma_n,p}(K)$ and $M_i = M_{\gamma_n,p}(K_i)$. For $K_i \to K$ as $i \to \infty$, using the continuity of $G_{\gamma_n,p}(\cdot)$ we obtain that

$$G_{\gamma_n,p}(K) = \lim_{i \to \infty} G_{\gamma_n,p}(K_i) = \lim_{i \to \infty} \int_{S^{n-1}} h_{M_i}^p(u) dS_{\gamma_n,p}(K_i, u).$$

This implies that $\int_{S^{n-1}} h_{M_i}^p(u) dS_{\gamma_n, p}(K_i, u)$ is uniformly bounded. Thus, the sequence $\{M_i\}_{i=1}^{\infty}$ is bounded. By Lemma 2.1, there exists a subsequence $\{M_i\}_{i=1}^{\infty} \subset \{M_i\}_{i=1}^{\infty}$ and a convex body $M_0 \in \mathcal{K}_0^n$ such that $\lim_{j\to\infty} M_{i_j} = M_0 \in \mathcal{K}_0^n$ and $|M_0^*| = \omega_n$. By (i) of Theorem 4.1 and Lemma 3.1, one has

$$G_{\gamma_n,p}(K) = \lim_{j \to \infty} G_{\gamma_n,p}(K_{i_j}) = \int_{S^{n-1}} h_{M_0}^p(u) dS_{\gamma_n,p}(K,u)$$

Using Theorem 1.1 shows that

$$G_{\gamma_n,p}(K) = \int_{S^{n-1}} h_M^p(u) dS_{\gamma_n,p}(K,u) \text{ with } |M^*| = \omega_n.$$

Since the operator $M_{\gamma_n,p}(K)$ has only one element, this implies that $\lim_{i\to\infty} M_i = M$. This completes the proof of the theorem. \Box

4997

Next, we will discuss the continuity of the solution for the L_p geominimal Gaussian surface area.

Corollary 4.2. Let $K_i, K \in \mathcal{K}_0^n$. For $p \ge 1$, let M_i be the solution of $G_{\gamma_n,p}(K_i)$ and M be the solution of $G_{\gamma_n,p}(K)$. If $G_{\gamma_n,p}(K_i)$ converges to $G_{\gamma_n,p}(K)$, then M_i converges to M.

Proof. Using Theorem 1.1 we obtain that the solution for the L_p geominimal Gaussian surface area is unique. Hence, let M_i , M be such that $\int_{S^{n-1}} h_{M_i}^p(u) dS_{\gamma_n, p}(K_i, u) = G_{\gamma_n, p}(K_i)$, and $\int_{S^{n-1}} h_M^p(u) dS_{\gamma_n, p}(K, u) = G_{\gamma_n, p}(K)$. Since $G_{\gamma_n, p}(K_i)$ converges to $G_{\gamma_n, p}(K)$, this shows that there is an integer N such that

$$G_{\gamma_n,p}(K_i) \le G_{\gamma_n,p}(K) + \varepsilon, \ i \ge N,$$

for all $\varepsilon > 0$. This implies that the sequence $\int_{S^{n-1}} h_{M_i}^p(u) dS_{\gamma_n, p}(K_i, u)$ is bounded. Thus, using Lemma 3.2 shows that M_i is uniformly bounded. Using the Blaschke selection theorem, we obtain that there is a subsequence M_{i_j} of M_i such that it converges to a compact convex set M'. Combining Lemma 2.1 with Lemma 2.2, we obtain that $M' \in \mathcal{K}_0^n$ and $|(M')^*| = \omega_n$. Since M_{i_j} is the solution of $G_{\gamma_n, p}(K_{i_j})$, taking the limit as $j \to \infty$, we obtain that M' is the solution of $G_{\gamma_n, p}(K)$. The uniqueness of the solution immediately get that $\lim_{i\to\infty} M_{i_i} = M$. This completes the proof of the corollary. \Box

Corollary 4.3. Let $K \in \mathcal{K}_0^n$. For $p, p_i \ge 1$, let M_i be the solution of $G_{\gamma_n, p_i}(K)$ and M be the solution of $G_{\gamma_n, p}(K)$. If $G_{\gamma_n, p_i}(K)$ converges to $G_{\gamma_n, p}(K)$, then M_i converges to M.

Proof. The proof is similar to Corollary 4.2. \Box

Lemma 4.4. Let $K \in \mathcal{K}_0^n$ be a polytope. For $p_1, p_2 \ge 1$ and $p_1 \ne p_2$. If the convex body M_j (j = 1, 2) is the solution to the L_{p_j} geominimal Gaussian surface area, then M_1 and M_2 are polytopes with the same facet normal vector.

Proof. Let $K \in \mathcal{K}_0^n$ be a polytope with the facet normal vectors u_1, \dots, u_m . Obviously, $\{u_1, u_2, \dots, u_m\}$ is not concentrated on any closed hemisphere of S^{n-1} and $K = \bigcap_{i=1}^m H^-(u_i, h_K(u_i))$. Since the L_p Gaussian surface measure is absolutely continuous with respect to (n - 1)-dimensional Hausdorff measure, this implies that the L_p Gaussian surface measure $S_{\gamma_n, p_1}(K, \cdot)$ is a discrete measure concentrated on $\{u_1, u_2, \dots, u_m\} \subset S^{n-1}$. Let P be a polytope with the facet normal vectors u_1, u_2, \dots, u_m , such that

$$P_j = \bigcap_{i=1}^m H^-(u_i, h_{M_j}(u_i)).$$

Therefore, one has $M_j \subset P_j$. Since $M_j \in M_{\gamma_n, p_j}(K)$ (j = 1, 2), this implies that $vrad(P^*) \leq 1$. Combined Definition 3.3 with $M_j \in M_{\gamma_n, p_j}(K)$ (j = 1, 2), we obtain

$$\begin{aligned} G_{\gamma_{n},p_{j}}(K) &\leq \int_{S^{n-1}} h^{p_{j}}(vard(P_{j}^{*})P_{j},u)dS_{\gamma_{n},p_{j}}(K,u) \\ &\leq \int_{S^{n-1}} h^{p_{j}}(P_{j},u)dS_{\gamma_{n},p_{j}}(K,u) \\ &= \sum_{i=1}^{m} h^{p_{j}}(P_{j},u_{i})S_{\gamma_{n},p_{j}}(K,\{u_{i}\}) \\ &= \sum_{i=1}^{m} h^{p_{j}}(M_{j},u_{i})S_{\gamma_{n},p_{j}}(K,\{u_{i}\}) \\ &\leq \int_{S^{n-1}} h^{p_{j}}(M_{j},u)dS_{\gamma_{n},p_{j}}(K,u) \\ &= G_{\gamma_{n},p_{j}}(K). \end{aligned}$$

This shows that $vrad(P_j^*) = vrad(M_j^*) = 1$. We know that $|M_j| = |P_j|$ and $M_j \subset P_j$. Thus, $M_j = P_j$, which means that the optimal solution M_j is a polytope with the facet normal vectors u_1, u_2, \dots, u_m . This completes the proof of the lemma. \Box

Let $conv\{x_1, \dots, x_m\}$ be the convex hull of $x_1, \dots, x_m \in \mathbb{R}^n$. If x_1, \dots, x_{n+1} are affine independent, then the convex hull $conv\{x_1, \dots, x_{n+1}\}$ denotes the simplex. Moreover, the convex hull of n points $\{x_{i_1}, \dots, x_{i_n}\} \subset \{x_1, \dots, x_{n+1}\}$ denote the facets of the simplex $conv\{x_1, \dots, x_{n+1}\}$. Let $T = conv\{o, e_1, \dots, e_n\}$ denotes standard simplex, where e_1, \dots, e_n denote the vectors of the standard bases of \mathbb{R}^n . Obviously, for each simplex K, there is a transformation $\phi \in GL(n)$ and $x \in \mathbb{R}^n$ such that $K = \phi T + x$. Let $K \in \mathcal{K}_0^n$, then the volume product $|K||K^*|$ is GL(n) invariant. Moreover, if $K \in \mathcal{K}_c^n$, then

$$|K||K^*| \le \omega_n^2,$$

with equality if and only if *K* is an ellipsoid. The lower bound of the volume product is the Mahler conjecture, i.e., if $K \in \mathcal{K}_{c}^{n}$, then

$$\frac{(n+1)^{n+1}}{(n!)^2} \le |K||K^*|,\tag{20}$$

with equality if and only if *K* is a simplex. Recently, Meyer and Reisner [14] used the shadow system to prove an exact reverse Blaschke-Santaló inequality (20) for polytopes in \mathbb{R}^n that have at most n + 3 vertices.

Corollary 4.5. Let $p \ge 1$. If $K \in \mathcal{K}_0^n$ is the simplex and M is the solution of $G_{\gamma_n,p}(K)$, then M and K are homothetic.

Proof. For each simplex *K*, there is a transformation $\phi \in GL(n)$ and $x \in \mathbb{R}^n$ such that $K = \phi T + x$. From Lemma 4.1, we obtain that *M* and *K* are simplexes with the same facet normal vector. Thus, there is $\lambda > 0$ and $x_2 \in \mathbb{R}^n$ such that $M = \lambda \phi T + x_2$. This implies that $M = \lambda K + x$, where $\lambda > 0$ and $x \in \mathbb{R}^n$ with $|(\lambda K + x)^*| = \omega_n$. This completes the proof of the corollary. \Box

Next, we will establish the main result Theorem 1.2.

Proof. Let the convex body M_i be the solution to the geominimal L_p style Gaussian surface area $\widetilde{G}_{\gamma_n,p}(K)$. Using Corollary 4.5 we obtain that there are $\lambda_i > 0$ and $x_i \in \mathbb{R}^n$ such that $M_i = \lambda_i K + x_i$. Since $M_i, K \in \mathcal{K}_c^n$, one has $x_i = o$ for all *i*. Combining $|K_i^*| = \alpha$ with $|M_i^*| = \omega_n$, this implies that $M_i = \left(\frac{\alpha}{\omega_n}\right)^{\frac{1}{n}} K_i$. Similarly, we have $M = \left(\frac{\alpha}{\omega_n}\right)^{\frac{1}{n}} K$. Thus, an application of Corollary 4.2 completes the proof. \Box

Corollary 4.6. For $p \ge 1$. Let $K, K_i \in \mathcal{K}_c^n$ be simplexes. Assume $|K_i^*| = |K^*| = \alpha$ for $\alpha > 0$, and if $\int_{S^{n-1}} h^p(K_i, u) dS_{\gamma_n, p, K_i}(u)$ converges to $\int_{S^{n-1}} h^p(K, u) dS_{\gamma_n, p, K_i}(u)$, then K_i converges to K.

Proof. Let the convex body M_i be the solution to the geominimal L_p style Gaussian surface area $\widetilde{G}_{\gamma_n,p}(K)$. Using Corollary 4.5 implies that there are $\lambda_i > 0$ and $x_i \in \mathbb{R}^n$ such that $M_i = \lambda_i K_i + x_i$. Since $M_i, K_i \in \mathcal{K}_c^n$, one has $x_i = o$ for all *i*. Combining $|K_i^*| = \alpha$ with $|M_i^*| = \omega_n$, this implies that $M_i = \left(\frac{\alpha}{\omega_n}\right)^{\frac{1}{n}} K_i$. Similarly, we have $M = \left(\frac{\alpha}{\omega_n}\right)^{\frac{1}{n}} K$. Thus, $\widetilde{G}_{\gamma_n,p}(K_i) = \left(\frac{\alpha}{\omega_n}\right)^{\frac{p}{n}} \int_{S^{n-1}} h^p(K_i, u) dS_{\gamma_n,p,K_i}(u)$ and $\widetilde{G}_{\gamma_n,p}(K) = \left(\frac{\alpha}{\omega_n}\right)^{\frac{p}{n}} \int_{S^{n-1}} h^p(K, u) dS_{\gamma_n,p,K_i}(u)$. Since $\int_{S^{n-1}} h^p(K_i, u) dS_{\gamma_n,p,K_i}(u)$ converges to $\int_{S^{n-1}} h^p(K, u) dS_{\gamma_n,p,K}(u)$, we now obtain $\widetilde{G}_{\gamma_n,p}(K_i) \to \widetilde{G}_{\gamma_n,p}(K)$. Thus, an application of Theorem 1.2 completes the proof of the corollary.

Next, we will establish the Blaschke-Santaló style inequality for the L_p geominimal Gaussian surface area. **Corollary 4.7.** For $p \ge 1$. If $K \in \mathcal{K}_c^n$ is a simplex, then

$$G_{\gamma_n,p}(K)G_{\gamma_n,p}(K^*) \leq \frac{n^2}{(2\pi)^n \omega_n^{2p/n}} \left(\frac{(n+1)^{n+1}}{(n!)^2}\right)^{\frac{p+n}{n}}.$$

Proof. Let *M* be the solution to the L_p geominimal Gaussian surface area $\tilde{G}_{\gamma_n,p}(K)$. Using Corollary 4.6 shows that $M = (\frac{|K^*|}{\omega_n})^{1/n}K$. Thus $\tilde{G}_{\gamma_n,p}(K) = (\frac{|K^*|}{\omega_n})^{p/n} \int_{S^{n-1}} h(K, u) dS_{\gamma_n,K}(u)$. Similarly, we have $\tilde{G}_{\gamma_n,p}(K^*) = (\frac{|K|}{\omega_n})^{p/n} \int_{S^{n-1}} h(K^*, u) dS_{\gamma_n,K^*}(u)$. By using (20), one has

$$\frac{(n+1)^{n+1}}{(n!)^2} \le |K||K^*|,$$

with equality if and only if $K \in \mathcal{K}_c^n$ is a simplex. Thus, we have $\frac{(n+1)^{n+1}}{(n!)^2} = |K||K^*|$. Combining (11) with (12), this implies that $\int_{S^{n-1}} h(K, u) dS_{\gamma_n, K}(u) \leq \frac{1}{(\sqrt{2\pi})^n} n|K|$. Similarly, $\int_{S^{n-1}} h(K^*, u) dS_{\gamma_n, K^*}(u) \leq \frac{1}{(\sqrt{2\pi})^n} n|K^*|$. Thus,

$$\tilde{G}_{\gamma_{n},p}(K)\tilde{G}_{\gamma_{n},p}(K^{*}) \leq \frac{n^{2}}{(2\pi)^{n}\omega_{n}^{2p/n}} \left(\frac{(n+1)^{n+1}}{(n!)^{2}}\right)^{\frac{p+n}{n}}.$$

Together with $\tilde{G}_{\gamma_n,p}(K) \ge G_{\gamma_n,p}(K)$, this completes the proof of the corollary. \Box

We now discuss the monotonicity of the L_p geominimal Gaussian surface area with respect to p.

Corollary 4.8. Let $K \in \mathcal{K}_0^n$. If $p_1, p_2 \ge 1$ and $p_1 \le p_2$, then

$$G_{\gamma_n,p_1}^{p_2}(K) \le G_{\gamma_n,p_2}^{p_1}(K) \left(\int_{S^{n-1}} h_K(u) dS_{\gamma_n}(K,u) \right)^{p_2-p_1}$$

Proof. Let the convex body M_i be the solution of $G_{\gamma_n,p_i}(K)$ for i = 1, 2. Combining Definition 3.3 with Hölder inequality, one has

$$\begin{aligned} G_{\gamma_{n},p_{1}}(K) &= \int_{S^{n-1}} h_{M_{1}}^{p_{1}}(u) dS_{\gamma_{n},p_{1}}(K,u) \\ &\leq \int_{S^{n-1}} \left(\frac{h_{M_{2}}(u)}{h_{K}(u)}\right)^{p_{1}} h_{K}(u) dS_{\gamma_{n}}(K,u) \\ &\leq \left(\int_{S^{n-1}} \left(\frac{h_{M_{2}}(u)}{h(K,u)}\right)^{p_{2}} h_{K}(u) dS_{\gamma_{n}}(K,u)\right)^{\frac{p_{1}}{p_{2}}} \left(\int_{S^{n-1}} h_{K}(u) dS_{\gamma_{n}}(K,u)\right)^{\frac{p_{2}-p_{1}}{p_{2}}} \\ &= G_{\gamma_{n},p_{2}}^{\frac{p_{1}}{p_{2}}}(K) \left(\int_{S^{n-1}} h_{K}(u) dS_{\gamma_{n}}(K,u)\right)^{\frac{p_{2}-p_{1}}{p_{2}}}. \end{aligned}$$

This completes the proof. \Box

References

- [1] Y. Feng, W. Wang, L_p-dual mixed geominimal surface area, Glasg. Math. J. 56 (2014), 229-239.
- [2] R.J. Gardner, Geometric tomography, Cambridge Univ. Press, Cambridge, (1995).
- [3] P.M. Gruber, Convex and discrete geometry, Springer-Verlag, Berlin Heidelberg, (2007).
- [4] Y. Huang, D. Xi, Y. Zhao, The Minkowski problem in Gaussian probability space, Adv. Math., 385 (2021), Paper No. 107769, 36pp.
- [5] N. Li, S. Mou, The General Dual Orlicz Geominimal Surface Area, J. Function Spaces, 2020(1):1-6.
- [6] X. Li, H. Wang, J. Zhou, (*p*,*q*)-mixed geominimal surface area and (*p*,*q*)-mixed affine surface area, J. Math. Anal. Appl., **475** (2019), 1472-1492.
- [7] J. Liu, The *L*_p-Gaussian Minkowski problem, Calc. Var. Partial Differential Equations, **66** (2022), Paper No. 28, 23 pp.
- [8] M. Ludwig, General affine surface areas, Adv. Math., **224** (2010), 2346-2360.

- [9] M. Ludwig, M. Reitzner, A characterization of affine surface area, Adv. Math., 147 (1999), 138-172.
- [10] X. Luo, D. Ye, B. Zhu, On the polar Orlicz-Minkowski problems and the *p*-capacitary Orlicz-Petty bodies, Indiana Univ. Math. J., 69 (2020), 385-420.
- [11] E. Lutwak, Dual mixed volume, Pacific Journal of Mathematics, 58 (1975), 531-538.
- [12] E. Lutwak, Centroid bodies and dual mixed volumes, Pro. London Math. Soc., 2 (1990), 365-391.
- [13] E. Lutwak, The Brunn-Minkowski-Firey theory II. Affine and geominimal surface areas, Adv. Math., 118 (1996), 244-294.
- [14] M. Meyer, S. Reisner, Shadow systems and volumes of polar convex bodies, Mathematika, 53 (2006), 129-148.
- [15] S. Mou, The geominimal integral curvature, AIMS Math., 7 (2022), 14338-14353.
- [16] S. Mou, J. Dai, Geominimal Lp integral curvature, Acta Math. Sinica (Chinese Ser.) 66 (2023), 617-628.
- [17] S. Mou, B. Zhu, The orlicz-minkowski problem for measure in Rⁿ and Orlicz geominimal measures, Int. J. Math., 30 (2019), 26pp.
- [18] C.M. Petty, Geominimal surface area, Geom. Dedicata, 3 (1974), 77-97.
- [19] R. Schneider Convex Bodies: The Brunn-Minkowski theory, Second edition, Cambridge Univ., (2014).
- [20] D. Ye, L_v geominimal surface areas and their inequalities , Int. Math. Res. Not., **2015** (2015), 2465-2498.
- [21] D. Ye, Dual Orlicz-Brunn-Minkowski theory: dual Orlicz L_{ϕ} affine and geominimal surface areas , J. Math. Anal. Appl., **443** (2016), 352-371.
- [22] D. Ye, B. Zhu, J. Zhou, The mixed L_p geominimal surface area for multiple convex bodies, Indiana Univ. Math. J., 64 (2015), 1513-1552.
- [23] S. Yuan, H. Jin, G. Leng, Orlicz geominimal surface areas, Math. Ineq. Appl., 18 (2015), 353-362.
- [24] B. Zhu, N. Li, J. Zhou, Isoperimetric inequalities for L_p geominimal surface area, Glasg. Math. J., 53 (2011), 717-726.
- [25] B. Zhu, J. Zhou, W. Xu, L_p mixed geominimal surface area, J. Math. Anal. Appl., 422 (2015), 1247-1263.
- [26] B. Zhu, H. Hong, D. Ye, The Orlicz Petty bodies, Int. Math. Res. Not., **14** (2018), 4356-4403.