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Reconstruction of the Sturm-Liouville operator from nodal data

Rauf Amirova

aSivas Cumhuriyet University, Faculty of Science, Department of Mathematics, 58140 Turkey

Abstract. In this study, the inverse nodal problem for second order differential operators on a finite
interval with discontinuity conditions inside the interval is studied. For each discontinuity point d ∈
ℜ = {rπ, r ∈ (0, 1) ∩Q}, the existence of the solution of the inverse nodal problem has been proven and a
constructive procedure for the solution is provided.

1. Introduction

One of the solution methods for the inverse problems of the Sturm-Liouville operators is to use the
zeros of the eigenfunctions. These zeros are also called nodal points. Trying to reconstruct the coefficients
of the operator from the asymptotic formula of the nodal points is known as inverse nodal problem. This
problem for Sturm-Liouville operator was first investigated by McLaughlin in [1] .She accomplished to
prove that this type of inverse problem has a unique solution. Same further numerical calculations for
potential reconstruction are give in [2]. In 1997, Ch.-F.Yang [8] obtained a definite algorithm for the solution
of inverse nodal problems with separated boundary conditions. Later, similar results for various boundary
conditions were obtained in (see [3 − 7, 9 − 16] and references there in ). Next, inverse nodal problems for
Sturm-Liouville operators with discontinuous conditions was first investigated by Chung-Tsun Shieh and
V.A. Yurko in [11] . Later, the result obtained in the [11] generalized the by C.F. Yang in [10] using the
same method. In particular, in the study [10], the uniqueness theorems and the stability feature of these
problems were examined according to different characteristics regarding the solution of the inverse nodal

problem for the Sturm-Liouville operator with discontinuity at d =
1
2
∈ [0, 1] (midpoint of the part). In [21]

studied a boundary value problem consisting of a Sturm-Liouville equation with conditions dependent of
the spectral parameter and discontinuous conditions in point x =

π
2

is investigated. Additionally, in studies
[22 − 25], inverse nodal problems and their important properties were examined for regular Sturm-Liouville
and Dirac operators given with different properties. In this paper proved the uniquenessed theorem for
solution of the inverse nodal problem, present constructive procedure for the potential function by using
nodal lengths and studied Lipschitz stability for the inverse problem. In this study, the uniqueness theorem
is proved for the solution of the inverse nodal problem to determine the potential function when the
discontinuity point is the midpoint of the segment. However, the solution of the nodal inverse problem is
not given when the point of discontinuity is any point in the interval.
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Email address: emirov@cumhuriyet.edu.tr (Rauf Amirov)



R. Amirov / Filomat 38:14 (2024), 5051–5060 5052

In this paper, unlike previous studies on this subject, when the discontinuity point (0, π) is any of the
countable number of irrational points in the form of dr = rπ, (r ∈ (0, 1) ∩Q) , the proof of the uniqueness
theorem is given for the solution of the inverse nodal problem and give an algorithm for the reconstruction
of the coefficients of the problem using asymptotic of the nodal points.

Consider the following boundary value problem L = L
(
q, h,H, a1, a2, d

)
with discontinuity conditions

inside the interval:

−y
′′

+ q(x)y = λy, 0 < x < π, (1)

U(y) := y
′

(0) − hy (0) = 0,V(y) := y
′

(π) +Hy (π) = 0, (2)

y (d + 0) = a1y (d − 0) , y
′

(d + 0) = a−1
1 y

′

(d − 0) + a2 y(d − 0). (3)

Here d ∈ ℜ := {rπ, r ∈ (0, 1) ∩Q} , λ is the spectral parameter, q(x) is a real valued function, h,H, a1, a2 are
real numbers, q(x) ∈ L (0, π) and a1 > 0.

Without loss of generality we assume that

π∫
0

q(x)dx = 0. (4)

2. Main results

In the first part of this section, the asymptotics of the nodal points of the problem L are given. Then,
we obtain uniqueness theorem and a procedure of recovering the potential q(x) on the whole interval (0, π)
from a dense subset of nodal points.

Let y(x) and z(x) be continuously differentiable functions on [0, d] and on [d, π]. Denote
〈
y, z

〉
:= yz′ − y′z.

If y(x) and z(x) satisfy the matching conditions (3), then〈
y, z

〉
|x=d−0=

〈
y, z

〉
|x=d+0 . (5)

Let φ (x, λ) be the solution of equation (1) satisfying the initial conditions y(0, λ) = 1, y′ (0, λ) = h and
the discontinuity conditions (3). Then U

(
φ
)
= 0. Denote ∆ (λ) := −V(φ). The function ∆ (λ) is entire in λ of

order 1
2 and its zeros {λn}n≥0 coincide with the eigenvalues of L. The function∆ (λ) is called the characteristic

function for L. Since the boundary value problem L is self-adjoint, all zeros of ∆ (λ) are real and simple (see
[1])

Let λ = ρ2, τ := Imρ. For |λ| → ∞ uniformly in x on has (see [1] and [17]);

φ (x, λ) = cosρx + (h +Q(x))
sinρx
ρ
+ o

(
1
ρ

exp (|τ| x)
)
, x < d, (6)

φ (x, λ) =
(
a+1 cosρx + a−1 cosρ (2d − x)

)
+Q1 (x)

sinρx
2ρ

+Q2 (x)
sinρ(2d − x)

2ρ
+ o

(
1
ρ

exp (|τ| x)
)
, x > d, (7)

φ′ (x, λ) = −ρ sinρx + (h +Q(x)) cosρx + o
(
exp (|τ| x)

)
, x < d, (8)

φ′ (x, λ) = ρ(−a+1 sinρx+a−1 sinρ(2d−x))+
1
2

Q1 (x) cosρx−
1
2

Q2 (x) cosρ (2d − x)+o
(
exp (|τ| x)

)
, x > d, (9)
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where

Q (x) =
1
2

x∫
0

q (t) dt, Q1 (x) = a+1 (2h + 2Q(x)) + a2, Q2 (x) = a−1 (2h − 2Q(x) + 4Q(d)) − a2,

a+1 =
1
2

(
a1 + a−1

1

)
, a−1 =

1
2

(
a1 − a−1

1

)
.

Theorem 2.1. Let {λn}n≥1 be the eigenvalues and φ (x, λn) be the eigenfunctions of problem L. For sufficiently large
n, the following asymptotic relations hold:

ρn = ρ
0
n +

dn

ρ0
n
+ o

(
1
ρ0

n

)
, (10)

φ (x, λn) = cosρ0
nx + (h +Q(x) − dnx)

sinρ0
nx

2ρ0
n
+ o

(
1
ρ0

n
exp (|τ| x)

)
, x < d (11)

φ (x, λn) = a+1 cosρ0
nx + a−1 cosρ0

n(2d − x) + [Q1 (x) − dnx]
sinρ0

nx
2ρo

n

+ [Q2 (x) − dn(2d − x)]
sinρ0

n(2d − x)

2ρ0
n

+ o
(

1
ρ0

n
exp (|τ| x)

)
, x > d,

(12)

where ρ0
n’s are the zeros of the ∆0 (λ) = ρ

(
−a+1 sinρπ + a−1 sinρ (2d − π)

)
function and

dn =

(
Ha+1 +

1
2

Q1 (π)
)

cosρ0
nπ +

(
Ha−1 −

1
2

Q2 (π)
)

cosρ0
n(2d − π)

a+1π cosρ0
nπ − a−1 (2d − π) cosρ0

n (2d − π)
.

Proof. It follows from (7) and (9) that for |λ| → ∞

∆ (λ) = ρ
(
−a+1 sinρπ + a−1 sinρ (2d − π)

)
+

(
Ha+1 +

1
2

Q1 (π)
)

cosρπ

+
(
Ha+1 −

1
2

Q2 (π)
)

cosρ(2d − π) + o
(
exp (|τ|π)

)
.

(13)

Let

∆0 (λ) = ρ
(
−a+1 sinρπ + a−1 sinρ (2d − π)

)
.

Denote Gδ :=
{
ρ :

∣∣∣ρ − ρ0
n

∣∣∣ ≥ δ > 0,n = 0, 1, 2, ...
}
, where δ is sufficiently small number. As shown in [2]

that for ρ ∈ Gδ,
∣∣∣∆0

(
ρ
)∣∣∣ ≥ C (δ)

∣∣∣ρ∣∣∣ exp (|τ|π) .
Since the function ρ−1∆0 (λ) is type of ”sine” ([13] p.119), the number γδ exists such that for all n ≥ 1,∣∣∣∣ ·∆0

(
ρ0

n

)∣∣∣∣ ≥ γδ > 0. If the study [10] is used then we get that ρ0
n = n + hn, where sup

n
|hn| ≤M. Also, λ0

0 = 0.

It can be shown using classical methods in [1] that the sequence
{
ρn

}
n≥1 satisfies the asymptotic relation

(10), i.e. first part of theorem is provided.
Letφ (x, λn) be the eigenfunctions of the problem L.From (6), (7) and (10), we can see easily the asymptotic

formulas (11) and (12) are valid for sufficiently large n. Hence, the second part of the theorem is provided.
For the boundary value problem L an analog of Sturm’s oscillation theorem is true. More precisely, the

eigenfunction φ (x, λn) has exactly n (simple) zeros inside the interval (0, π), namely: 0 < x1
n < x2

n < ... <
xn

n < π.

The set X(L) :=
{
x j

n : n = 1, 2, ..., j = 1, 2, . . .n
}

is called the set of nodal points of the boundary value
problem L.
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Theorem 2.2. The following asymtotic expression is provided

x j(n)
n =

(
j(n) − 1

2

)
π

ρ0
n

+
[
h +Q

(
x j(n)

n

)
− dnx j(n)

n

] 1(
ρ0

n

)2 + o

 1(
ρ0

n

)2

 , x j(n)
n ∈ (0, d), (14)

x j(n)
n =

(
j(n) − 1

2

)
π

ρ0
n

+
1
ρ0

n
arctan

 a−1 sin 2dρ0
n

a+1 + a−1 cos 2dρ0
n

 + An

B
(
x j(n)

n

)
2
(
ρ0

n

)2 + o

 1(
ρ0

n

)2

 , x j(n)
n ∈ (d, π), (15)

for sufficiently large n, uniformly with respect to j, where

An =

(
a+1 + a−1 cos 2dρ0

n

)2(
a+1 + a−1 cos 2dρ0

n

)2
+

(
b2 sin 2dρ0

n

)2 ,

Bn (x) =
Q1(x) −Q2(x) cos 2dρ0

n − dnx + dn (2d − x) cos 2dρ0
n

a+1 + a−1 cos 2dρ0
n

−
a−1 [Q2(x) − dn (2d − x)](

a+1 + a−1 cos 2dρ0
n

)2 sin 2dρ0
n.

Proof. Use the asymptotic formulas for the case x < d and x > d respectively (11) and (12) to get

0 = φ
(
x j(n)

n , λn

)
= cosρ0

nx j(n)
n +

[
h +Q

(
x j(n)

n

)
− dnx j(n)

n

] sinρ0
nx j(n)

n

ρ0
n

+ o
(

1
ρ0

n
exp

(
|τ| x j(n)

n

))
, x j(n)

n ∈ (0, d),

0 = φ
(
x j(n)

n , λn

)
= a+1 cosρ0

nx j(n)
n + a−1 cosρ0

n

(
2d − x j(n)

n

)
+

[
Q1

(
x j(n)

n

)
− dnx j(n)

n

] sinρ0
nx j(n)

n

2ρ0
n

+
[
Q2

(
x j(n)

n

)
− dn(2d − x j(n)

n )
] sinρ0

n(2d − x j(n)
n )

2ρ0
n

+o
(

1
ρ0

n
exp

(
|τ| x j(n)

n

))
, x j(n)

n ∈ (d, π),

and so

tan
(
ρnx j(n)

n +
π
2

)
=

[
h +Q

(
x j(n)

n

)
− dnx j(n)

n

] 1
ρ0

n
+ o

(
1
ρ0

n

)
, x j(n)

n ∈ (0, d), (16)

tan
(
ρnx j(n)

n +
π
2

)
=

a−1 sin 2dρ0
n

a+1 + a−1 cos 2dρ0
n
+ Bn

(
x j(n)

n

) 1
2ρ0

n
+ o

(
1
ρ0

n

)
, x j(n)

n ∈ (d, π). (17)

If we apply the identity

arctanα − arctan β = arcsin


∣∣∣α − β∣∣∣√

(1 + α2)
(
1 + β2)

 ,
we get the asymptotic formulas (14) and (15) for the nodal points from the equations (16) and (17). Theorem
2.2 is provided.

It is clear from the expression of
{
ρ0

n

}
n≥1

that {hn}n≥1 is a real sequence. Since sup
n
|hn| ≤ M < +∞, let’s

choose subsequence {nk}k≥0 ⊂N as lim
k→∞

hnk = ho < +∞. Let’s define the setℜ =
{
rπ : r = p

q , p < q, p, q ∈N
}
.
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It is clear that the set ℜ is dense in the range (0, π) and consists of irrational numbers in the form rπ, r ∈
(0, 1) ∩Q, in this range.

Let us take any point d ∈ ℜ ⊂ (0, π) and choose the sequence {nk}k≥0 with nk = qmk ,
(
mk ∈N, lim

k→∞
mk = +∞

)
.

In this case, since sin 2dρ0
nk
= sin 2dhnk , cos 2dρ0

nk
= cos 2dhnk and 1

ρ0
nk
= 1

nk
−

hnk

(nk)2 + o
(

1
(nk)2

)
, we get following

asymptotic formulas for the nodal points of the problem L, for k→∞ uniformly in j:

x j(nk)
nk
=

(
j(nk) − 1

2

)
π

nk
−

(
j(nk) − 1

2

)
π

(nk)2 hnk +
[
h +Q

(
x j(nk)

nk

)
− dnk x

j(nk)
nk

] 1

(nk)2 + o
(

1

(nk)2

)
, x j(nk)

nk
∈ (0, d) , (18)

x j(nk)
nk
=

(
j(nk) − 1

2

)
π

nk
−

(
j(nk) − 1

2

)
π

(nk)2 hnk +
1
nk

arctan
(

a−1 sin 2dhnk

a+1 + a−1 cos 2dhnk

)
−

hnk

(nk)2 arctan
(

a−1 sin 2dhnk

a+1 + a−1 cos 2dhnk

)
+ Ank

Bnk

(
x j(nk)

nk

)
2(nk)2 + o

(
1

(nk)2

)
, x j(nk)

nk
∈ (d, π) ,

(19)

where

An =

(
a+1 + a−1 cos 2dhnk

)2(
a+1 + a−1 cos 2dhnk

)2
+

(
a−1 sin 2dhnk

)2 ,

Bn

(
x j(nk)

nk

)
=

Q1

(
x j(nk)

nk

)
−Q2

(
x j(nk)

nk

)
cos 2dhnk − dnk x

j(nk)
nk
+ dnk

(
2d − x j(nk)

nk

)
cos 2dhnk

a+1 + a−1 cos 2dhnk

−

a−1
[
Q2

(
x j(nk)

nk

)
− dnk

(
2d − x j(nk)

nk

)]
(
a+1 + a−1 cos 2dhnk

)2

(
sin 2dhnk

)2 .

Let X0 (L) =
{
x j(nk)

nk
: nk = 1, 2, ..., j (nk) = 1, 2, . . . ,nk

}
be a subsequence of the numbers x j(n)

n that is dense on
(0, π). According to above result, the existence of such set is obvious.

Theorem 2.3. For x ∈ (0, π), let X0 (L) ⊂ X (L) and lim
k→∞

x j(nk)
nk
= x. Then, for any point d ∈ ℜ the following limits

exist and are finite:

f1 (x) := lim
k→∞

[
nkx j(nk)

nk
−

(
j (nk) −

1
2

)
π
]
= xh0, x ∈ [0, d) , (20)

11 (x) := lim
k→∞

nk

nkx j(nk)
nk
−

(
j (nk) −

1
2

)
π +

(
j (nk) − 1

2

)
π

nk
hnk

 = h +Q (x) − xd0, x ∈ [0, d) (21)

f2 (x) := lim
k→∞

[
nkx j(nk)

nk
−

(
j (nk) −

1
2

)
π
]
= xh0 + arctan

(
a−1 sin 2dh0

a+1 + a−1 cos 2dh0

)
, x ∈ (d, π] , (22)

12 (x) := lim
k→∞

nk

nkx j(nk)
nk
−

(
j (nk) −

1
2

)
π +

(
j (nk) − 1

2

)
π

nk
hnk − arctan

(
a−1 sin 2dhnk

a+1 + a−1 cos 2dhnk

) (23)

= h0 arctan
(

a−1 sin 2dh0

a+1 + a−1 cos 2dh0

)
+

1
2

A0B0 (x) , x ∈ (d, π] ,
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where

A0 = lim
k→∞

Ank =

(
a+1 + a−1 cos 2dh0

)2(
a+1 + a−1 cos 2dho

)2
+

(
a−1 sin 2dh0

)2 ,

B0(x) = lim
k→∞

Bnk

(
x j(nk)

nk

)
=

Q1 (x) −Q2 (x) cos 2dh0 − d0x + d0 (2d − x) cos 2dh0

a+1 + a−1 cos 2dh0

−
a−1 [Q2 (x) − d0 (2d − x)](

a+1 + a−1 cos 2dh0

)2
(sin 2dh0)2 ,

d0 = lim
k→∞

dnk =

(
Ha+1 +

1
2

Q1 (π)
)

cosπh0 +
(
Ha−1 −

1
2

Q2 (π)
)

cos(2d − π)h0

a+1π cosπh0 − a−1 (2d − π) cos (2d − π) h0
.

Proof. Let d ∈ ℜ ⊂ (0, π) be any point. For each fixed x ∈ [0, π] \ {d} , there exists a sequence
(
x j(n)

n

)
converges

to x. For nk = qmk,mk ∈ N, the subsequence
(
x j(nk)

nk

)
converges also to x. Since we get from the asymptotics

from (18) and (19), the limits (20)-(23) exist and they are finite. Therefore the theorem is provided.

Let us now state a uniqueness theorem and present a constructive procedure for solving inverse nodal
problem.

Theorem 2.4. Let X0 (L) ⊂ X (L) be a subset of nodal points which is dense in (0, π) . Then, for any d ∈ ℜ the
specification of X0 (L) uniquely determines the potential q(x) a.e. on (0, π) and the coefficients h and H. The potential
q(x) and the number h can be constructed via the following algorithm:

1. For each x ∈ [0, π], we choose a sequence
{
x j(n)

n

}
⊂ X0 (L) such that

lim
n→∞

x j(n)
n = x.

2. From (21), we find the function 11(x) and from 11(0) we calculate

h = 11 (0) . (24)

3. From (23), we find the function 12(x) and from 12(π) we calculate

d∫
0

q(t)dt = 2G
(
H, 11 (0) , h0, a1, a2

)
. (25)

4. The function q(x) is determined from the equalities (21) and (23) as follows:

q(x) = 21
′

1 (x) −

[
a+1 (H + h) +

a2

2

]
cosπh0 +

[
a−1 (H − h) +

a2

2

]
cos (2d − π) h0

a+1π cosπh0 − a−1 (2d − π) cos (2d − π) h0

+
2a−1 cos (2d − π) h0G

(
H, 11 (0) , h0, a1, a2

)
a+1π cosπh0 − a−1 (2d − π) cos (2d − π) h0

, x ∈ [0, d) ,

(26)
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q(x) =
2
[(

a+1 + a−1 cos 2dh0

)2
+

(
a−1 sin 2dh0

)2
]

(
a+1 + a−1 cos 2dh0

)2
+ a−1 sin2 2dh0

{
1
′

2 (x)

+ 2A0

[
a+1

(
H + 11(0)

)
+

a2

2

]
cosπh0 +

[
a−1

(
H − 11(0)

)
+

a2

2

]
cos (2d − π) h0[

a+1π cosπh0 − a−1 (2d − π) cos (2d − π) h0

] (
a+1 + a−1 cos 2dh0

)
 (27)

+
4
[(

a+1 + a−1 cos 2dh0

)2
+

(
a−1 sin 2dh0

)2
]

a−1 cos (2d − π) h0 sin2 dh0G
(
H, 11 (0) , h0, a1, a2

)
[
a+1π cosπh0 − a−1 (2d − π) cos (2d − π) h0

] [(
a+1 + a−1 cos 2dh0

)2
+ a−1 sin2 2dh0

] (
a+1 + a−1 cos 2dh0

) ,
x ∈ (d, π] ,

Proof. Formulas (24), (25), (26) and (27) can be derived from (21) and (23) step by step. We obtain the
following reconstruction procedure:

i) By taking value of 11 (x) at x = 0, then we obtain h = 11(0).

ii) By taking value of 12 (x) at x = π, then we obtain

d∫
0

q(t)dt = 2G
(
H, 11 (0) , h0, a1, a2

)
.

iii) By taking derivatives of the functions 1i(x), (i = 1, 2) , we obtain (26) and (27).
Let the function ψ (x, λ) be the solution of (1) under the initial conditions ψ (π, λ) = 1, ψ

′ (π, λ) = −H,
and discontinuity conditions (3). It is clear that ψ (x, λn) = βnφ (x, λn) , where βn = ψ

′ (0, λn) .
To complete the proof, consider a sequence

{
x j(n)

n

}
⊂ X0 (L) that converges to π and write equation (1) for

ψ (x, λn) and ψ̃
(
x, λ̃n

)
as follows

−ψ̃′′
(
x, λ̃n

)
+ q(x)ψ̃

(
x, λ̃n

)
= λ̃nψ̃

(
x, λ̃n

)
,

−ψ′′ (x, λn) + q(x)ψ (x, λn) = λnψ (x, λn) .

If these equations are multiplied by ψ (x, λn) and ψ̃
(
x, λ̃n

)
, respectively, subtracted from each other and

integrated over the interval
(
x j(n)

n , π
)
, the equality

ψ′ (π, λn) ψ̃
(
π, λ̃n

)
− ψ̃′

(
x, λ̃n

)
ψ (π, λn) =

(
λn − λ̃n

) π∫
x j(n)

n

ψ̃
(
x, λ̃n

)
ψ (x, λn) dx

is obtained. Using (10), we get the following estimate for sufficiently large n

H − H̃ =
[
2
(
dn − d̃n

)
+ o(1)

] π∫
x j(n)

n

ψ̃
(
x, λ̃n

)
ψ (x, λn) dx.

Since the sequences (dn) and
(
d̃n

)
are bounded, then H = H̃. This completes the proof.

Corollary 2.5. If h0 = 0, then f1 (x) = 0 and f2 (x) = 0. In this case h = 11 (0) ,

a−1 Q (d) =

− (
a+1 + a−1

)
12 (π) +

(
a+1 − a−1

)
11 (0) + a2 + (π − d)

a+1 (H + h) + a−1 (H − h) + a2

π
(
a+1 + a−1

)
− 2a−1 d

×
×

π
(
a+1 + a−1

)
− 2a−1 d

(π − d) − 2
[
π

((
a+1 + a−1

)
− 2a−1 d

)] ,
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q(x) = 2
[
1
′

1 (x) +
a+1 (H + h) + a−1 (H − h) + a2

a+1π − a−1 (2d − π)

]
+

1
a+1π − a−1 (2d − π)

×

×

− (
a+1 + a−1

)
12 (π) +

(
a+1 − a−1

)
11 (0) + a2 + (π − d)

a+1 (H + h) + a−1 (H − h) + a2

π
(
a+1 + a−1

)
− 2a−1 d

×
×

π
(
a+1 + a−1

)
− 2a−1 d

(π − d) − 2
[
π

((
a+1 + a−1

)
− 2a−1 d

)] , x ∈ [0, d) ,

q(x) = 2

1′2 (x) +
a+1 (H + h) + a−1 (H − h) + a2

(a+1 + a−1 )
[
π

(
a+1 + a−1

)
− 2a−1 d

]  + 2

(a+1 + a−1 )
[
π

(
a+1 + a−1

)
− 2a−1 d

]×
×

− (
a+1 + a−1

)
12 (π) +

(
a+1 − a−1

)
11 (0) + a2 + (π − d)

a+1 (H + h) + a−1 (H − h) + a2

π
(
a+1 + a−1

)
− 2a−1 d

×
×

π
(
a+1 + a−1

)
− 2a−1 d

(π − d) − 2
[
π

((
a+1 + a−1

)
− 2a−1 d

)] , x ∈ (d, π] .

Corollary 2.6. Let d =
π
2
. Then hn = 0 for all n, consequently h0 = 0. In this case, we get the following equalities:

11(0) = h,

a−1 Q(π2 ) =
2a+1(

1 − 4a+1
) {
−

(
a+1 + a−1

)
12 (π) +

(
a+1 − a−1

)
11 (0) + a2 +

1
2a+1

[
a+1 (H + 11(0)) + a−1 (H − 11(0)) + a2

]}
,

q(x) =

21
′

1 (x) +
2

π
(
4a+1 − 1

) [
−

(
a+1 + a−1

)
12 (π) +

(
a+1 − a−1

)
11 (0) + a2

]
+

4

π
(
4a+1 − 1

) [
a+1 (H + 11(0)) + a−1 (H − 11(0)) + a2

] , x ∈ [
0,
π
2

)
,

q(x) = 2

1′2 (x) +
4

π
(
1 − 4a+1

) (
a+1 + a−1

) [
a+1 (H + 11(0)) + a−1 (H − 11(0)) + a2

]
+

2
[
−

(
a+1 + a−1

)
12 (π) +

(
a+1 − a−1

)
11 (0) + a2

]
π

(
4a+1 − 1

) (
a+1 + a−1

)  , x ∈ (
π
2
, π

]
.

Corollary 2.7. In the (1)-(3) problem, if the interval [0, 1] is taken instead of the interval [0, π], it must be d ∈ (0, 1)∩Q
for the inverse nodal problem to be solvable.

Corollary 2.8. In the (1)-(3) problem, if the interval [0,T] is taken instead of the interval [0, π], it must be
d
T
∈

(0, 1) ∩Q for the inverse nodal problem to be solvable.

Example 2.9. We consider the following discontinuity boundary value problem:

ℓy := −y′′ + q(x)y = λy, x ∈ Ω = [0, π] \ {d} ,

y′ (0) − hy (0) = 0, y′ (π) +Hy (π) = 0,

y (d + 0) = a1y (d − 0) , y′ (d + 0) = a−1
1 y′ (d − 0) + a2 y(d − 0),

where q(x) ∈ C1 [0, π], h and H are unknown coefficients of the problem. If we take d = π
2 , then it is clear

that h0 = 0.
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For sufficiently large n, the nodal points provide the following asymptotic:

x j(n)
n =

(
j(n) − 1

2

)
π

n
+

(
h − dnx j(n)

n

) 1
n2 −

1
6

(
j(n) − 1

2

)
π

n3 +
1
6

(
j(n) − 1

2

)3

n5 + o
( 1

n5

)
, x j(n)

n ∈

(
0,
π
2

)
,

x j(n)
n =

(
j(n) − 1

2

)
π

n
−


dn

(
2x j(n)

n − π
)

a+1 + a−1
+

2h
(
a+1 − a−1

)
+ 2a2

a+1 + a−1
−

2a−1
a+1 + a−1

π
2∫

0

q(t)dt

 1
n2

+
a+1 − a−1
a+1 + a−1

−1
6

(
j(n) − 1

2

)
π

n3 +
1
6

[(
j(n) − 1

2

)
π
]3

n5

 + o
( 1

n5

)
, x j(n)

n ∈

(
π
2
, π

)
.

According to these data, we can calculate q(x) and h. Let nk = 2k, k ∈ Z, one can calculate that

lim
k→∞

4k2

x j(2k)
2k −

(
j(2k) − 1

2

)
π

2k

 = 11 (x) = h − d0x −
1
6

x +
1
6

x3, x ∈
(
0,
π
2

)
,

lim
k→∞

4k2

x j(2k)
2k −

(
j(2k) − 1

2

)
π

2k

 = 12 (x) =
h
(
a+1 − a−1

)
a+1 + a−1

−
a−1

a+1 + a−1

π
2∫

0

q(t)dt −
d0 (x − π)
a+1 + a−1

+
a+1 − a−1
a+1 + a−1

(
−

1
6

x +
1
6

x3
)
.

By the formulas (24), (25) and (26);

h = 11 (0) ,

q(x) = 21
′

1 (x) +
4

π
(
4a+1 − 1

) [
−

(
a+1 − a−1

) (
2H + 12 (π)

)
−

(
a+1 − a−1

)
11 (0) − a2

]
= x2

−
1
3
− 2d0 +

4

π
(
4a+1 − 1

) [
−

(
a+1 − a−1

) (
2H + 12 (π)

)
−

(
a+1 − a−1

)
11 (0) − a2

]
, x ∈

[
0,
π
2

]
,

q(x) = 21
′

2 (x) +
4

π
(
4a+1 − 1

) (
a+1 + a−1

) [
−

(
a+1 + a−1

)
12 (π) +

(
a+1 − a−1

)
11 (0) + a2

−2a+1 (H + h) − 2a−1 (H − h) − 2a2

]
=

a+1 − a−1
a+1 + a−1

(
x2
−

1
3

)
−

2d0

a+1 + a−1
+

4

π
(
4a+1 − 1

) (
a+1 + a−1

) [
−

(
a+1 − a−1

) (
12 (π) + 2H

)
−

(
a+1 − a−1

)
11 (0) − a2

]
, x ∈

[
π
2
, π

]
,

where

d0 =
1
πa+1

{
H

(
a+1 + a−1

)
+

1
2

(
1 +

a−1
a+1

)
H +

1
2

(
1 −

a−1
a+1

)
11 (0) −

a2

2a+1
+

1
2
12 (π)

}
,

a−1
a+1 + a−1

π
2∫

0

q(t)dt = −12 (π) +
h(a+1 − a−1 )

a+1 + a−1
+
π

(
a+1 − a−1

) (
π2
− 1

)
6
(
a+1 + a−1

) −
πd0

a+1 + a−1
.
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matical Sciences 15(4) 2021, 387–394.


