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Abstract. In this paper, some orthogonal interpolative versions of celebrated iterative mappings are
reported. Various concrete conditions on the real valued functions T,S : (0,∞)→ (−∞,∞) for the existence
of fixed-points of (T,S)-orthogonal interpolative iterative mappings are studied. We obtain fixed point
theorems for Kannan type, Chatterjea type, Ciric-Reich-Rus type and Hardy-Rogers type (T, S)-contractions
via interpolation in orthogonal multiplicative metric space. The fixed point theorem for Banach (T,S)-
orthogonal contraction via interpolation is applied to show the existence of solutions to integral equation
and fractional differential equation. The reported theory is supported by non-trivial examples.

1. Introduction

Metric fixed point theory deals with the study of fixed points of mappings in metric spaces. A fixed
point of a function is a point that remains unchanged when the function is applied to it. In metric fixed
point theory, the focus lies on proving the existence and uniqueness of these fixed points, along with estab-
lishing conditions under which such fixed points exist. Key concepts involve mappings satisfying certain
contraction conditions, such as Banach’s Contraction Mapping Principle, where a contraction mapping in a
complete metric space possesses a unique fixed point. Various generalizations and extensions of this princi-
ple have been developed, including fixed point theorems for mappings with weaker contraction properties
like Kannan and Nadler’s fixed point theorems.

Applications span various disciplines like economics, computer science, and engineering, finding rel-
evance in solving optimization problems, equilibrium computations, and modeling iterative processes.
Metric fixed point theory continues to evolve through the exploration of diverse spaces, non-self mappings,
and novel contraction conditions, contributing significantly to mathematical analysis and its applications.

The contraction principle appeared in [12] generalizes the Rakotch [43] contraction concept. Further-
more, Matkowski [34], Samet et al. [51], Karapinar et al. [22], and Pasicki [40] have all generalized the
Boyd-Wong notion. The concept of F-contraction [57] is another notable generalization of the Banach
contraction principle (BCP), and several research articles focusing on fixed points (common fixed points)
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of F-contractions have been published in the previous decade (see [9, 11, 52, 56], and references therein).
Proinov [42](2020) offered various fixed-point theorems that built on previous work in [12, 22, 34, 40, 46–
48, 51, 57].

The interpolative contraction principles consist of product of distances having exponents satisfying
some conditions. The term “interpoltive contraction was introduced by the renowned mathematician Erdal
Karapinar in his paper [30] published in 2018. The interpoltive contraction is defined as follows:

A self-mapping S, defined on a metric space (A, d), satisfying the following inequality

d(Sx,Sy) ≤ K
(
d(x, y)

)ν ,∀x, y ∈ A, (1)

is called an interpolative contraction, where ν ∈ (0, 1] and K ∈ [0, 1). Note that for ν = 1, S is a Banach
contraction. If the mapping S defined on a metric space (A, d) satisfies the following inequalities:

(i). d(Sx,Sy) ≤ K (d(x,Sx))ν
(
d(y,Sy)

)1−ν ,

(ii). d(Sx,Sy) ≤ K
(
d(x,Sy)

)ν (d(y,Sx)
)1−ν ,

(iii). d(Sx,Sy) ≤ K
(
d(x, y)

)η (d(x,Sx))ν
(
d(y,Sy)

)1−ν−η ,

(iv). d(Sx,Sy) ≤ K
(
d(x, y)

)ν (d(x,Sx))η
(
d(y,Sy)

)γ ,(1
2

(d(x,Sy) · d(y,Sx))
)1−η−ν−γ

,

for all x, y ∈ A, then S is called Kannan type interpolative contraction (i), Chatterjea type interpolative
contraction (ii), Ćirić-Reich-Rus type interpolative contraction (iii) and Hardy Rogers type interpolative
contraction (iv), respectively. Recently, many classical and advanced contractions have been revisited via
interpolation (see [6, 24, 26, 27, 29, 31, 32, 37, 49, 50] and references therein).

To provide a new generalization of the Banach fixed point theorem, Gordji et al. [19] (2017) presented the
notion of orthogonal-set (a non-empty set whose elements follow a particular relation termed it orthogonal
relation). Gordji et al. [19] (2017) presented several examples to clarify the concept of orthogonal-set (see
[19]). The orthogonal metric space is a metric defined on the orthogonal-set. Baghani et al.[9] extended the
study done in [19] to F-contractions, while Nazam et al. [36] broadened the investigation done in [9] (2021).

Grossman and Katz [18] switched the roles of subtraction and addition to division and multiplication
by establishing a new calculus known as multiplicative calculus. Compared to the calculus of Newton and
Leibniz, multiplicative calculus has a more limited range of applications. In fact, it exclusively includes
positive functions. Since a well-developed tool with a wider scope has already been made, the question of
whether it is fair to design a new tool with a limited scope arises. The interpretation of the multiplicative
derivative leads us to believe that multiplicative calculus is a useful mathematical tool for economics and
finance [10]. The multiplicative space or multiplicative metric space is the by-product of multiplicative
calculus.

Ozavsar et al. [39] and Yamaod et al. [58] have utilized the multiplicative metric space to produce some
fixed point theorems. Recently, many authors have enriched metric fixed point theory with fixed point
results in multiplicative metric spaces (see [2, 41, 45, 53, 54] and references therein).

In this paper, we extend the results that appeared in [39, 58] by introducing (T,S)-orthogonal inter-
polative contractions, which generalize and unify numerous interpolative contractions in the orthogonal
multiplicative metric space. Motivated by the contraction principles described in [19, 42], we demonstrate
that every interpolative contraction is orthogonal, but not conversely. We look for various conditions on
the functions T,S to prove the presence of fixed-points of (T,S)-orthogonal Kannan type interpolative con-
traction, (T,S)-orthogonal Chatterjea type interpolative contraction, (T,S)-orthogonal Ćirić-Reich-Rus type
interpolative contraction and (T,S)-orthogonal Hardy-Rogers type interpolative contraction. We also show
how to resolve a fractional differential type equation as an application and some examples to back up our
findings.
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2. Preliminaries

LetA be a non-empty set and ⊥ ⊂ A×A be a binary relation satisfying the property (P),

(P) :∃ x0 ∈ A : either (∀u; x0⊥u) or (∀u; u⊥ x0).

We call the pair (A,⊥) an orthogonal set (abbreviated as, O-set). The concept of orthogonality in an inner
product space is an example of orthogonal relation.

For the illustration of the orthogonal set and its examples [19, 38].

Example 2.1. LetA be the set of all persons in the word. Define x⊥ e if x can give blood to e. According to the blood
transfusion protocol, if x0 is a person such that his (her) blood type is O−, then we have x0⊥ e for all e ∈ A. This
means that (A,⊥) is an O-set. In this O-set, x0 is not unique. Note that, x0 may be a person with blood type AB+.
In this case, we have e⊥ x0 for all e ∈ A.

Definition 2.2. Let X , ∅ and b : X × X→ [0,∞) satisfies the following axioms:

(i) b(x, y) ≥ 1 and b(x, y) = 1 if and only if x = y;

(ii) b(x, y) = b(y, x);

(iii) b(x, z) ≤ b(x, y) · b(y, z), for all x, y, z ∈ X.

Then the functional b is known as multiplicative metric and the pair (X, b) is called multiplicative metric space.

For example, R+ is a multiplicative metric space. The multiplicative metric space is not a generalization or
extension of a metric space. Both have different structures. A multiplicative metric can never be a metric
and vice versa, however, if d is a metric then the expression ad is a multiplicative metric. A sequence {xn} in
R
+ converges to some number x in R+, if for every ϵ > 1 there exists a positive integer K such that

b(xn, x) < ϵ, for all n > K.

The convergence in R+ is comparable in both multiplicative and conventional interpretations. But in more
widespread situations, they might be different.

According to the investigations done in [10], the multiplicative absolute value function |.|m : (−∞,∞)→
(0,∞) is defined as follows:

|x|m =


x if x ≥ 1,

1
x if x < 1.

We note that the expression
∣∣∣∣ x

y

∣∣∣∣
m

defines a multiplicative metric for all x, y ∈ (−∞,∞).

Example 2.3. Let Ž = [0,∞) and define the function b : Ž2
→ [1,∞) by

b(x, y) = v|x−y|; v > 1. (2)

Then, (Ž, b) is a multiplicative metric space. A special case is b(x, y) = e|x−y|.

Another example of multiplicative metric space is the space of positive definite n × n matrices W. In this
space the multiplicative metric is defined as follow:

b(A,B) =
∥∥∥AB−1

∥∥∥
m , for all A, B ∈W, (3)

where ∥A∥m =
∏n

i=1

∣∣∣ηi

∣∣∣
m, η1, η2, · · · , ηn are eigenvalues of matrix A. For more examples and details, we refer

to [39, 58].
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Definition 2.4. The O-set (A,⊥) with a multiplicative metric b structure is called an O-multiplicative metric space
(in short, OMMS). We denote it by (A,⊥, b).

Definition 2.5. [39] A mapping f : A→A satisfying the following inequality

b( f x, f y) ≤ b(x, y)k
∀x, y ∈ A,

is called a multiplicative contraction, where (A, b) is a multiplicative metric space and k is a some number in [0, 1).

There are many mappings that satisfy multiplicative contraction and admits a fixed point in multiplicative
space. For example, defining the mapping b : X2

→ R by

b(u, v) =

√∣∣∣∣∣x1

x2

∣∣∣∣∣
m
·

∣∣∣∣∣ y1

y2

∣∣∣∣∣
m

for all u = (x1, y1), v = (x2, y2) ∈ X,

where X = {(r, 1) ∈ R2 : 1 ≤ r ≤ 2} ∪ {(1, r) ∈ R2 : 1 ≤ r ≤ 2}, we obtain a complete multiplicative metric
space. The mapping q : X→ X defined by q(r, 1) = (1,

√
r) and q(1, r) = (

√
r, 1) is a multiplicative contraction

with k = 0.5 and (1, 1) is a fixed point of q. Similarly, for X =
[

1
10 , 1

]
endowed with b(x, ν) =

∣∣∣ x
ν

∣∣∣
m, (X, b) is a

complete multiplicative metric space. The mapping q : X → X defined by q(r) = er−1− r3
10 is a multiplicative

contraction for k = 0.997 and admits a fixed point r = 0.7411317711.

Definition 2.6. A mapping f : A→A satisfying the following inequality,

b( f x, f y) ≤ b(x, y)k
∀x, y ∈ Awith x⊥ y,

is called an orthogonal multiplicative contraction, where (A,⊥, b) is an orthogonal multiplicative metric space and k
is a some number in [0, 1).

Remark 2.7. The multiplicative-contraction is orthogonal multiplicative-contraction but converse is not true.

Let A = [0, 10) with multiplicative-metric b as defined in Example 2.3, then the pair (A, b) represents a
multiplicative metric space. Define ⊥ ⊆ A2 by

x⊥ y if xy ≤ x ∨ y.

Then (A,⊥, b) is an O-multiplicative-metric space. Let the mapping 1 : A → A is given by 1(x) = x
3 (for

x ≤ 3) and 1(x) = 0 (for x > 3). We note that b(1(4), 1(3)) > b(4, 3)k, so, 1 is not a multiplicative-contraction.
However, for all orthogonal elements ofA, 1 is an orthogonal multiplicative-contraction.

Now we prove the following Lemma that states the conditions on the sequence for not being Cauchy.

Lemma 2.8. Let (X, b) be a multiplicative-metric space and {xn} ⊂ X be a sequence verifying limn→∞ b(xn, xn+1) = 1.
If the sequence {xn} is not Cauchy, then there are {xnk }, {xmk } and ξ ≥ 0 such that

lim
k→∞

b(xnk+1, xmk+1) = (1 + ξ). (4)

lim
k→∞

b(xnk , xmk ) = b(xnk+1, xmk ) = b(xnk , xmk+1) = 1 + ξ. (5)

Proof. Let (X, b) be a multiplicative metric space. Given {xn} is not Cauchy and limn→∞ b(xn, xn+1) = 1. Thus,
for every ξ > 0, there exists a natural number K0 such that for smallest m ≥ n we have

b(xn+1, xm) ≤ 1 + ξ and b(xn+1, xm+1) > (1 + ξ) ∀n,m > K0.

As a result, we can construct two subsequences of {xn} : {xnk } and {xmk } verifying the following inequalities:

b(xnk+1, xmk ) ≤ 1 + ξ and b(xnk+1, xmk+1) > (1 + ξ) ∀nk,mk > K0.
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By axiom (iii) of the multiplicative metric, we have the following information:

1 + ξ < b(xnk+1, xmk+1) ≤ b(xnk+1, xmk ) · b(xmk , xmk+1)
≤ (1 + ξ)b(xmk , xmk+1).

This implies that

lim
k→∞

b(xnk+1, xmk+1) = (1 + ξ).

Again by axiom (iii) of the multiplicative metric, we have the following information:

b(xnk+1, xmk+1)
b(xmk , xmk+1)

≤ b(xnk+1, xmk ) ≤ 1 + ξ.

It leads to have

lim
k→∞

b(xnk+1, xmk ) = (1 + ξ).

Since, b(xnk+1, xmk ) ≤ b(xnk+1, xnk ) · b(xnk , xmk ), we have the following inequality:

b(xnk+1, xmk )
b(xnk+1, xnk )

≤ b(xnk , xmk ) ≤ b(xmk , xnk+1) · b(xnk+1, xnk ).

This suggests that

lim
k→∞

b(xnk , xmk ) = (1 + ξ).

Since,

1 + ξ < b(xnk+1, xmk+1) ≤ b(xnk+1, xnk ) · b(xnk , xmk+1)
1 + ξ

b(xnk+1, xnk )
≤ b(xnk , xmk+1) ≤ b(xnk , xnk+1) · b(xnk+1, xmk+1).

This suggests that

lim
k→∞

b(xnk , xmk+1) = (1 + ξ).

This completes the proof.

Definition 2.9. The OMMS (A,⊥, b) satisfying the property (R) is called a ⊥-regular space.
(R). For any O-sequence {xn} ⊆ A converging to x, we have either xn⊥ x, or x⊥ xn for all n ∈ N.

3. Main Results

In this section, we present the new results for orthogonal intplv. contrs. involving the functions
T,S : (0,∞) → (−∞,∞). The orthogonal interpolative contraction is a generalization of interpolative
contraction [30]. The intplv. contrs. can be categorized as a multiplicative versions of classical contractions.
The intplv. contrs. have applications in Economics and Finance. The example below demonstrates that
orthogonal intplv. Kannan contr. (OIKC) is not equivalent to intplv. Kannan contr. (IKC).

Example 3.1. LetA = {1, 2, 3, 4, 5, 6, 7, 8} and define the relation ⊥ ⊆ A2 by

x⊥w if xw ≤ x ∨ w for all x , w.

Consider the multiplicative-metric b as defined in Example 2.3, then (A,⊥, b) is an O-multiplicative metric space.
Define L : A→A by L (x) = 5 (if x = 1) and L (x) = x− 1 (if x , 1). Since, for any ν ∈ (0, 1) and k ∈ [0, 1) we have
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b(L(4),L(3)) > k[b(4,L(4))]ν · [b(3,L(3)]1−ν, so, L is not an IKC, however, L is an OIKC.
For if x = 3 and w = 1, then x⊥w and

b(L(3),L(1)) ≤ k[b(3,L(3))]ν · [b(1,L(1)]1−ν for some k ∈ [0, 1) and ν ∈ (0, 1).

For if x = 4 and w = 1, then x⊥w and

b(L(4),L(1)) ≤ k[b(4,L(4))]ν · [b(1,L(1)]1−ν for some k ∈ [0, 1) and ν ∈ (0, 1).

Thus, in view of [30, Example 2.3] and Example 3.1, we infer that:

Kannan contraction → IKC → OIKC,

but not conversely.

Let Λ = {(x,w) ∈ A2 : x⊥w}.

Definition 3.2. The function L : A→A satisfying the condition L(x)⊥L(w) for all x,w ∈ A with x⊥w, is called
⊥-preserving, where ⊥ ⊂ A2 is an orthogonal-relation.

Example 3.3. Let ⊥ ⊂ [0, 1)2 be defined by

x⊥w if xw ≤ x ∨ w.

Then ([0, 1),⊥) is an O-set. Define L : [0, 1)→ [0, 1) by

L(x) =
{

x
2 if x ∈ Q ∩A,
0 if x ∈ Qc

∩A.

Then L is a⊥-preserving mapping. Indeed, for x = 1
5 , w = 1

3 , we have x⊥w and since L
(

1
5

)
L
(

1
3

)
= 1

60 < L
(

1
5

)
∨L

(
1
3

)
,

so, L
(

1
5

)
⊥L

(
1
3

)
. Similarly for all the other cases, it is evident that L is a ⊥-preserving mapping.

3.1. Kannan type (T,S)- orthogonal interpolative contraction
Let T,S : (0,∞)→ (−∞,∞) be two functions. A mapping L : A→A defined on OMMS (A,⊥, b) will be

called a Kannan type (T,S)- orthogonal interpolative contraction, if there exists ν ∈ (0, 1) verifying

T(b(Lx,Ly)) ≤ S
(
(b(x,L(x)))ν(b(y,Ly))1−ν

)
, (6)

for all (x, y) ∈ Λ, b(Lx,Ly) > 0.

Remark 3.4. The following observations indicate the generality of Kannan type (T,S) orthogonal interpolative
contraction for the specific definitions of the mappings T,S.

i. If T(x) = x and S(x) = λx, where 0 ≤ λ < 1, then L is an orthogonal interpolative Kannan type contraction
[30].

ii. If T(x) = x, then L is an orthogonal interpolative Boyd-Wong-Kannan type contraction.

iii. If T is lower semicontinuous and S is upper semicontinuous, then L is an orthogonal interpolative Kannan
version of the contraction introduced in [4].

iv. If S(x) = F(T(x)) , then L is an orthogonal intplv. Kannan version of the contraction introduced in [35].

v. If S(x) = α(x)T(x) and T(x) = x, then L is an orthogonal interpolative Kannan version of the contraction
introduced in [17].
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vi. If S(x) = λT(x), then L is an orthogonal interpolative Kannan version of the contraction introduced in [55].

vii. If S(x) = F(T(x)) and F(x) = xα, then L is an orthogonal interpolative Kannan version of the contraction
introduced in [21].

viii. If S(x) = T(x) − τ, then L is an orthogonal interpolative Kannan version of the contraction introduced in [57].

Example 3.5. Let A = [1, 7) and the multiplicative-metric b on A be defined by b(t, y) = e|t−y|. Let ⊥ ⊂ [1, 7)2 be
defined by

x⊥w if xw ∈ {x,w}.

Then (A,⊥, b) is an O-multiplicative metric space. Define T,S : R+ → R by

T (x) =


2x + 1 if x ∈

{
e1.9, e3.2

}
,

x+1
3 if x ∈ R+ −

{
e1.9, e3.2

}
,

S (x) =


3x2 + 1 if x ∈

{
e1.9, e3.2

}
,

3x + 5 if x ∈ R+ −
{
e1.9, e3.2

}
.

Let L : A→A be defined by

L (x) =


5 if 1 ≤ x < 2,

3.1 if 2 ≤ x < 3,

1.8 if 3 ≤ x < 7.

Observe that b(Lx,Lw) = e1.9, b(x,Lx) = e4 and b(w,Lw) = e1.1 if x = 1, w = 2 (1⊥ 2). This information shows that

b(Lx,Lw) > λ[b(x,Lx)]ν[b(w,Lw)]1−ν for some λ =
1
3
, ν = 0.8.

Thus, L is not Kannan type orthogonal interpolative contraction. However, L is a (T,S)-Kannan type orthogonal
interpolative contraction. Indeed,

T (b(Lx,Lw)) ≤ S
(
[b(x,Lx)]ν[b(w,Lw)]1−ν

)
.

We obtain the same conclusions for x = 1, w = 3 (1⊥ 3); x = 1, w = 4 (1⊥ 4); x = 1, w = 5 (1⊥ 5) and x = 1, w = 6
(1⊥ 6).

Remark 3.6. Example 3.1 and Example 3.5 show that interpolative contraction is orthogonal interpolative contraction
and then orthogonal interpolative contraction is (T,S)-orthogonal interpolative contraction but converse is not true.

For the orthogonal relation ⊥, self-mapping S and functions T,S : (0,∞)→ (−∞,∞), we state the following
conditions:

(i) for each ℏ0 ∈ A, there is ℏ1 = S(ℏ0) such that ℏ1⊥ℏ0 or ℏ0⊥ℏ1.

(ii) T is nondecreasing and S(x) < T(x) ∀ x > 0.

(iii) lim sup
x→δ+

S(x) < T(δ+) ∀ δ > 0.

(iv) lim sup
a→0

S(a) ≤ lim inf
a→ξ+

T(a).

(v) T(aνbη) ≤ T(a) and S(x) < T(x) ∀ x > 0.

(vi) infa>ξ T(a) > −∞.
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(vii) if {T(ℏn)} and {S(ℏn)} are converging to same limit and {T(ℏn)} is strictly decreasing, then limn→∞ ℏn = 0.

(viii) lim supa→0 S(a) < lim inf
a→ξ

T(a) for all ξ > 0.

The upcoming first theorem states the requirements for the presence of fixed points of a self-mapping L
satisfying (6).

Theorem 3.7. Let⊥ be a transitive orthogonal relation, then, every⊥-preserving self-mapping defined on a⊥-regular
OCMMS (A,⊥, b) verifying (6) and (i)-(iv), admits a fixed-point inA.

Proof. Choose an initial guess x0 ∈ A such that x0⊥ x1 or x1⊥ x0 for each x1 ∈ A, then by using the
⊥-preserving nature of L, we construct an orthogonal sequence {xn} such that xn = L(xn−1) = Ln(x0) and
xn−1⊥xn for each n ∈ N. Note that, if xn = L(xn), then xn is a fixed point of L for all n ≥ 0. We assume that
xn , xn+1 for all n ∈ N ∪ {0}. Let tn = b(xn, xn+1) for all n ≥ 0. By the first part of (ii) and (6), we have

T(tn) ≤ T(b(L(xn−1),L(xn))) ≤ S
(
(b(xn−1,Lxn−1))ν(b(xn,Lxn))1−ν

)
≤ S

(
(tn−1)ν(tn)1−ν

)
.

In light of (ii), we have

T(tn) ≤ S
(
(tn−1)ν(tn)1−ν

)
< T

(
(tn−1)ν(tn)1−ν

)
. (7)

Since T is non-decreasing, one gets tn < tn−1 for each n ≥ 1, so there is L > 0 so that limn→∞ tn = L+. If L > 0,
by (7), we obtain the following information:

T(L+) = lim
n→∞

T(tn) ≤ lim
n→∞

sup S((tn−1)ν(tn)1−ν) ≤ lim
a→L+

sup S(a).

This contradicts (iii), so L = 1.
The sequence {xn} is Cauchy: Assume that {xn} is not a Cauchy-sequence, so that by following Lemma

2.8, there exist two sub-sequences {xnk }, {xmk } of {xn} and ξ > 0 such that (4) and (5) hold. By (4), we infer
that b(xnk+1, xmk+1) > 1 + ξ. Since xn⊥ xn+1 for all n ≥ 0, by transitivity of ⊥, we have xnk ⊥ xmk for all k ≥ 1.
Letting x = xnk and y = xmk in (6), we have for each k ≥ 1,

T(b(xnk+1, xmk+1)) ≤ T(b(Lxnk ,Lxmk ))

≤ S
(
(b(xnk ,Lxnk ))

ν(b(xmk ,Lxmk ))
1−ν

)
≤ S

(
(b(xnk , xnk+1))ν(b(xmk , xmk+1))1−ν

)
.

If ak = b(xnk+1, xmk+1), bk = b(xnk , xnk+1) and ck = b(xmk , xmk+1), we have

T(ak) ≤ S
(
(bk)ν(ck)1−ν

)
, for all k ≥ 1. (8)

By (4), we have limk→∞ ak = (1 + ξ)× and (8) implies

lim inf
a→(1+ξ)×

T(a) ≤ lim inf
k→∞

T(ak) ≤ lim sup
k→∞

S
(
(bk)ν(ck)1−ν

)
≤ lim sup

a→0
S(a). (9)

The information obtained in (9) contradicts the assumption (iv), and thus stamping the sequence {xn} as
Cauchy in the OCMMS (A,⊥, b), hence there is a∗ ∈ A so that xn → a∗ as n → ∞. Snce, (A,⊥, b) is a
⊥-regular space, so, we write xn⊥ a∗ or a∗⊥ xn. We claim that b(a∗,L(a∗)) = 1. If b(xn+1,L(a∗)) > 1, then by (6),

T(b(xn+1,L(a∗))) ≤ T(b(L(xn),L(a∗))) ≤ S
(
(b(xn,Lxn))ν(b(a∗,La∗))1−ν

)
< T ((b(xn,Lxn))ν(b(a∗,La∗))ν)

≤ T
(
(b(xn, xn+1))ν(b(a∗,La∗))1−ν

)
.

By the first part of (ii), we get b(xn+1,L(a∗)) < (b(xn, xn+1))ν(b(a∗,La∗))1−ν. Applying limit n → ∞, we obtain
b(a∗,L(a∗)) ≤ 1. This implies that b(a∗,L(a∗)) = 1. Hence, a∗ = L(a∗).
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The second main theorem (6) establishes various requirements for the presence of fixed-points of L.

Theorem 3.8. Let⊥ be a transitive orthogonal relation, then, every⊥-preserving self-mapping defined on a⊥-regular
OCMMS (A,⊥, b) verifying (6) and (i),(iv)-(viii), admits a fixed-point inA.

Proof. Let x0 ∈ A be such that x0⊥ x1 or x1⊥ x0 for each x1 ∈ A, then by using the ⊥-preserving nature of L,
we construct an orthogonal sequence {xn} such that xn = L(xn−1) = Ln(x0) and xn−1⊥xn for each n ∈ N. Note
that, if xn = L(xn) then xn is a fixed point of L for all n ≥ 0. We assume that xn , xn+1 for all n ∈ N ∪ {0}. By
(ii) and (6), one writes

T(b(xn, xn+1)) ≤ T(b(L(xn−1),L(xn))) ≤ S((b(xn−1,Lxn−1))ν(b(xn,Lxn))1−ν)
≤ S((b(xn−1, xn))ν(b(xn, xn+1))1−ν)

< T
(
(b(xn−1, xn))ν(b(xn, xn+1))1−ν

)
≤ T(b(xn−1, xn)). (10)

The inequality (10) shows that {T(b(xn−1, xn))} is strictly decreasing. If it is not bounded below, in view of
(iii), we get infb(xn−1,xn)>ξ T(b(xn−1, xn)) > −∞. This implies that

lim inf
b(xn−1,xn)→ξ+

T(b(xn−1, xn)) > −∞.

Thus, limn→∞ b(xn−1, xn) = 1, otherwise we have

lim inf
b(xn−1,xn)→ξ+

T(b(xn−1, xn)) = −∞

(i.e., a contradiction to (iii)). If it is bounded below, then {T(b(xn−1, xn))} is a convergent sequence and by
(10), {S(b(xn−1, xn))} also converges and both have same limit. Thus, by (iv), one gets limn→∞ b(xn−1, xn) = 1.
Hence, L is asymptotically regular.

Now, we claim that {xn} is a Cauchy sequence. If {xn} is not a Cauchy sequence, so by Lemma 2.8, there
exist {xnk }, {xmk } and ξ > 0 such that (4) and (5) hold. By (4), we infer that b(xnk+1, xmk+1) > 1 + ξ. Since
xn⊥ xn+1 for all n ≥ 0 so by transitivity of ⊥, we have xnk ⊥ xmk . Letting 1 = xnk and e = xmk in (6), one writes
for all k ≥ 1,

T(b(xnk+1, xmk+1)) ≤ T(b(Lxnk ,Lxmk ))

≤ S
(
(b(xnk ,Lxnk ))

ν(b(xmk ,Lxmk ))
1−ν

)
≤ S

(
(b(xnk , xnk+1))ν(b(xmk , xmk+1))1−ν

)
.

If ak = b(xnk+1, xmk+1), bk = b(xnk , xnk+1) and ck = b(xmk , xmk+1), we have

T(ak) ≤ S
(
(bk)ν(ck)1−ν

)
, for all k ≥ 1. (11)

By (4), we have limk→∞ ak = (1 + ξ)× and (11) implies

lim inf
a→(1+ξ)×

T(a) ≤ lim inf
k→∞

T(ak) ≤ lim sup
k→∞

S
(
(bk)ν(ck)1−ν

)
≤ lim sup

a→0
S(a). (12)

The information obtained in (12) contradicts the assumption (v), and thus stamping the sequence {xn} as
Cauchy in the OCMMS (A,⊥, b). The completeness of the space ensures the convergence of {xn}, let it
converges to x∗ ∈ A. Case 1. If b(xn+1,Lx∗) = 1 for some n ≥ 0, then

b(x∗,Lx∗) ≤ b(x∗, xn+1).b(xn+1,Lx∗)

taking limit n→∞ on both sides, we have b(i∗,Li∗) ≤ 1. This implies b(i∗,L(i∗)) = 1. Hence, x∗ = Lx∗.
Case 2. If for all n ≥ 0, b(xn+1,Lx∗) > 0, then by ⊥-regularity of A, we find xn⊥ x∗ or x∗⊥ xn. By (6), one
writes

T(b(xn+1,Lx∗)) ≤ T(b(Lxn,Lx∗)) ≤ S
(
(b(xn,Lxn))ν(b(x∗,Lx∗)1−ν

)
for all n ≥ 0.
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By taking xn = b(xn+1,Lx∗) and bn = b(xn, xn+1), one writes

T(xn) ≤ S
(
(bn)ν(b(x∗,Lx∗)1−ν

)
for all n ≥ 0. (13)

Take δ = b(x∗,Lx∗). Note that an → δ and bn → 1 as n→∞. Applying limits on (13), we have

lim inf
x→δ

T(x) ≤ lim inf
n→∞

T(xn) ≤ lim sup
n→∞

S((bn)νδ1−ν) ≤ lim inf
x→0

S(x).

This contradicts (vi) if δ > 1. Thus, we have b(x∗,Lx∗) = 1, that is, x∗ is a fixed point of L.

3.2. Chatterjea type (T,S)-orthogonal interpolative contraction
Let (A,⊥, b) be an OMMS and T,S : (0,∞)→ (−∞,∞). The mapping L : A→A satisfying the following

inequality,

T(b(Lx,Lw)) ≤ S
(√

b(x,Lw) · b(w,Lx)
)
, (14)

for all (x,w) ∈ Λ, b(Lx,Lw) > 0, is called a Chatterjea type (T,S)-orthogonal interpolative contraction.

Remark 3.9. The following observations indicate the generality of Chatterjea type (T,S) orthogonal interpolative
contraction for the specific definitions of the mappings T,S.

i. If T(x) = x and S(x) = λx, where 0 ≤ λ < 1, then L is an orthogonal interpolative Chatterjea type contraction.

ii. If T(x) = x, then L is an orthogonal interpolative Boyd-Wong-Chatterjea type contraction.

iii. If T is lower semicontinuous and S is upper semicontinuous, then L is an orthogonal interpolative Chatterjea
version of the contraction introduced in [4].

iv. If S(x) = F(T(x)) , then L is an orthogonal interpolative Chatterjea version of the contraction introduced in [35].

v. If S(x) = α(x)T(x) and T(x) = x, then L is an orthogonal interpolative Chatterjea version of the contraction
introduced in [17].

vi. If S(x) = λT(x), then L is an orthogonal interpolative Chatterjea version of the contraction introduced in [55].

vii. If S(x) = F(T(x)) and F(x) = xα, then L is an orthogonal interpolative Chatterjea version of the contraction
introduced in [21].

viii. If S(x) = T(x) − τ, then L is an orthogonal interpolative Chatterjea version of the contraction introduced in
[57].

Example 3.10. Let A = [1, 7) and the multiplicative-metric b on A be defined by b(t, y) = e|t−y|, then (A, b) is an
incomplete multiplicative metric space. Define the relation ⊥ onA by

x⊥w if xw ∈ {x,w}.

Define T,S : R+ → R by

T (x) =


2x + 1 if x ∈

{
e3.5, e4.5

}
x+1

2 if x ∈ R+ −
{
e3.5, e4.5

} S (x) =


2x2 + 1 if x ∈

{
e3.5, e4.5

}
3x + 10 if x ∈ R+ −

{
e3.5, e4.5

}
Let L : A→A be defined by

L (x) =


5 if 1 ≤ x < 2

1.5 if 2 ≤ x < 3

0.5 if 3 ≤ x < 7
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Observe that b(Lx,Lw) = e3.5, b(x,Lw) =
√

e and b(w,Lx) = e3 if x = 1, w = 2 (1⊥ 2). This information shows that

b(Lx,Lw) > λ
√

b(x,Lw) · b(w,Lx), for all λ ∈ (0, 1).

Thus, L is not a Chatterjea type orthogonal interpolative contraction. However, L is a Chatterjea type (T,S)-orthogonal
interpolative contraction. Indeed,

T (b(Lx,Lw)) ≤ S
(√

b(x,Lw) · b(w,Lx)
)

We obtain the same conclusion for x = 1, w = 3 (1⊥ 3); x = 1, w = 4 (1⊥ 4); x = 1, w = 5 (1⊥ 5); x = 1, w = 6
(1⊥ 6).

The next two theorems deals with Chatterjea type (T,S)-orthogonal-interpolative contractions.

Theorem 3.11. Let ⊥ be a transitive orthogonal relation, then, every ⊥-preserving self-mapping defined on a ⊥-
regular OCMMS (A,⊥, b) verifying (14) and (i)-(iv), admits a fixed point inA.

Proof. Chasing the starting steps taken in proof of Theorem 3.7, we have

T(hn) ≤ T(b(L(xn−1),L(xn)))

≤ S
(√

b(xn−1,Lxn) · b(xn,Lxn−1)
)

≤ S
(√

b(xn−1, xn+1)
)

(15)

≤ S
(√

b(xn−1, xn) · b(xn, xn+1)
)
. (16)

Suppose that b(xn−1, xn) < b(xn, xn+1) for some n ≥ 1, then by (16) and (ii), we have

T(hn) ≤ S(hn) < T(hn). (17)

The information obtained in (17) contradicts the definition of T, therefore we go with

T(hn) ≤ S (hn−1) < T (hn−1) ∀n ≥ 1.

Now crawling through the proof of Theorem 3.7, we reach to the statement xn → o∗ as n → ∞, and then
taking the support of ⊥-regularity of the space (A,⊥, b), we achieve that xn⊥ t∗ or t∗⊥ xn. We need to have
b(t∗,L(t∗)) = 1. Letting b(xn+1,L(t∗)) > 1 and using (14),

T(b(xn+1,L(t∗))) ≤ T(b(L(xn),L(t∗)))

≤ S
(√

b(xn,Lt∗) · b(t∗,Lxn)
)

≤ S
(√

b(xn,Lt∗) · b(t∗, xn+1)
)

< T
(√

b(xn,Lt∗) · b(t∗, xn+1)
)
.

Given that the function T satisfies assumption (ii), thus

b(xn+1,L(t∗)) <
√

b(xn,Lt∗) · b(t∗, xn+1).

The last inequality implies that b(t∗,L(t∗)) ≤
√

b(t∗,Lt∗) (for large n). Hence, b(t∗,L(t∗)) = 1, or t∗ = L(t∗).

Theorem 3.12. Let ⊥ be a transitive orthogonal relation, then, every ⊥-preserving self-mapping defined on a ⊥-
regular OCMMS (A,⊥, b) verifying (14) and (i),(iv)-(viii), admits a fixed point inA.

Proof. Chasing the steps taken in the proof of Theorem 3.8 and Theorem 3.11, we achieve the objective.
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3.3. Ćirić-Reich-Rus type (T,S)-orthogonal interpolative contraction

The self-mapping L defined on OMMS (A,⊥, b) and satisfying the inequality (18) is called Ćirić-Reich-
Rus type (T,S)-orthogonal interpolative contraction.

T(b(Lx,Lw)) ≤ S
(
b(x,w)νb(x,Lx)Tb(w,Lw)1−η−ν

)
, (18)

for all (x,w) ∈ Λ, b(Lx,Lw) > 0, where ν, η ∈ [0, 1) with ν + η < 1.

Remark 3.13. The following observations indicate the generality of Ćirić-Reich-Rus type (T,S) orthogonal interpola-
tive contraction for the specific definitions of the mappings T,S .

i. If T(x) = x and S(x) = λx, where 0 ≤ λ < 1, then L is an orthogonal interpolative Ćirić-Reich-Rus type
contraction [1].

ii. If T(x) = x, then L is an orthogonal interpolative Boyd-Wong-Ćirić-Reich-Rus type contraction.

iii. If T is lower semicontinuous and S is upper semicontinuous, then L is an orthogonal interpolative Ćirić-Reich-
Rus version of the contraction introduced in [4].

iv. If S(x) = F(T(x)) , then L is an orthogonal interpolative Ćirić-Reich-Rus version of the contraction introduced
in [35].

v. If S(x) = α(x)T(x) and T(x) = x, then L is an orthogonal interpolative Ćirić-Reich-Rus version of the contraction
introduced in [17].

vi. If S(x) = λT(x), then L is an orthogonal interpolative Ćirić-Reich-Rus version of the contraction introduced in
[55].

vii. If S(x) = F(T(x)) and F(x) = xα, then L is an orthogonal interpolative Ćirić-Reich-Rus version of the contraction
introduced in [21].

viii. If S(x) = T(x) − τ, then L is an orthogonal interpolative Ćirić-Reich-Rus version of the contraction introduced
in [57].

ix. For ν = 0, we obtain Kannan type (T,S)-orthogonal interpolative contraction from (18) .

The requirements for the presence of a fixed-point of Ćirić-Reich-Rus type (T,S)-orthogonal interpolative
contraction are stated in the following two theorems.

Theorem 3.14. Let ⊥ be a transitive orthogonal relation, then, every ⊥-preserving self-mapping defined on a ⊥-
regular OCMMS (A,⊥, b) verifying (18) and (i)-(iv), admits a fixed point inA.

Proof. Chasing the starting steps taken in the proof of Theorem 3.7, we have

T(hn) ≤ T(b(L(xn−1),L(xn)))

≤ S
(
(b(xn−1, xn))ν (b(xn−1,Lxn−1))η (b(xn,Lxn))1−η−ν

)
≤ S

(
(b(xn−1, xn))ν (b(xn−1, xn))η (b(xn, xn+1))1−η−ν

)
≤ S

(
(b(xn−1, xn))ν+η (b(xn, xn+1))1−η−ν

)
< T

(
(b(xn−1, xn))ν+η (b(xn, xn+1))1−η−ν

)
. (19)

By (19) and monotonicity of T implies

(hn)ν+η < (hn−1)ν+η,∀n ≥ 1.
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Now taking steps as taken in the proof of Theorem 3.7, we get xn → p∗ as n → ∞, and with the support
of ⊥-regularity of (A,⊥, b), we have xn⊥ p∗ or p∗⊥ xn. We need to prove that b(p∗,L(p∗)) = 1. Letting
b(xn+1,L(p∗)) > 1 and using (18), we have

T(b(xn+1,L(p∗))) ≤ T(b(L(xn),L(p∗)))

≤ S
((

b(xn, p∗)
)ν (b(xn,Lxn))η

(
b(p∗,Lp∗)

)1−η−ν
)

≤ S
((

b(xn, p∗)
)ν (b(xn, xn+1))η

(
b(p∗,Lp∗)

)1−η−ν
)

< T
((

b(xn, p∗)
)ν (b(xn, xn+1))η

(
b(p∗,Lp∗)

)1−η−ν
)
.

Using (ii), we get

b(xn+1,L(p∗)) <
(
b(xn, p∗)

)ν (b(xn, xn+1))η
(
b(p∗,Lp∗)

)1−η−ν .

Now for large n, the last inequality implies that b(p∗,L(p∗)) ≤ 1. Hence, b(p∗,L(p∗)) = 1, or p∗ = L(p∗).

Example 3.15. Let ⊥ ⊂ A2 = [1, 7)2 be defined by

x⊥w if xw ∈ {x,w},

so that (A,⊥) is an O-set. Consider the multiplicative metric defined in Example 2.3 and define T,S : R+ → R by

T (x) =


2x if x = e2.5

3x + 7 if x ∈ R+ −
{
e2.5

}
,

S (x) =


x+2

3 if x = e2.5

4x + 5 if x ∈ R+ −
{
e2.5

}
.

Define the self-mapping L onA by

L (x) =


4 if 1 ≤ x < 1.5

1.5 if 1.5 ≤ x < 7.

Observe that b(Lx,Lw) = e2.5, b(x,w) = e, b(x,Lx) = e3 and b(w,Lw) =
√

e if x = 1, w = 2 (1⊥ 2). This information
shows that

b(Lx,Lw) > λb(x,w)νb(x,Lx)ηb(w,Lw)1−η−ν for some λ =
1
3
, ν = 0.45, η = 0.3.

Thus, L is not a Ćirić-Reich-Rus type orthogonal interpolative contraction. However, L is a Ćirić-Reich-Rus type
(T,S)-orthogonal interpolative contraction. Indeed,

T (b(Lx,Lw)) ≤ S
(
b(x,w)νb(x,Lx)ηb(w,Lw)1−η−ν

)
.

We obtain the same conclusions for x = 1, w = 3 (1⊥ 3); x = 1, w = 4 (1⊥ 4) ; x = 1, w = 5 (1⊥ 5); x = 1, w = 6
(1⊥ 6) . The point x = 1.5 is a fixed point of the mapping L.

Theorem 3.16. Let ⊥ be a transitive orthogonal relation, then, every ⊥-preserving self-mapping defined on a ⊥-
regular OCMMS (A,⊥, b) verifying (18) and (i),(iv)-(viii), admits a fixed point inA.

Proof. Chasing the steps taken in the proof of Theorem 3.8 and Theorem 3.14, we complete the proof of
Theorem 3.16.
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3.4. Hardy-Rogers type (T,S)-orthogonal interpolative contraction
The self-mapping L defined on OMMS (A,⊥, b) and satisfying the inequality (20) is called an Hardy-

Rogers type(T,S)-orthogonal interpolative contraction.

T(b(Lx,Lw))

≤ S
(
b(x,w)νb(x,Lx)ηb(w,Lw)γ

(1
2

(b(x,Lw) + b(w,Lx))
)1−η−ν−γ)

, (20)

for all (x,w) ∈ Λ, b(Lx,Lw) > 0, where ν, η, γ ∈ [0, 1) with ν + η + γ < 1.

Remark 3.17. The following observations indicate the generality of Hardy-Rogers type (T,S) orthogonal interpolative
contraction for the specific definitions of the mappings T,S.

i. If T(x) = x and S(x) = λx, where 0 ≤ λ < 1, then L is an orthogonal interpolative Hardy-Rogers type
contraction [28].

ii. If T(x) = x, then L is an orthogonal interpolative Boyd-Wong-Hardy-Rogers type contraction.

iii. If T is lower semicontinuous and S is upper semicontinuous, then L is an orthogonal interpolative Hardy-Rogers
version of the contraction introduced in [4].

iv. If S(x) = F(T(x)) , then L is an orthogonal interpolative Hardy-Rogers version of the contraction introduced in
[35].

v. If S(x) = α(x)T(x) and T(x) = x, then L is an orthogonal interpolative Hardy-Rogers version of the contraction
introduced in [17].

vi. If S(x) = λT(x), then L is an orthogonal interpolative Hardy-Rogers version of the contraction introduced in
[55].

vii. If S(x) = F(T(x)) and F(x) = xα, then L is an orthogonal interpolative Hardy-Rogers version of the contraction
introduced in [21].

viii. If S(x) = T(x)− τ, then L is an orthogonal interpolative Hardy-Rogers version of the contraction introduced in
[57].

The requirements for the presence of a fixed-point of Hardy-Rogers type (T,S)-orthogonal interpolative
contraction are stated in the following two theorems.

Theorem 3.18. Let ⊥ be a transitive orthogonal relation, then, every ⊥-preserving self-mapping defined on a ⊥-
regular OCMMS (A,⊥, b) verifying (20) and (i)-(iv), admits a fixed point inA.

Proof. Let x0 ∈ A be such that x0⊥ x1 or x1⊥ x0 for each x1 ∈ A, then by using the ⊥-preserving nature of L,
we construct an orthogonal sequence {xn} such that xn = L(xn−1) = Ln(x0) and xn−1⊥xn for each n ∈ N. Note
that, if xn = L(xn) then xn is a fixed point of L for all n ≥ 0. We assume that xn , xn+1 for all n ∈ N ∪ {0}. By
(ii) and (6), we obtain

T(hn) ≤ T(b(L(xn−1),L(xn)))

≤ S

 b(xn−1, xn)νb(xn−1,L(xn−1))ηb(xn,L(xn))γ(
1
2 (b(xn−1,L(xn)) + b(xn,L(xn−1)))

)1−η−ν−γ


≤ S

(
(hn−1)ν+η(hn)γ

(1
2

b(xn−1, xn+1)
)1−η−ν−γ)

< T
(
(hn−1)ν+η(hn)γ

(1
2

(hn−1 + hn)
)1−η−ν−γ)

. (21)
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Suppose that hn−1 < hn for some n ≥ 1. By monotonicity of T and (21), we have (hn)ν+η < (hn)ν+η. This is not
possible. Consequently, we have hn < hn−1 for all n ≥ 1. Now taking steps as taken in the proof of Theorem
3.7, we get xn → u∗ as n→ ∞, and with the support of ⊥-regularity of (A,⊥, b), we have xn⊥u∗ or u∗⊥ xn.
We need to prove that b(u∗,L(u∗)) = 1. Letting b(xn+1,L(u∗)) > 1 and using (20), we have

T(b(xn+1,L(u∗))) ≤ T(b(L(xn),L(u∗)))

≤ S
(
b(xn,u∗)νb(xn,L(xn))ηb(u∗,L(u∗))γ

(1
2

(b(xn,L(u∗)) + b(u∗,L(xn)))
)1−η−ν−γ)

≤ S
(
b(xn,u∗)νb(xn, xn+1)ηb(u∗,L(u∗))γ

(1
2

(b(xn,L(u∗)) + b(u∗, xn+1))
)1−η−ν−γ)

< T
(
b(xn,u∗)νb(xn, xn+1)ηb(u∗,L(u∗))γ

(1
2

(b(xn,L(u∗)) + b(u∗, xn+1))
)1−η−ν−γ)

.

Using (ii), we get

b(xn+1,L(u∗))

< b(xn,u∗)νb(xn, xn+1)ηb(u∗,L(u∗))γ
(1

2
(b(xn,L(u∗)) + b(u∗, xn+1))

)1−η−ν−γ

.

Now for large n, the last inequality implies that b(u∗,L(u∗)) ≤ 1. Hence, b(u∗,L(u∗)) = 1, or u∗ = L(u∗).

Theorem 3.19. Let ⊥ be a transitive orthogonal relation, then, every ⊥-preserving self-mapping defined on a ⊥-
regular OCMMS (A,⊥, b) verifying (20) and (i),(iv)-(viii), admits a fixed point inA.

Proof. Following the steps as taken in the proof of Theorem 3.8 and Theorem 3.18, we complete this
proof.

Definition 3.20. A self-mapping L on OMMS (A,⊥, b) and satisfying the inequality (22) is called Banach type
(T,S)-orthogonal interpolative contraction.

T(b(Lx,Lw)) ≤ S (b(x,w)ν) , (22)

for all (x,w) ∈ Λ with b(Lx,Lw) > 0, where ν ∈ (0, 1].

Remark 3.21. The following observations indicate the generality of (T,S) orthogonal interpolative contraction for
the specific definitions of the mappings T,S.

i. If T(x) = x and S(x) = λx, where 0 ≤ λ < 1, then L is an orthogonal interpolative contraction.

ii. If T(x) = x, then L is an orthogonal interpolative Boyd-Wong type contraction.

iii. If T is lower semicontinuous and S is upper semicontinuous, then L is an orthogonal interpolative version of
the contraction introduced in [4].

iv. If S(x) = F(T(x)) , then L is an orthogonal interpolative version of the contraction introduced in [35].

v. If S(x) = α(x)T(x) and T(x) = x, then L is an orthogonal interpolative version of the contraction introduced in
[17].

vi. If S(x) = λT(x), then L is an orthogonal interpolative version of the contraction introduced in [55].

vii. If S(x) = F(T(x)) and F(x) = xα, then L is an orthogonal interpolative version of the contraction introduced in
[21].

viii. If S(x) = T(x) − τ, then L is an orthogonal interpolative version of the contraction introduced in [57].

The next two theorems deals with Banach type (T,S)-orthogonal interpolative contraction.
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Theorem 3.22. Let ⊥ be a transitive orthogonal relation, then, every ⊥-preserving self-mapping defined on a ⊥-
regular OCMMS (A,⊥, b) verifying (22) and (i)-(iv), admits a fixed point inA.

Theorem 3.23. Let ⊥ be a transitive orthogonal relation, then, every ⊥-preserving self-mapping defined on a ⊥-
regular OCMMS (A,⊥, b) verifying (22) and (i),(iv)-(viii), admits a fixed point inA.

Remark 3.24. If ν = 1, the proofs of Theorem 3.22 and Theorem 3.23 are directly followed by [36]. If 0 < ν < 1, the
proofs of Theorem 3.22 and Theorem 3.23 are similar to precedent ones.

Remark 3.25. For S(w) = T(w) − τ and orthogonal relation ⊥ as follows:

x⊥wifandonlyifα(x,w) ≥ 1.

The Theorem 3.22 with ν = 1 is the main result presented in [15].
For S(w) = T(w) = w, L : A→A and orthogonal relation ⊥ as follows:

x⊥wifandonlyifx ⪯ w.

The Theorem 3.22 with ν = 1 is the main result presented in [44].

4. Applications

4.1. An application to resolve a fractional differential equation
A variety of useful fractional differential features were postulated and researched by Lacroix (1819). Caputo
and Fabrizio announced [13], a new fractional technique, in 2015. The need to characterise a class of non-
local systems that cannot be properly represented by traditional local theories or fractional models with
singular kernel [13] sparked interest in this description. The different kernels that can be selected to satisfy
the requirements of different applications are the fundamental differences among fractional derivatives.
The Caputo fractional derivative [14], the Caputo-Fabrizio derivative [13], and the Atangana-Baleanu
fractional derivative [5], for example, are determined by power laws, the Caputo-Fabrizio derivative by
an exponential decay law, and the Atangana-Baleanu derivative by a Mittag-Leffler law. Various new
Caputo-Fabrizio derivative (CFD) models were recently investigated in [3, 7, 8]. In multplicative-metric
spaces, we will look at one of these models.

Let b : C2
(I, R) → [1,∞) be defined by

b(u, v) = e∥u−v∥∞ = esupl∈I |u(l)−v(l)|, for all u, v ∈ C(I, R).

Then (C(I, R), b) is a complete multiplicative metric space, where I = [0, 1] and

C(I, R) = {u|u : I→ R and u is continuous} .

The relation ⊥ on C(I, R) given as follows:

u⊥ v if and only if u(l)v(l) ≥ u(l) ∨ v(l), for all u, v ∈ C(I, R),

is an orthogonal relation and (C(I, R),⊥, b) is an OCMMS. Let the function K1 : I × R → R be taken as
K1(s, r) ≥ 0 for all s ∈ I and r ≥ 0. We shall apply Theorem 3.22 to resolve the following CFDE:

CDυw (s) = K1(s,w(s)); w ∈ C(I, R); (23)

w (0) = 0, Iw (1) = w
′

(0) .

We denote CFD of order υ by CDυ and for υ ∈ (m − 1,m); m = [υ] + 1, we have

CDυw (s) =
1

Γ (m − υ)

∫ s

0
(s − z)m−υ−1 w(z)) dz.
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The notation Iυw is interpreted as follows:

Iυw (s) =
1
Γ (υ)

∫ s

0
(s − z)υ−1 w(z) dz : υ > 0.

We can represent (23) as follows:

w (s) =
1
Γ (υ)

∫ s

0
(s − z)υ−1 K1(z,w(z)) dz

+
s
Γ (υ)

∫ 1

0

∫ z

0

(
z − p

)υ−1 K1(p,w(p)) dpdz.

For the mappings K1 : I × R→ R and u0 ∈ C(I, R), we state the following conditions:

(A) For τ > 0, let

|K1 (s,w(s)) − K1 (s,u(s))| ≤
Γ (υ + 1)
Γ (υ)

|w(s) − u(s)| ,

for all w,u ∈ C(I, R) following the order w⊥u.

(B) there exists u0 ∈ C(I, R) such that

u0 (s) ≤
1
Γ (υ)

∫ s

0
(s − z)υ−1 K1(z,u0(z)) dz

+
l
Γ (υ)

∫ 1

0

∫ z

0

(
z − p

)υ−1 K1(p,u0(p)) dpdz.

We noticed that K1 : I × R→ R is not necessarily Lipschitz continuous. For instant, K1 given by

K1(s,w(s)) =
{

sw(s) if w(s) ≤ 1
2 ,

0 if w(s) > 1
2 .

follows (A) however, K1 is not continuous and monotone. Moreover, for s = e−τΓ (υ + 1),

b(K1 (s,w(s)) ,K1 (t,u(t))) = e|K1(l, 1
2 )−K1(l, 2

3 )| = e
s
2 > e

s
6 = es| 12−

2
3 | = b(w,u).

Theorem 4.1. Let the mappings K1 : I × R→ R and u0 ∈ C(I, R) satisfies conditions (A)-(B), then the equation (23)
admits a solution in C(I, R).

Proof. Let X =
{
J ∈ C(I, R) : J(s) ≥ 0 for all s ∈ I

}
and define ψ : X→ X by

(
ψJ

)
(s) =

1
Γ (υ)

∫ s

0
(s − z)υ−1 K1(z, J(z)) dz +

s
Γ (υ)

∫ 1

0

∫ p

0

(
p − z

)υ−1 K1(z, J(z)) dzdp.

We define an orthogonal relation ⊥ in X by

u⊥ v if and only if u(s)v(s) ≥ u(s) ∨ v(s), ∀ u, v ∈ X.

According to above definitions, ψ is ⊥-preserving and there is u0 ∈ C(I, R) verifying (B) such that un = Rn(u0)) with
un⊥un+1 or un+1⊥un for all n ≥ 0. We work on the validation of (22) in the next lines.

b((ψJ) (s) , (ψU) (s)) = exp

sup
s∈I

∣∣∣∣∣∣∣∣∣∣∣∣∣

1
Γ(υ)

∫ s

0
(s − z)υ−1 K1(z, J(z)) dz

−
1
Γ(υ)

∫ s

0
(s − z)υ−1 K1(z,U(z)) dz

+ s
Γ(υ)

∫ 1

0

∫ p

0

(
p − z

)υ−1 K1(z, J(z)) dzdp

−
s
Γ(υ)

∫ 1

0

∫ p

0

(
p − z

)υ−1 K1(z,U(z)) dzdp

∣∣∣∣∣∣∣∣∣∣∣∣∣


≤ exp

sup
s,z∈I

 1
Γ(υ)Γ (υ + 1) ·

∫ s

0
(s − z)υ−1

|J(z) −U(z)| dz

−
s
Γ(υ)Γ (υ + 1) ·

∫ 1

0

∫ p

0

(
p − z

)υ−1
|J(z) −U(z)| dzdp
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b((ψJ) (s) , (ψU) (s))

≤ exp

sup
s,z∈I

 1
Γ(υ)Γ (υ + 1) |J(z) −U(z)| ·

∫ s

0
(s − z)υ−1 dz

−
s
Γ(υ)Γ (υ + 1) |J(z) −U(z)| ·

∫ 1

0

∫ p

0

(
p − z

)υ−1 dzdp




≤ exp


Γ(υ+1)
Γ(υ) supz∈I |J(z) −U(z)|

sups∈I

{∫ s

0
(s − z)υ−1 dz − s

∫ 1

0

∫ z

0

(
p − z

)υ−1 dzdp
} 

≤ exp


Γ(υ+1)
Γ(υ) supz∈I |J(z) −U(z)|

sups∈I

{∫ s

0
(s − z)υ−1 dz − s

∫ 1

0

∫ z

0

(
p − z

)υ−1 dzdp
} 

≤ exp

 Γ(υ)·Γ(υ+1)
Γ(υ)·Γ(υ+1) supz∈I |J(z) −U(z)|
−sB (υ + 1, 1) Γ(υ)·Γ(υ+1)

Γ(υ)·Γ(υ+1) sups,z∈I |J(z) −U(z)|


≤ exp

(
(1 − sB (υ + 1, 1)) sup

s,z∈I
|J(z) −U(z)|

)
≤ exp

(
(1 − sB (υ + 1, 1)) sup

s,z∈I
|J(z) −U(z)|

)
=

(
exp

(
sup
s,z∈I
|J(z) −U(z)|

))1−sB(υ+1,1)

= (b(J(z),U(z)))1−sB(υ+1,1) ; where B is a beta function.

By defining T(w) = ln(w) and S(w) = DT(w); w > 0, τ > 0, and putting 1 − sB (υ + 1, 1) = D < 1, the last inequality gets
the form:

T
(
b(ψ (J) (s) , ψ (U) (s))

)
≤ S (b(J,U)) .

4.2. Application to Volterra type integral equation

There are several types of integral equations but generally they are used to model scientific phenomena
in which the value, or the rate of change of the value, of some quantity (or quantities) depends on past
history. This is in contrast to differential equations, in which only the current value determines the rate
at which a quantity is evolving. Just as for differential equations, integral equations need to be “solved”
to describe and predict how a physical quantity is going to behave as time passes. For solving integral
equations, there are things like Fredholm theorems, fixed point methods, boundary element methods, and
Nystrom methods. In this paper we apply Theorem 3.22 to show the existence of solution of multiplicative
Volterra type integral equation given below:

f (k) =

k∫
0

L(k, h, f )dh, (24)

for all k ∈ [0, 1] and L is a mapping from [0, 1] × [0, 1] × C(I, R) to R. We show the existence of the solution to
(24).

Let b : C2
(I, R) → [1,∞) be defined by

b(u, v) =
∣∣∣∣∣u(l)
v(l)

∣∣∣∣∣
m
, for all u, v ∈ C(I, R).

Then (C(I, R), b) is a complete multiplicative metric space, where I = [0, 1] and

C(I, R) = {u|u : I→ R and u is continuous} .
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The relation ⊥ on C(I, R) given as follows

u⊥ v if and only if u(l)v(l) ≥ u(l) ∨ v(l), for all u, v ∈ C(I, R),

is an orthogonal relation and (C(I, R),⊥, b) is an OCMMS.
The following is the existence theorem for integral equation (24).

Theorem 4.2. Assume that the following conditions are satisfied.

(a) Assume that L : [0, 1] × [0, 1] × C(I, R) → R is continuous.

(b) Suppose there exists τ > 0, such that∣∣∣∣∣L(k, h, f )
L(k, h, q)

∣∣∣∣∣
m
≤

b( f , q)

(τ
√

b( f , q) + 1)2
, (25)

for all k, h ∈ [0, 1] and f , q ∈ C(I, R+). Then, integral equation (24) admits a solution in C(I, R+).

Proof. Let Q = C(I, R) and endow it with the relation ⊥ and multiplicative metric b. Define the mapping
Ψ : Q→ Q by

(Ψ f )(k) =

k∫
0

(L(k, h, f ))dh, (26)

so that the fixed point of Ψ is a solution to integral equation (24). According to above definitions, ψ is
⊥-preserving and there is u0 ∈ C(I, R) verifying un = Rn(u0)) with un⊥un+1 or un+1⊥un for all n ≥ 0. We
work on the validation of (22) in the next lines. By assumption (b), we have

b(Ψ( f ),Ψ(q)) =

∣∣∣∣∣ (Ψ f )(k)
(Ψq)(k)

∣∣∣∣∣
m
=

∣∣∣∣∣∣∣∣
∫ k

0 (L(k, h, f ))dh∫ k

0 (L(k, h, q))dh

∣∣∣∣∣∣∣∣
m

≤

k∫
0

∣∣∣∣∣L(k, h, f )
L(k, h, q)

∣∣∣∣∣dh

m

≤

k∫
0

 b( f , q)

(τ
√

b( f , q) + 1)2

dh

= exp


k∫

0

ln

 b( f , q)

(τ
√

b( f , q) + 1)2

 dh


= exp

ln

 b( f , q)

(τ
√

b( f , q) + 1)2

 k∫
0

dh


≤ exp

ln

 b( f , q)

(τ
√

b( f , q) + 1)2


=

b( f , q)

(τ
√

b( f , q) + 1)2

This implies√
b(Ψ( f ),Ψ(q)) ≤

√
b( f , q)√

b( f , q) + 1
. (27)
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τ
√

b( f , q) + 1√
b( f , q)

≤
1√

b(Ψ( f ),Ψ(q))
. (28)

τ +
1√

b( f , q)
≤

1√
b(Ψ( f ),Ψ(q))

, (29)

which further implies

τ −
1√

b(Ψ( f ),Ψ(q))
≤

−1√
b( f , q)

. (30)

So all the conditions of Theorem 3.22 are satisfied for T(q) = −1
√

q ; q > 0, S(q) = T(q) − τ and ν = 1. Hence, the
integral equation (24) admits at most one solution.

5. Conclusion and future work

This work presents explicit criteria for the existence of fixed-points in (T,S)-orthogonal interpolative
iterative mappings. It also introduces and investigates orthogonal interpolative versions of well-known
iterative mappings. The proven fixed-point theorems for several forms of contractions (Kannan, Chatterjea,
Ciric-Reich-Rus, Hardy-Rogers) in the context of orthogonal multiplicative metric spaces show how flexible
and useful the suggested method is. The fixed point theorem’s usefulness in solving integral equations and
fractional differential equations is further expanded by its application to Banach (T,S)-orthogonal contrac-
tions via interpolation. Non-trivial examples are used to support theoretical conclusions, highlighting the
published results practical value within the larger field of mathematical analysis.
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[29] E. Karapinar, A. Fulga, S. S. Yeşilkaya, Interpolative Meir-Keeler Mappings in Modular Metric Spaces, Mathematics,
10(16)(2022), 2986.

[30] E. Karapinar, Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl., 2 (2018),
85-87.

[31] E. Karapinar, O. Alqahtani, H. Aydi, On interpolative Hardy-Rogers type contractions, Symmetry 2019, 11, 8.
[32] M. S. Khan, Y. M. Singh, E. Karapınar, On the interpolative (ϕ,ψ)-type Z-contraction, UPB Sci. Bull. Ser. A, 83(2021),

25-38.
[33] Z. Li, S. Jiang, Fixed point theorems of JS-quasi-contractions, Fixed Point Theory Appl. 2016:40 (2016).
[34] J. Matkowski, Integrable solutions of functional equations, Diss. Math. 127(1975), 1-68.
[35] S. Moradi, Fixed point of single-valued cyclic weak φF -contraction mappings, Filomat 28, 1747-1752 (2014).
[36] M. Nazam, C. Park, M. Arshad, Fixed point problems for generalized contractions with applications, Advances in

Difference Equations 2021:247 (2021), https://doi.org/10.1186/s13662-021-03405-w.
[37] M. Nazam, H. Aydi, A. Hussain, Generalized interpolative contractions and an application, Journal of Mathematics,

vol. 2021, Article ID 6461477, (2021).
[38] M. Nazam, H. Aydi, A. Hussain, Existence theorems for (Φ,Ψ)-orthogonal interpolative contractions and an

application to fractional differential equations, Optimization, 71, https://doi.org/10.1080/02331934.2022.2043858.
[39] M. Ozavsar, A. C. Cervikel, Fixed points of multiplicative contraction mappings on b-metric space, arXiv:1205.5131



M. Nazam et al. / Filomat 38:14 (2024), 5061–5082 5082

[math.GM], (2012), 14 pages.
[40] L. Pasick, The Boyd-Wong idea extended, Fixed Point Theory and Applications (2016) 2016:63, doi 10.1186/s13663-

016-0553-0.
[41] Y. Piao, Unique fixed points for mappings with σ(γ)-contractive conditions on multiplicative metric spaces, J. Jilin Univ.,

Sci. 59, No. 3, 469-474 (2021).
[42] P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl.

(2020) 22:21, https://doi.org/10.1007/s11784-020-0756-1.
[43] E. Rakotch, A note on contractive mappings, Proc. Am. Math. Soc. 13(1962), 459-465.
[44] A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations,

Proc. Am. Math. Soc. 132(2003), 1435-1443.
[45] T. Rasham, M. De La Sen, A novel study for hybrid pair of multivalued dominated mappings in b -multiplicative metric

space with applications, J. Inequal. Appl. 2022, Paper No. 107, 15 p. (2022).
[46] S. Reich, A.J. Zaslavski, Contractivity and genericity results for a class of nonlinear mappings, Journal of Nonlinear and

Convex Analysis 16(2015) 1113-1122.
[47] S. Reich, A.J. Zaslavski, Genericity in nonlinear analysis, Developments in Mathematics, vol. 34, 2014, New York:

Springer.
[48] S. Reich, A. J. Zaslavski, A fixed point result in generalized metric spaces, J Anal (2022). https://doi.org/10.1007/s41478-

022-00412-2
[49] K. Safeer, R. Ali, Interpolative Contractive Results for m-Metric Spaces, Advances in the Theory of Nonlinear Analysis

and its Application, 7(2)(2023), 336-347.
[50] K. Safeer, R. Ali, Interpolative Contractive Results for m-Metric Spaces, Advances in the Theory of Nonlinear Analysis

and its App. 7(2)(2023), 336-347.
[51] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for (α,ψ)-contractive type mappings, Nonlinear Anal. 75(2012),

2154-2165.
[52] N. A. Secelean, Weak F-contractions and some fixed point results, Bull. Iranian Math. Soc. 42(2016), 779-798.
[53] A. Shoaib, Common fixed point for generalized contraction in b-multiplicative metric spaces with applications Bull. Math.

Anal. Appl. 12, No. 3, 46-59 (2020).
[54] G. Siva, Fixed filter bases of multiplicative contractions on multiplicative metric spaces Surv. Math. Appl. 18, 49-58 (2023).
[55] F. Skof, Theoremi di punto fisso per applicazioni negli spazi metrici, Atti. Acad. Sci. Torino Cl. Sci. Fis. Mat. Natur.

111(1977), 323-329.
[56] D. Wardowski, N. V. Dung, Fixed points of F-weak contractions on complete metric spaces, Demonstr. Math. 47,

146-155 (2014).
[57] D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory

Appl. (2012) Article ID 94.
[58] O. Yamaod, W. Sintunavarat, Some fixed point results for generalized contraction mappings with cyclic (α, β)-admissible

mapping in b-metric space, J. Inequal. Appl. 2014:488 (2014).


