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Abstract. Nonsingular H−matrices have proven to be a source of many interesting results in different
research areas in numerical linear algebra and also in applications in economy, engineering, ecology. In
this paper, a new criteria for identifying some special H−matrices is presented. It is based on attributing
different partition of the index set to each row of the matrix in consideration and testing inequalities that
are associated to these partitions and involve recursively defined Nekrasov row sums. The new subclass of
H−matrices introduced in this way is then analyzed with respect to its relation to well-known matrix classes.
We used our new condition to estimate norm of the inverse matrix and errors in linear complementarity
problems that involve matrices of this type.

1. Preliminaries

The extensive study of H−matrix theory has been motivated by numerous possibilities for applications
of the obtained results in different fields of research, see [2]. In literature, one can find many novel results,
which stem from analysis of special subclasses of nonsingular H−matrices, on spectra and pseudo-spectra
localizations, norm bounds for the inverse, (see [5, 8, 21, 24, 28]), error bounds for linear complementarity
problems, (see [14, 25, 27]), Schur complement properties,(see [7, 10, 11, 30, 34]), etc.

There are several different approaches when it comes to defining subclasses of H−matrices through
relaxing the strict diagonal dominance condition. One of these approaches would be to replace strict
inequalities with nonstrict inequalities with additional demands such as irreducibility or chain property.
Another approach is to consider classes that are not closed under similarity permutations and modify
these conditions by introducing permutation matrices. One of the ideas that was widely applied is to fix a
partition of the index set and then define conditions that involve parts of row sums corresponding to the
chosen partition.
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If we observe more closely some of the recently defined classes, such as Π−Nekrasov, see [1, 8],
or CKV−type matrices, see [5], the idea behind these conditions is quite similar. In the definition of
Π−Nekrasov. matrices, we allow that for each row in the matrix there exists a permutation that will repair
that row, i.e., transform that row to a Nekrasov dominant row. This is a relaxed condition compared to
Gudkov condition, where we need one permutation that will repair all rows at once, transforming them all
to Nekrasov dominant rows. In the case of CKV−type matrices, for each row of the matrix there should be
a partition of the index set such that certain inequalities hold with respect to that partition. This is also a
relaxed condition compared to CKV condition, see [6, 15], where we need to find one partition of the index
set such that all the inequalities are satisfied with respect to that one fixed partition.

We start with the class of Partition−Nekrasov matrices (in literature also known as Σ−Nekrasov class,
see [9, 34]). The definition of this class requires the existence of one fixed partition of the index set such that
certain inequalities (involving parts of recursively defined Nekrasov row sums with respect to the chosen
partition) hold. We relax this condition by allowing that each row has its own corresponding partition of
the index set, that satisfies inequalities involving parts of recursive row sums. This relaxation can also be
viewed as a change in the order of quantifiers. We define Partition−Nekrasov type matrices, that will be
denoted shortly as PN−type matrices, through a generalization of Partition−Nekrasov condition and show
that new condition is sufficient to guarantee nonsingularity and, moreover, the membership to the class of
H−matrices. Then, we estimate the infinity norm of the inverse matrix for PN−type matrices and use that
result to estimate errors in linear complementarity problems.

In the remainder of this preliminary section, we recall well known subclasses of H−matrices, in Section 2,
we introduce PN−type matrices and prove that these matrices are nonsingular and, moreover, H−matrices.
In Section 3, we give two estimates for the infinity norm of the inverse of PN−type matrices. In Section 4,
we estimate errors in linear complementarity problems when a PN−type matrix is involved. In Section 5,
we give conclusions and remarks.

We commence with the usual notations and well-known definitions.
By N = {1, 2, . . . ,n} we denote the set of indices. Given a nonempty proper subset S of N, S = N \ S

stands for the complement of S in N. The i−th deleted absolute row sum is given by

ri(A) =
∑

j∈N, j,i

|ai j|,

and its part that corresponds to the nonempty proper subset S is

rS
i (A) =

∑
j∈S, j,i

|ai j|

Provided that for each i ∈ N it holds that

|aii| > ri(A),

we say that A = [ai j] ∈ Cn,n is a strictly diagonally dominant (SDD) matrix.
We will denote the set of indices of non−SDD rows by

NA = {i ∈ N||aii| ≤ ri(A)}.

It is known that SDD property implies nonsingularity see [36]).
Next, one may define the comparison matrix ⟨A⟩ = [mi j] of A ∈ Cn,n, by

mii = |aii| , mi j = −|ai j| , i, j ∈ N , i , j

and in case that ⟨A⟩ is invertible and inverse non-negative (that is, an M−matrix), we say that A belongs to
H−matrices.

Considering the convergence of the Gauss−Seidel iteration, (see [19]), Gudkov defined the Nekrasov
class in his paper [17]. Later on, many generalizations preserving nonsingularity property followed,
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together with new results on norms of the inverse, eigenvalues and Schur complements of matrices in new
classes, see [33], [20], [26], [10], [9], [8].

Nekrasov row sums, denoted hi(A), are defined recursively:

h1(A) =
∑
j,1

|a1 j|

hi(A) =

i−1∑
j=1

|ai j|
h j(A)
|a j j|

+

n∑
j=i+1

|ai j|, i = 2, 3, . . . ,n

and for ∅ , S ⊊ N, quantities hS
i (A) are calculated as

hS
1(A) = rS

1(A)

hS
i (A) =

i−1∑
j=1

|ai j|
hS

j (A)

|a j j|
+

n∑
j=i+1, j∈S

|ai j|, i = 2, 3, . . . ,n.

A matrix A = [ai j] ∈ Cn,n,n ≥ 2 is a Nekrasov matrix if, for each i ∈ N

|aii| > hi(A).

For an arbitrary matrix A = [ai j] ∈ Cn,n,n ≥ 2, and given any nonempty proper subset S of N, the authors
in [9] defined another class as follows: matrix A is an S−Nekrasov matrix if

|aii| > hS
i (A) for all i ∈ S and(

|aii| − hS
i (A)
)(
|a j j| − hS

j (A)
)
> hS

i (A)hS
j (A) for all i ∈ S, j ∈ S .

If there exists a nonempty proper subset S of N, such that A = [ai j] ∈ Cn,n,n ≥ 2 is an S−Nekrasov matrix,
then A is a Partition−Nekrasov matrix.

We also use the following vector notations:

h(A) = [h1(A), ..., hn(A)]T,

hS(A) = [hS
1(A), ..., hS

n(A)]T.

In a recent paper [5] the authors introduced a new subclass of H−matrices, named CKV−type matrices,
as follows. Let A = [ai j] ∈ Cn,n,n ≥ 2 be an arbitrary matrix. If A is SDD or, for any i ∈ NA there exists a
proper subset S containing i such that

|aii| > rS
i (A) and(

|aii| − rS
i (A)
)(
|a j j| − rS

j (A)
)
> rS

i (A)rS
j (A) for all j ∈ S,

then A is a CKV−type matrix.
They used the following notations:

Σ(i) = {S ⊊ N : i ∈ S},

and
S∗i (A) = {S ∈ Σ(i) : |aii| > rS

i (A) and for all j ∈ S(
|aii| − rS

i (A)
)(
|a j j| − rS

j (A)
)
> rS

i (A)rS
j (A) }.

In papers [5, 6, 12, 23, 24, 37], one can find various applications of classes of CKV and CKV−type
matrices and related DZ and DZ−type matrices. In Section 2, we are going to apply a similar idea,
considering recursively defined Nekrasov row sums instead of ordinary deleted row sums.
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2. Partition−Nekrasov type (PN−type) condition

In this section, we introduce a new condition defining a subclass of nonsingular H−matrices. Then,
we discuss relations of the new matrix class to well-known and related matrix classes. The new class is
obtained through a relaxation of Partition−Nekrasov condition and examples show that our new class is
wider than Partition−Nekrasov class. Also, examples show that our new class of PN−type matrices and
the CKV−type class stand in a general relation.

2.1. Introducing PN−type matrices
Let us denote the set of indices corresponding to non−Nekrasov rows in the following way

N−(A) = {i ∈ N | |aii| ≤ hi(A)}.

Definition 2.1. Given any matrix A = [ai, j] ∈ Cn,n,n ≥ 2, a matrix A is a Partition−Nekrasov type matrix
(PN−type matrix) if
1. A is a Nekrasov matrix or
2. For each index i ∈ N−(A) there exists a proper subset S ⊂ N containing i, such that

|aii| > hS
i (A) and(

|aii| − hS
i (A)
)(
|a j j| − hS

j (A)
)
> hS

i (A)hS
j (A), for all j ∈ S.

(1)

For a given index i ∈ N let Si(A) denote the set of corresponding subsets S satisfying the condition (1)
from the previous definition.

Theorem 2.2. If a matrix A = [ai j] ∈ Cn,n,n ≥ 2 is a PN−type matrix, then A is nonsingular.

Proof:
If the given matrix A = [ai j] ∈ Cn,n,n ≥ 2 belongs to Nekrasov matrix class, then A is clearly nonsingular.

Having this in mind, in further considerations we assume that A is not Nekrasov, meaning that N−(A) , ∅,
i.e. the set of indices denoting non−Nekrasov rows is not empty. Let us suppose that A is a singular
PN−type matrix. Then, there exists a nonzero vector x = [x1, ..., xn]T such that Ax = 0. Consider the index
k ∈ N such that ∥x∥∞ = |xk| > 0.

As the first possible case, assume that index k denotes a non−Nekrasov row, i.e., k ∈ N−(A). Then, from
the definition of PN−type matrices, Sk(A) , ∅, i.e., there exists a nonempty proper subset S of N such that

k ∈ S, |akk| > hS
k (A)

and for all j ∈ S (
|akk| − hS

k (A)
)(
|a j j| − hS

j (A)
)
> hS

k (A)hS
j (A).

Now, we denote the maximum component of |x| inside the set S, |xl| = max j∈S |x j|.
From Ax = 0, if A = D − L −U is the standard splitting of the matrix A into diagonal, strictly lower and

strictly upper triangular part, it follows
(D − L −U)x = 0

and by triangular inequality
(|D| − |L|)|x| ≤ |U||x|.

As |D| − |L| is a nonsingular M−matrix, (from the definition of PN−type matrices it follows that diagonal
entries are positive), we obtain

|x| ≤ (|D| − |L|)−1
|U||x|
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and also

|D||x| ≤ |D|(|D| − |L|)−1
|U||x| ≤ |D|(|D| − |L|)−1

|U||xk|eS + |D|(|D| − |L|)−1
|U||xl|eS

≤

≤ |xk|hS(A) + |xl|hS(A),

as it is shown in [22] that
hS(A) = |D|(|D| − |L|)−1

|U|eS,

where

eS
i =

{
1, i ∈ S,
0, i ∈ S

Let us observe the k − th row in the previous inequality and obtain

|akk||xk| ≤ |xk|hS
k (A) + |xl|hS

k (A),

which implies

(|akk| − hS
k (A))|xk| ≤ |xl|hS

k (A). (2)

Also, as (|akk| − hS
k (A))|xk| > 0 we have |xl| > 0.

In a similar manner, considering the l − th row, we have

|all||xl| ≤ |xk|hS
l (A) + |xl|hS

l (A),

which implies

(|all| − hS
l (A))|xl| ≤ |xk|hS

l (A). (3)

Multiplying inequalities (2) and (3) and dividing by |xk||xl| > 0,we obtain

(|akk| − hS
k (A))(|all| − hS

l (A)) ≤ hS
k (A)hS

l (A),

which is a contradiction with the assumption. This completes the proof for the first case.
As the second case, let us now assume that k corresponds to a Nekrasov row, i.e., k ∈ N\N−(A). It is

enough to show that Sk(A) , ∅ and then proceed as in the first case.
Suppose that A has only one Nekrasov row, i.e., N\N−(A) = {k}. Then for each j ∈ N\{k} it holds that

N\{k} ∈ S j(A) and it is easy to see that S = {k} ∈ Sk(A).
On the other hand, if A has at least two Nekrasov rows, i.e., if N\N−(A) ⊇ {k, j}, then let us take

S = {k} ∪N−(A). It is easy to see that S ∈ Sk(A).
This completes the proof. □

Theorem 2.3. If a matrix A = [ai j] ∈ Cn,n,n ≥ 2 is a PN−type matrix, then A is an H−matrix.

Proof: Let A = D − L −U be the standard splitting of the matrix A. Then,

⟨A⟩ = |D| − |L| − |U| = (|D| − |L|)(I − (|D| − |L|)−1
|U|).

Suppose that
ρ((|D| − |L|)−1

|U|) ≥ 1,

i.e., there exists an eigenvalue λ ∈ σ((|D| − |L|)−1
|U|), such that |λ| ≥ 1. Then the matrix λI − (|D| − |L|)−1

|U| is
singular, and so is the matrix B = λ(|D| − |L|) − |U|. Let B = DB − LB −UB be the standard splitting of B and
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let e be the vector with all components equal to 1. If we consider now the diagonal entries and Nekrasov
row sums of the matrix B,we obtain that the following relations hold for each index i in N.

|bii| = |λ||aii| ≥ |aii|,

hi(B) = |bii|((|DB| − |LB|)−1
|UB|e)i =

= |λ||aii|((|λ||D| − |λ||L|)−1
|U|e)i =

= |λ||aii|
1
|λ|

((|D| − |L|)−1
|U|e)i =

= |aii|((|D| − |L|)−1
|U|e)i = hi(A).

Also, for the given nonempty proper subset S of the index set N, it holds

hS
i (B) = |bii|((|DB| − |LB|)−1

|UB|eS)i = |λ||aii|((|λ||D| − |λ||L|)−1
|U|eS)i =

= |λ||aii|
1
|λ|

((|D| − |L|)−1
|U|eS)i = |aii|((|D| − |L|)−1

|U|eS)i = hS
i (A).

Now, it is easy to see that if A is a PN−type matrix, so is B, therefore B is nonsingular, which is a contradiction.
Hence,

ρ((|D| − |L|)−1
|U|) < 1,

which implies

⟨A⟩−1 = (I − (|D| − |L|)−1
|U|)−1(|D| − |L|)−1 =

=
∑
k≥0

((|D| − |L|)−1
|U|)k(|D| − |L|)−1

≥ 0.

Therefore, A is an H−matrix. □
Let us now present some additional remarks on relations of this class to other subclasses of H−matrices,

together with another definition of the new class.

Remark 2.4. From the proof of Theorem 2.2 we see that, for the given PN−type matrix A, it holds:
1. If j ∈ N−(A), then for all S ∈ S j(A), N−(A) ⊆ S.
2. If k ∈ N\N−(A) and card(N\N−(A)) ≥ 2, then {k} ∪N−(A) ∈ Sk(A).
3. If {k} = N\N−(A), then {k} ∈ Sk(A) and for each j ∈ N−(A), N−(A) is the only element in S j(A).

Remark 2.5. From the proof of Theorem 2.2 we see that A is a PN−type matrix if and only if for all i ∈ N, Si(A) , ∅.
This is an equivalent definition for Definition 2.1.

Remark 2.6. Notice that the class of Nekrasov matrices is a subclass of the class of PN−type matrices. Also, if A is
a Nekrasov matrix, then for all i ∈ N all proper subsets S that contain index i belong to Si(A).

Remark 2.7. It is easy to show that PN−type matrix class contains the whole Partition−Nekrasov class of matrices,
using the same arguments as done for CKV and CKV−type matrices in [5]. The matrix F in the following example is
a PN−type matrix, but it is not in Partition−Nekrasov class. This shows that the class of PN−type matrices is wider
than Partition−Nekrasov class of matrices.

F =


0.5847 0.446 0.2388 0.17
0.0603 0.875 0.2045 0.0203
0.1315 0.1178 0.742 0.5853
0.1308 0.0704 0.0597 0.3143
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Remark 2.8. We could identify other well-known subclasses of H−matrices that are contained in the new PN−type
matrix class. It is well-known that CKV class is contained in Partition−Nekrasov class, see [6, 9]. Therefore, CKV is
a subclass in PN−type matrix class. The same conclusion holds for DZ class, see [12], as DZ is a subclass in CKV
class.

Remark 2.9. Examples show that neither CKV−type class is a subclass of the class of PN−type matrices, nor the
class of PN−type matrices is a subclass of CKV−type class. These two classes have nonempty intersection, as the
whole SDD class is in both of them. In the examples that follow, matrix B is a PN−type matrix, but it is not a
CKV−type matrix. On the other hand, matrix D is a CKV−type matrix, while it is not a PN−type matrix.

B =


2 −1 −1 1
1 4 0 −1
1 1 4 1
1 −1 1 3

 D =

 1 1.2 0
0.5 1.1 0.5
0.5 0 1


3. Application to infinity norm estimation for the inverse matrix

Estimation of the norm of the inverse matrix could be very useful in numerical linear algebra, as this type
of results can be applied to estimation of the condition number, pseudospectra problems and in analysis of
errors of the solution and sensitivity to perturbations in linear complementarity problems. Starting with the
well-known result of Varah for SDD matrices, see [35], different authors developed upper bounds for the
norm of the inverse for many other special matrix classes. In this section, we give two different estimates for
the infinity norm of the inverse for PN−type matrices. As the new class is wider than Partition−Nekrasov,
our bounds can be applied in some cases where already known bounds for Partition−Nekrasov matrices
cannot be applied. A similar observation stands for CKV−type matrices. Numerical examples show that
if a matrix in consideration is both CKV−type and PN−type matrix, in some cases our new norm bounds
give more precise estimate, closer to the exact value of the norm, than already known bounds formulated
for CKV−type matrices.

Theorem 3.1. If a matrix A = [ai j] ∈ Cn,n,n ≥ 2 is a PN−type matrix, then

∥A−1
∥∞ ≤ max

 max
i∈N\N−(A)

zi(A)
|aii| − hi(A)

, max
i∈N−(A)

min
S∈Si

max
j∈S
γS

ij(A)

 ,
where

γS
ij(A) =

z j(A)hS
i (A) + zi(A)(|a j j| − hS

j (A))

(|a j j| − hS
j (A))(|aii| − hS

i (A)) − hS
i (A)hS

j (A)
.

Proof: We know that
∥A−1

∥
−1
∞ = min

∥x∥∞=1
∥Ax∥∞ = ∥Ax∗∥∞ = max

i∈N
|(Ax∗)i|

for some ∥x∗∥∞ = 1. Therefore, for all i ∈ N it holds that

∥A−1
∥
−1
∞ ≥ |(Ax∗)i|.

Let k be the index such that ∥x∗∥∞ = |x∗k| = 1.
First, suppose that k corresponds to a Nekrasov dominant row, i.e., k ∈ N\N−(A), |akk| > hk(A).
Then, from

Ax∗ = Dx∗ − Lx∗ −Ux∗

it follows that
(|D| − |L|)|x∗| − |U||x∗| ≤ |Ax∗|.
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If we multiply both sides of this inequality with |D|(|D| − |L|)−1 from the left, this gives

|D||x∗| − |D|(|D| − |L|)−1
|U||x∗| ≤

≤ |D|(|D| − |L|)−1
|Ax∗| ≤ |D|(|D| − |L|)−1

∥A−1
∥
−1
∞ e.

Now, as |x∗| ≤ e and |x∗k| = 1,we observe closely the k − th row of the inequality, and obtain:

∥A−1
∥
−1
∞ (|D|(|D| − |L|)−1e)k ≥ |akk||x∗k| − (|D|(|D| − |L|)−1

|U|e)k = |akk| − hk(A).

As (|D|(|D| − |L|)−1e)k = zk(A) and |akk| − hk(A) > 0, clearly, we have

∥A−1
∥∞ ≤

zk(A)
|akk| − hk(A)

≤ max
i∈N\N−(A)

zi(A)
|aii| − hi(A)

.

This completes the first case, where k stands for a Nekrasov dominant row.
In the second case, we assume the oposite, that k denotes a non-Nekrasov row, i.e., that k ∈ N−(A), |akk| ≤

hk(A).
As A is a PN−type matrix, for k ∈ N−(A) there exists a nonempty proper subset S of N, such that

S ∈ Sk(A), i.e., it holds
k ∈ S, |akk| > hS

k (A)

and for all j ∈ S
(|akk| − hS

k (A))(|a j j| − hS
j (A)) > hS

k (A)hS
j (A).

Let l ∈ S be the index such that |x∗l | = max j∈S |x
∗

j|.

In a similar manner as done when discussing the first case, we obtain

|D||x∗| ≤ |D|(|D| − |L|)−1
|Ax∗| + |D|(|D| − |L|)−1

|U||x∗| ≤

≤ |D|(|D| − |L|)−1
∥A−1

∥
−1
∞ e + |D|(|D| − |L|)−1

|U|eS
|x∗k| + |D|(|D| − |L|)

−1
|U|eS

|x∗l |.

In the k − th row, we have
|akk| ≤ ∥A−1

∥
−1
∞ zk(A) + hS

k (A) + hS
k (A)|x∗l |,

which implies
|akk| − hS

k (A) − ∥A−1
∥
−1
∞ zk(A) ≤ hS

k (A)|x∗l |.

In the l − th row, we have

|all||x∗l | ≤ ∥A
−1
∥
−1
∞ zl(A) + hS

l (A)|x∗k| + hS
l (A)|x∗l |,

which implies
(|all| − hS

l (A))|x∗l | ≤ ∥A
−1
∥
−1
∞ zl(A) + hS

l (A)

and also

|x∗l | ≤
∥A−1

∥
−1
∞ zl(A) + hS

l (A)

|all| − hS
l (A)

.

Therefore

|akk| − hS
k (A) − ∥A−1

∥
−1
∞ zk(A) ≤ hS

k (A)|x∗l | ≤ hS
k (A)
∥A−1

∥
−1
∞ zl(A) + hS

l (A)

|all| − hS
l (A)

.

Multiplying both sides with |all| − hS
l (A) > 0 gives

(|akk| − hS
k (A))(|all| − hS

l (A)) − ∥A−1
∥
−1
∞ zk(A)(|all| − hS

l (A)) ≤



M. Nedović, E. Šanca / Filomat 38:14 (2024), 5083–5097 5091

≤ ∥A−1
∥
−1
∞ zl(A)hS

k (A) + hS
l (A)hS

k (A),

which implies

∥A−1
∥
−1
∞ ≥

(|akk| − hS
k (A))(|all| − hS

l (A)) − hS
l (A)hS

k (A)

zl(A)hS
k (A) + zk(A)(|all| − hS

l (A))

and

∥A−1
∥∞ ≤

zl(A)hS
k (A) + zk(A)(|all| − hS

l (A))

(|akk| − hS
k (A))(|all| − hS

l (A)) − hS
l (A)hS

k (A)
= γS

kl(A).

Now, we obtain

∥A−1
∥∞ ≤ γ

S
kl(A) ≤ max

j∈S
γS

kj(A) ≤ min
S∈Sk(A)

max
j∈S
γS

kj(A) ≤ max
i∈N−(A)

min
S∈Si(A)

max
j∈S
γS

ij(A).

This completes the second case.
Taking both cases into consideration, we now obtain the bound

∥A−1
∥∞ ≤ max

 max
i∈N\N−(A)

zi(A)
|aii| − hi(A)

, max
i∈N−(A)

min
S∈Si(A)

max
j∈S
γS

ij(A)

 .
□
According to Remark 2.5, one can easily obtain another estimate for the norm of the inverse matrix.

Theorem 3.2. If a matrix A = [ai j] ∈ Cn,n,n ≥ 2 is a PN−type matrix, then

∥A−1
∥∞ ≤ max

i∈N
min

S∈Si(A)
max

j∈S
γS

ij(A),

where γS
ij(A) is defined as in Theorem 3.1.

Let us consider the following numerical example. The matrix

A =


5 2 0 −1
−2 4 0 1
−1.5 2 5 −1
0.5 0 −2 5


is an SDD matrix. It is the same matrix considered in [5]. There, it was shown that of many well−known
norm bounds for the inverse, the one developed for CKV−type matrices gives the sharpest result (0.9286),
while the exact value of the norm of the inverse is ∥A−1

∥∞ = 0.4358. The bound obtained from Theorem 3.1
is 1, which is not better than CKV−type result, but if we apply Theorem 3.2, we obtain a sharper bound,
0.7895.

Remark 3.3. One can consider block generalizations of H−matrices and subclasses and define infinity norm estima-
tions for the inverse matrix in the block−case. Block H−matrices were researched in [31].

4. Linear complementarity problem

The linear complementarity problem (LCP) is one of the most well-known problems in numerical
mathematics. For formulation, applications and in-depth analysis, the eager reader may refer to [4].
Due to its iterative nature, a key to its successful analysis is the proposal of numerically acceptable and
computationally cheap estimations for the error, which was introduced and studied in [3], and further
polished for matrices having some special properties, (see [1, 16, 25, 27, 29, 32]).
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For a given matrix A = [ai j] ∈ Rn,n and a given vector q ∈ Rn, to solve LCP(A, q) is to find a vector
x ∈ Rn such that

x ≥ 0,Ax + q ≥ 0, (Ax + q)Tx = 0,

or to show that such vector does not exist.
The unique solution of LCP(A, q) for any vector q ∈ Rn is guaranteed if and only if the matrix A is a

P−matrix, see [4], the condition being satisfied for any H−matrix with positive diagonal entries.
Let A be a P−matrix, let x∗ denote the solution of the LCP(A, q) and denote r(x) = min(x,Ax + q),

D = dia1(di), 0 ≤ di ≤ 1. In [3] the estimate for the error of the solution was presented in the following form

||x − x∗||∞ ≤ max
d∈[0,1]n

||(I −D +DA)−1
||∞||r(x)||∞,

meaning that we could use new estimates for the norm of the inverse developed in this paper for PN−type
matrices to bound errors in LCP.

In order to do that, we also need the following lemmas.

Lemma 4.1 ([25]). Let A = [ai j] ∈ Rn,n be a matrix with aii > 0 for all i ∈ N and let B = I −D +DA = [bi j],
where D = dia1(di) with 0 ≤ di ≤ 1. Then

zi(B) ≤ ηi(A),

and
zi(B)

bii
≤

ηi(A)
min(aii, 1)

,

where
z1(B) = η1(A) = 1,

zi(B) =
i−1∑
j=1

|bi j|

|b j j|
z j(B) + 1, i = 2, 3, ...,n,

and

ηi(A) =
i−1∑
j=1

|ai j|

min(a j j, 1)
η j(A) + 1, i = 2, 3, ...,n.

Lemma 4.2 ([27]). Let γ > 0, η ≥ 0. Then, for any x ∈ [0, 1],

1
1 − x + γx

≤
1

min{γ, 1}

and
ηx

1 − x + γx
≤
η

γ
.

Using these Lemmas and the arguments from [14], we will estimate errors for LCP with PN−type
matrices.

First, let us consider the shifted matrix B = I −D+DA, where D = dia1(di) with 0 ≤ di ≤ 1, and prove
that the matrix B inherits PN−type property from the matrix A.

Lemma 4.3. Let A = [ai j] ∈ Rn,n, n ≥ 2, with aii > 0, for all i ∈ N and let B = I−D+DA, where D = dia1(di)
with 0 ≤ di ≤ 1. Then, for any nonempty proper subset S of the index set N, it holds

hS
i (B) ≤ dihS

i (A), i ∈ N,

and
hS

i (B)

bii
≤

hS
i (A)

aii
, i ∈ N.
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Proof: Consider the matrix B = I−D+DA, where D = dia1(di) with 0 ≤ di ≤ 1. Then, bii = 1− di + diaii ≥

diaii. Also, bi j = diai j, i , j.
For an arbitrary nonempty proper subset S of the index set, it holds that

hS
i (B) ≤ dihS

i (A), i ∈ N.

We show this by mathematical induction as follows.

hS
1(B) = rS

1(B) =
n∑

j=2, j∈S

|b1 j| =

n∑
j=2, j∈S

d1|a1 j| = d1hS
1(A).

Assume that inequality hS
j (B) ≤ d jhS

j (A) holds for j = 1, ..., i − 1.
Now, if all d j > 0, j = 1, ..., i − 1,

hS
i (B) =

i−1∑
j=1

|bi j|
hS

j (B)

b j j
+

n∑
j=i+1, j∈S

|bi j| ≤

≤

i−1∑
j=1

di|ai j|
d jhS

j (A)

d ja j j
+

n∑
j=i+1, j∈S

di|ai j| = dihS
i (A).

Notice that inequality holds also when for some j ≤ i − 1, d j = 0. Namely, if d j = 0, then hS
j (B) = 0

and b j j = 1, therefore
hS

j (B)

b j j
=

0
1
≤

hS
j (A)

a j j
,

and

hS
i (B) =

i−1∑
j=1

|bi j|
hS

j (B)

b j j
+

n∑
j=i+1, j∈S

|bi j| ≤

≤

i−1∑
j=1

di|ai j|
hS

j (A)

a j j
+

n∑
j=i+1, j∈S

di|ai j| = dihS
i (A).

In order to prove the second part of this lemma, we notice that in the case di > 0,

hS
i (B)

bii
≤

dihS
i (A)

diaii
=

hS
i (A)

aii
.

Also, if di = 0, then
hS

i (B)

bii
= 0 ≤

hS
i (A)

aii
. This completes the proof. □

Theorem 4.4. Let A = [ai j] ∈ Rn,n, n ≥ 2, with aii > 0, for all i ∈ N. Let B = I − D + DA, where
D = dia1(di) with 0 ≤ di ≤ 1. If A is a PN−type matrix, then B is also a PN−type matrix. Furthermore, for each
i ∈ N, Si(A) ⊆ Si(B).

Proof: Let A = [ai j] ∈ Rn,n, n ≥ 2, with aii > 0, for all i ∈ N be a PN−type matrix. Then, for each
i ∈ N, Si(A) , ∅, i.e., there is a proper subset S containing i such that

|aii| > hS
i (A)

and for all j ∈ S, (
|aii| − hS

i (A)
)(
|a j j| − hS

j (A)
)
> hS

i (A)hS
j (A).
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Now, we prove that S ∈ Si(B). If di , 0, then,

bii ≥ diaii > dihS
i (A) ≥ hS

i (B),

and if di = 0, then bii = 1 > 0 = hS
i (B).

As S ∈ Si(A), for all j ∈ S (
aii − hS

i (A)
)(

a j j − hS
j (A)
)
> hS

i (A)hS
j (A).

If di > 0 and d j > 0 for all j ∈ S, by multiplying previous inequality with did j, we obtain that(
bii − hS

i (B)
)(

b j j − hS
j (B)
)
≥ di

(
aii − hS

i (A)
)
d j

(
a j j − hS

j (A)
)
>

> dihS
i (A)d jhS

j (A) ≥ hS
i (B)hS

j (B).

It is easy to see that (
bii − hS

i (B)
)(

b j j − hS
j (B)
)
> hS

i (B)hS
j (B)

holds also when di = 0 or, for some j ∈ S, d j = 0. Therefore, S ∈ Si(B).
This proves that if A is a PN−type matrix with positive diagonal entries, then B = I −D +DA where

D = dia1(di) with 0 ≤ di ≤ 1 is also a PN−type matrix and, moreover, for each index i it holds that
Si(A) ⊆ Si(B).
□

Theorem 4.5. Let A = [ai j] ∈ Rn,n, n ≥ 2, aii > 0, i = 1, ...,n, be a PN−type matrix. Then,

max
d∈[0,1]n

||(I −D +DA)−1
||∞ ≤ max

i∈N
min

S∈Si(A)
max

j∈S
δS

ij(A),

where

δS
ij(A) =

η j(A)hS
i (A)(a j j−hS

j (A))

min{a j j−hS
j (A),1}

+
ηi(A)(aii−hS

i (A))(a j j−hS
j (A))

min{aii−hS
i (A),1}

(aii − hS
i (A))(a j j − hS

j (A)) − hS
i (A)hS

j (A)
.

Proof:
Let A = [ai j] ∈ Rn,n, n ≥ 2, aii > 0, i = 1, ...,n, be a PN−type matrix. Then, for any diagonal matrix D,

D = dia1(di) with 0 ≤ di ≤ 1, the matrix B = I−D+DA is also a PN−type matrix (as shown in Theorem 4.4).
According to previous Lemmas, we obtain that the following inequality holds for each i ∈ N,S ∈ Si(A).

1
bii − hS

i (B)
≤

1
1 − di + diaii − dihS

i (A)
=

=
1

1 − di + di(aii − hS
i (A))

≤
1

min{aii − hS
i (A), 1}

.

Then, we can apply the norm bound for the inverse matrix from Theorem 3.2 to the matrix B, as follows:

∥B−1
∥∞ ≤ max

i∈N
min

S∈Si(B)
max

j∈S
γS

ij(B).

Here, if di > 0 and d j > 0,

γS
ij(B) =

z j(B)hS
i (B) + zi(B)(|b j j| − hS

j (B))

(|b j j| − hS
j (B))(|bii| − hS

i (B)) − hS
i (B)hS

j (B)
=
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=

z j(B)hS
i (B)

(b j j−hS
j (B))(bii−hS

i (B))
+

zi(B)
bii−hS

i (B)

1 −
hS

i (B)hS
j (B)

(b j j−hS
j (B))(bii−hS

i (B))

≤

≤

η j(A)dihS
i (A)

min{a j j−hS
j (A),1}di(aii−hS

i (A))
+

ηi(A)
min{aii−hS

i (A),1}

1 −
dihS

i (A)d jhS
j (A)

d j(a j j−hS
j (A))di(aii−hS

i (A))

=

=

η j(A)hS
i (A)(a j j−hS

j (A))

min{a j j−hS
j (A),1}

+
ηi(A)(aii−hS

i (A))(a j j−hS
j (A))

min{aii−hS
i (A),1}

(aii − hS
i (A))(a j j − hS

j (A)) − hS
i (A)hS

j (A)
= δS

ij(A).

The conclusion also holds when di = 0 or d j = 0.
Therefore,

∥B−1
∥∞ ≤ max

i∈N
min

S∈Si(B)
max

j∈S
γS

ij(B) ≤ max
i∈N

min
S∈Si(A)

max
j∈S
δS

ij(A).

□
The special case for matrices with all diagonal entries equal to 1 is given in the following Corollary.

Corollary 4.6. Let A = [ai j] ∈ Rn,n, n ≥ 2, aii = 1, i = 1, ...,n, be a PN−type matrix. Then,

max
d∈[0,1]n

||(I −D +DA)−1
||∞ ≤ max

i∈N
min

S∈Si(A)
max

j∈S
δS

ij(A),

where

δS
ij(A) =

η j(A)hS
i (A) + ηi(A)(1 − hS

j (A))

(1 − hS
i (A))(1 − hS

j (A)) − hS
i (A)hS

j (A)
.

Benefits of these new error estimates are twofold.
Firstly, there are matrices that belong to PN−type class, but do not belong to Partition−Nekrasov class (see
matrix F from Remark 2.7). For such matrices neither of the well-known bounds defined for SDD, DZ, CKV,
Nekrasov nor Partition−Nekrasov matrices can be applied, while our new estimate given for PN−type
matrices can be applied.
Secondly, even if the given matrix belongs both to PN−type class and some other well-known class, in some
cases our new bounds give tighter estimates, as the following example shows.

Let us consider the matrix C,

C =

 0.5 1 −1
0 2 1

0.1 1 2

 .
The matrix C belongs to CKV class and it does not belong to Nekrasov matrix class. It is also a PN−type

matrix, as CKV is a subclass of PN−type class. If we apply error bounds for linear complementarity
problems for CKV matrices given in [18] we obtain 16.6667. If we apply our new bounds for PN−type
matrices from Theorem 4.5 we obtain tighter estimate 10.8.
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5. Conclusions and remarks

We conclude our considerations with the following remarks and observations. Note that there are several
benefits of the new PN−type condition, introduced in this paper. First, this new condition guarantees
nonsingularity of the given matrix. Also, we proved that matrices satisfying this condition belong to
H−matrices. When analyzing the relation of the new class to other subclasses of H−matrices, one can
see that the new class of PN−type matrices contains the class of Partition−Nekrasov matrices, as the new
condition is more relaxed compared to Partition−Nekrasov condition. This is due to allowing for each
index to have its own corresponding partition of the index set, instead of demanding that there exists
one fixed partition of the index set such that all the inequalities hold with respect to that same partition.
Numerical examples given in Section 2 show that the new class and CKV−type class stand in a general
relation, meaning that neither is a subclass of the other and they have a nonempty intersection, as they
both contain SDD matrices. We used the new condition to estimate the infinity norm of the inverse for
PN−type matrices. Numerical examples illustrate that we sometimes obtain better estimates using new
results instead of using the bounds developed for some other matrix classes, such as CKV−type matrices,
when the matrix in consideration belongs both to CKV−type and the new class. Also, there are matrices
that do not belong to Partition−Nekrasov or CKV−type matrices, but do belong to PN−type matrices. For
these matrices previously known bounds cannot be applied, while our new estimates for PN−type matrices
can be applied. One more benefit is briefly presented as a remark on the possibility for application of these
results to block H−matrices. There are matrices that do not belong to H−matrices in the classical sense
(for instance, if they have one or more zero diagonal entries) but they belong to block generalizations of
different subclasses of H−matrices. For these matrices, classical estimates for the norm of the inverse cannot
be applied, but block results can be used instead. The same consideration is valid for our new condition,
as it can be used to deal with another class of block H−matrices. As the relation between subclasses of
block H−matrices is analogous to the relation between corresponding classes in the point−wise case, norm
estimates for block PN−type matrices could be applicable in some cases where already known bounds
(point−wise or block) cannot be applied. One more possible application that could be easily derived lies
in defining PN−type B-matrices via a special rank one perturbation, as done for many other matrix classes.
In this way, one could obtain a new subclass of P−matrices and estimate corresponding error bounds for
LCP. Also, for further research it might be interesting to consider different sparsity patterns and their effect
on proposed bounds and computational costs, as done for DZ−type and CKV−type matrices (see [13, 23]).
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[6] Cvetković, Lj., Kostić, V., Varga, R. A new Geršgorin-type eigenvalue inclusion area, ETNA 18 (2004), 73–80.
[7] Cvetković, Lj., Kostić, V., Kovačević, M. and Szulc, T. Further results on H−matrices and their Schur complements, Appl. Math.

Comput. 198 (2) (2008), 506–510.
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